// This is mozilla/security/manager/ssl/src/md4.c, CVS rev. 1.1, with trivial // changes to port it to our source tree. // // WARNING: MD4 is cryptographically weak. Do not use MD4 except in NTLM // authentication. /* vim:set ts=2 sw=2 et cindent: */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla. * * The Initial Developer of the Original Code is IBM Corporation. * Portions created by IBM Corporation are Copyright (C) 2003 * IBM Corporation. All Rights Reserved. * * Contributor(s): * Darin Fisher <darin@meer.net> * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * "clean room" MD4 implementation (see RFC 1320) */ #include "net/http/md4.h" #include <string.h> typedef uint32 Uint32; typedef uint8 Uint8; /* the "conditional" function */ #define F(x,y,z) (((x) & (y)) | (~(x) & (z))) /* the "majority" function */ #define G(x,y,z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) /* the "parity" function */ #define H(x,y,z) ((x) ^ (y) ^ (z)) /* rotate n-bits to the left */ #define ROTL(x,n) (((x) << (n)) | ((x) >> (0x20 - n))) /* round 1: [abcd k s]: a = (a + F(b,c,d) + X[k]) <<< s */ #define RD1(a,b,c,d,k,s) a += F(b,c,d) + X[k]; a = ROTL(a,s) /* round 2: [abcd k s]: a = (a + G(b,c,d) + X[k] + MAGIC) <<< s */ #define RD2(a,b,c,d,k,s) a += G(b,c,d) + X[k] + 0x5A827999; a = ROTL(a,s) /* round 3: [abcd k s]: a = (a + H(b,c,d) + X[k] + MAGIC) <<< s */ #define RD3(a,b,c,d,k,s) a += H(b,c,d) + X[k] + 0x6ED9EBA1; a = ROTL(a,s) /* converts from word array to byte array, len is number of bytes */ static void w2b(Uint8 *out, const Uint32 *in, Uint32 len) { Uint8 *bp; const Uint32 *wp, *wpend; bp = out; wp = in; wpend = wp + (len >> 2); for (; wp != wpend; ++wp, bp += 4) { bp[0] = (Uint8) ((*wp ) & 0xFF); bp[1] = (Uint8) ((*wp >> 8) & 0xFF); bp[2] = (Uint8) ((*wp >> 16) & 0xFF); bp[3] = (Uint8) ((*wp >> 24) & 0xFF); } } /* converts from byte array to word array, len is number of bytes */ static void b2w(Uint32 *out, const Uint8 *in, Uint32 len) { Uint32 *wp; const Uint8 *bp, *bpend; wp = out; bp = in; bpend = in + len; for (; bp != bpend; bp += 4, ++wp) { *wp = (Uint32) (bp[0] ) | (Uint32) (bp[1] << 8) | (Uint32) (bp[2] << 16) | (Uint32) (bp[3] << 24); } } /* update state: data is 64 bytes in length */ static void md4step(Uint32 state[4], const Uint8 *data) { Uint32 A, B, C, D, X[16]; b2w(X, data, 64); A = state[0]; B = state[1]; C = state[2]; D = state[3]; RD1(A,B,C,D, 0,3); RD1(D,A,B,C, 1,7); RD1(C,D,A,B, 2,11); RD1(B,C,D,A, 3,19); RD1(A,B,C,D, 4,3); RD1(D,A,B,C, 5,7); RD1(C,D,A,B, 6,11); RD1(B,C,D,A, 7,19); RD1(A,B,C,D, 8,3); RD1(D,A,B,C, 9,7); RD1(C,D,A,B,10,11); RD1(B,C,D,A,11,19); RD1(A,B,C,D,12,3); RD1(D,A,B,C,13,7); RD1(C,D,A,B,14,11); RD1(B,C,D,A,15,19); RD2(A,B,C,D, 0,3); RD2(D,A,B,C, 4,5); RD2(C,D,A,B, 8, 9); RD2(B,C,D,A,12,13); RD2(A,B,C,D, 1,3); RD2(D,A,B,C, 5,5); RD2(C,D,A,B, 9, 9); RD2(B,C,D,A,13,13); RD2(A,B,C,D, 2,3); RD2(D,A,B,C, 6,5); RD2(C,D,A,B,10, 9); RD2(B,C,D,A,14,13); RD2(A,B,C,D, 3,3); RD2(D,A,B,C, 7,5); RD2(C,D,A,B,11, 9); RD2(B,C,D,A,15,13); RD3(A,B,C,D, 0,3); RD3(D,A,B,C, 8,9); RD3(C,D,A,B, 4,11); RD3(B,C,D,A,12,15); RD3(A,B,C,D, 2,3); RD3(D,A,B,C,10,9); RD3(C,D,A,B, 6,11); RD3(B,C,D,A,14,15); RD3(A,B,C,D, 1,3); RD3(D,A,B,C, 9,9); RD3(C,D,A,B, 5,11); RD3(B,C,D,A,13,15); RD3(A,B,C,D, 3,3); RD3(D,A,B,C,11,9); RD3(C,D,A,B, 7,11); RD3(B,C,D,A,15,15); state[0] += A; state[1] += B; state[2] += C; state[3] += D; } namespace net { namespace weak_crypto { void MD4Sum(const Uint8 *input, Uint32 inputLen, Uint8 *result) { Uint8 final[128]; Uint32 i, n, m, state[4]; /* magic initial states */ state[0] = 0x67452301; state[1] = 0xEFCDAB89; state[2] = 0x98BADCFE; state[3] = 0x10325476; /* compute number of complete 64-byte segments contained in input */ m = inputLen >> 6; /* digest first m segments */ for (i=0; i<m; ++i) md4step(state, (input + (i << 6))); /* build final buffer */ n = inputLen % 64; memcpy(final, input + (m << 6), n); final[n] = 0x80; memset(final + n + 1, 0, 120 - (n + 1)); inputLen = inputLen << 3; w2b(final + (n >= 56 ? 120 : 56), &inputLen, 4); md4step(state, final); if (n >= 56) md4step(state, final + 64); /* copy state to result */ w2b(result, state, 16); } } // namespace net::weak_crypto } // namespace net