//===--- IdentifierTable.cpp - Hash table for identifier lookup -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the IdentifierInfo, IdentifierVisitor, and // IdentifierTable interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LangOptions.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ErrorHandling.h" #include <cstdio> using namespace clang; //===----------------------------------------------------------------------===// // IdentifierInfo Implementation //===----------------------------------------------------------------------===// IdentifierInfo::IdentifierInfo() { TokenID = tok::identifier; ObjCOrBuiltinID = 0; HasMacro = false; IsExtension = false; IsCXX11CompatKeyword = false; IsPoisoned = false; IsCPPOperatorKeyword = false; NeedsHandleIdentifier = false; IsFromAST = false; ChangedAfterLoad = false; RevertedTokenID = false; OutOfDate = false; IsModulesImport = false; FETokenInfo = 0; Entry = 0; } //===----------------------------------------------------------------------===// // IdentifierTable Implementation //===----------------------------------------------------------------------===// IdentifierIterator::~IdentifierIterator() { } IdentifierInfoLookup::~IdentifierInfoLookup() {} namespace { /// \brief A simple identifier lookup iterator that represents an /// empty sequence of identifiers. class EmptyLookupIterator : public IdentifierIterator { public: virtual StringRef Next() { return StringRef(); } }; } IdentifierIterator *IdentifierInfoLookup::getIdentifiers() const { return new EmptyLookupIterator(); } ExternalIdentifierLookup::~ExternalIdentifierLookup() {} IdentifierTable::IdentifierTable(const LangOptions &LangOpts, IdentifierInfoLookup* externalLookup) : HashTable(8192), // Start with space for 8K identifiers. ExternalLookup(externalLookup) { // Populate the identifier table with info about keywords for the current // language. AddKeywords(LangOpts); // Add the '_experimental_modules_import' contextual keyword. get("__experimental_modules_import").setModulesImport(true); } //===----------------------------------------------------------------------===// // Language Keyword Implementation //===----------------------------------------------------------------------===// // Constants for TokenKinds.def namespace { enum { KEYC99 = 0x1, KEYCXX = 0x2, KEYCXX0X = 0x4, KEYGNU = 0x8, KEYMS = 0x10, BOOLSUPPORT = 0x20, KEYALTIVEC = 0x40, KEYNOCXX = 0x80, KEYBORLAND = 0x100, KEYOPENCL = 0x200, KEYC11 = 0x400, KEYARC = 0x800, KEYALL = 0x0fff }; } /// AddKeyword - This method is used to associate a token ID with specific /// identifiers because they are language keywords. This causes the lexer to /// automatically map matching identifiers to specialized token codes. /// /// The C90/C99/CPP/CPP0x flags are set to 3 if the token is a keyword in a /// future language standard, set to 2 if the token should be enabled in the /// specified language, set to 1 if it is an extension in the specified /// language, and set to 0 if disabled in the specified language. static void AddKeyword(StringRef Keyword, tok::TokenKind TokenCode, unsigned Flags, const LangOptions &LangOpts, IdentifierTable &Table) { unsigned AddResult = 0; if (Flags == KEYALL) AddResult = 2; else if (LangOpts.CPlusPlus && (Flags & KEYCXX)) AddResult = 2; else if (LangOpts.CPlusPlus0x && (Flags & KEYCXX0X)) AddResult = 2; else if (LangOpts.C99 && (Flags & KEYC99)) AddResult = 2; else if (LangOpts.GNUKeywords && (Flags & KEYGNU)) AddResult = 1; else if (LangOpts.MicrosoftExt && (Flags & KEYMS)) AddResult = 1; else if (LangOpts.Borland && (Flags & KEYBORLAND)) AddResult = 1; else if (LangOpts.Bool && (Flags & BOOLSUPPORT)) AddResult = 2; else if (LangOpts.AltiVec && (Flags & KEYALTIVEC)) AddResult = 2; else if (LangOpts.OpenCL && (Flags & KEYOPENCL)) AddResult = 2; else if (!LangOpts.CPlusPlus && (Flags & KEYNOCXX)) AddResult = 2; else if (LangOpts.C11 && (Flags & KEYC11)) AddResult = 2; // We treat bridge casts as objective-C keywords so we can warn on them // in non-arc mode. else if (LangOpts.ObjC2 && (Flags & KEYARC)) AddResult = 2; else if (LangOpts.CPlusPlus && (Flags & KEYCXX0X)) AddResult = 3; // Don't add this keyword if disabled in this language. if (AddResult == 0) return; IdentifierInfo &Info = Table.get(Keyword, AddResult == 3 ? tok::identifier : TokenCode); Info.setIsExtensionToken(AddResult == 1); Info.setIsCXX11CompatKeyword(AddResult == 3); } /// AddCXXOperatorKeyword - Register a C++ operator keyword alternative /// representations. static void AddCXXOperatorKeyword(StringRef Keyword, tok::TokenKind TokenCode, IdentifierTable &Table) { IdentifierInfo &Info = Table.get(Keyword, TokenCode); Info.setIsCPlusPlusOperatorKeyword(); } /// AddObjCKeyword - Register an Objective-C @keyword like "class" "selector" or /// "property". static void AddObjCKeyword(StringRef Name, tok::ObjCKeywordKind ObjCID, IdentifierTable &Table) { Table.get(Name).setObjCKeywordID(ObjCID); } /// AddKeywords - Add all keywords to the symbol table. /// void IdentifierTable::AddKeywords(const LangOptions &LangOpts) { // Add keywords and tokens for the current language. #define KEYWORD(NAME, FLAGS) \ AddKeyword(StringRef(#NAME), tok::kw_ ## NAME, \ FLAGS, LangOpts, *this); #define ALIAS(NAME, TOK, FLAGS) \ AddKeyword(StringRef(NAME), tok::kw_ ## TOK, \ FLAGS, LangOpts, *this); #define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \ if (LangOpts.CXXOperatorNames) \ AddCXXOperatorKeyword(StringRef(#NAME), tok::ALIAS, *this); #define OBJC1_AT_KEYWORD(NAME) \ if (LangOpts.ObjC1) \ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this); #define OBJC2_AT_KEYWORD(NAME) \ if (LangOpts.ObjC2) \ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this); #define TESTING_KEYWORD(NAME, FLAGS) #include "clang/Basic/TokenKinds.def" if (LangOpts.ParseUnknownAnytype) AddKeyword("__unknown_anytype", tok::kw___unknown_anytype, KEYALL, LangOpts, *this); } tok::PPKeywordKind IdentifierInfo::getPPKeywordID() const { // We use a perfect hash function here involving the length of the keyword, // the first and third character. For preprocessor ID's there are no // collisions (if there were, the switch below would complain about duplicate // case values). Note that this depends on 'if' being null terminated. #define HASH(LEN, FIRST, THIRD) \ (LEN << 5) + (((FIRST-'a') + (THIRD-'a')) & 31) #define CASE(LEN, FIRST, THIRD, NAME) \ case HASH(LEN, FIRST, THIRD): \ return memcmp(Name, #NAME, LEN) ? tok::pp_not_keyword : tok::pp_ ## NAME unsigned Len = getLength(); if (Len < 2) return tok::pp_not_keyword; const char *Name = getNameStart(); switch (HASH(Len, Name[0], Name[2])) { default: return tok::pp_not_keyword; CASE( 2, 'i', '\0', if); CASE( 4, 'e', 'i', elif); CASE( 4, 'e', 's', else); CASE( 4, 'l', 'n', line); CASE( 4, 's', 'c', sccs); CASE( 5, 'e', 'd', endif); CASE( 5, 'e', 'r', error); CASE( 5, 'i', 'e', ident); CASE( 5, 'i', 'd', ifdef); CASE( 5, 'u', 'd', undef); CASE( 6, 'a', 's', assert); CASE( 6, 'd', 'f', define); CASE( 6, 'i', 'n', ifndef); CASE( 6, 'i', 'p', import); CASE( 6, 'p', 'a', pragma); CASE( 7, 'd', 'f', defined); CASE( 7, 'i', 'c', include); CASE( 7, 'w', 'r', warning); CASE( 8, 'u', 'a', unassert); CASE(12, 'i', 'c', include_next); CASE(14, '_', 'p', __public_macro); CASE(15, '_', 'p', __private_macro); CASE(16, '_', 'i', __include_macros); #undef CASE #undef HASH } } //===----------------------------------------------------------------------===// // Stats Implementation //===----------------------------------------------------------------------===// /// PrintStats - Print statistics about how well the identifier table is doing /// at hashing identifiers. void IdentifierTable::PrintStats() const { unsigned NumBuckets = HashTable.getNumBuckets(); unsigned NumIdentifiers = HashTable.getNumItems(); unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers; unsigned AverageIdentifierSize = 0; unsigned MaxIdentifierLength = 0; // TODO: Figure out maximum times an identifier had to probe for -stats. for (llvm::StringMap<IdentifierInfo*, llvm::BumpPtrAllocator>::const_iterator I = HashTable.begin(), E = HashTable.end(); I != E; ++I) { unsigned IdLen = I->getKeyLength(); AverageIdentifierSize += IdLen; if (MaxIdentifierLength < IdLen) MaxIdentifierLength = IdLen; } fprintf(stderr, "\n*** Identifier Table Stats:\n"); fprintf(stderr, "# Identifiers: %d\n", NumIdentifiers); fprintf(stderr, "# Empty Buckets: %d\n", NumEmptyBuckets); fprintf(stderr, "Hash density (#identifiers per bucket): %f\n", NumIdentifiers/(double)NumBuckets); fprintf(stderr, "Ave identifier length: %f\n", (AverageIdentifierSize/(double)NumIdentifiers)); fprintf(stderr, "Max identifier length: %d\n", MaxIdentifierLength); // Compute statistics about the memory allocated for identifiers. HashTable.getAllocator().PrintStats(); } //===----------------------------------------------------------------------===// // SelectorTable Implementation //===----------------------------------------------------------------------===// unsigned llvm::DenseMapInfo<clang::Selector>::getHashValue(clang::Selector S) { return DenseMapInfo<void*>::getHashValue(S.getAsOpaquePtr()); } namespace clang { /// MultiKeywordSelector - One of these variable length records is kept for each /// selector containing more than one keyword. We use a folding set /// to unique aggregate names (keyword selectors in ObjC parlance). Access to /// this class is provided strictly through Selector. class MultiKeywordSelector : public DeclarationNameExtra, public llvm::FoldingSetNode { MultiKeywordSelector(unsigned nKeys) { ExtraKindOrNumArgs = NUM_EXTRA_KINDS + nKeys; } public: // Constructor for keyword selectors. MultiKeywordSelector(unsigned nKeys, IdentifierInfo **IIV) { assert((nKeys > 1) && "not a multi-keyword selector"); ExtraKindOrNumArgs = NUM_EXTRA_KINDS + nKeys; // Fill in the trailing keyword array. IdentifierInfo **KeyInfo = reinterpret_cast<IdentifierInfo **>(this+1); for (unsigned i = 0; i != nKeys; ++i) KeyInfo[i] = IIV[i]; } // getName - Derive the full selector name and return it. std::string getName() const; unsigned getNumArgs() const { return ExtraKindOrNumArgs - NUM_EXTRA_KINDS; } typedef IdentifierInfo *const *keyword_iterator; keyword_iterator keyword_begin() const { return reinterpret_cast<keyword_iterator>(this+1); } keyword_iterator keyword_end() const { return keyword_begin()+getNumArgs(); } IdentifierInfo *getIdentifierInfoForSlot(unsigned i) const { assert(i < getNumArgs() && "getIdentifierInfoForSlot(): illegal index"); return keyword_begin()[i]; } static void Profile(llvm::FoldingSetNodeID &ID, keyword_iterator ArgTys, unsigned NumArgs) { ID.AddInteger(NumArgs); for (unsigned i = 0; i != NumArgs; ++i) ID.AddPointer(ArgTys[i]); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, keyword_begin(), getNumArgs()); } }; } // end namespace clang. unsigned Selector::getNumArgs() const { unsigned IIF = getIdentifierInfoFlag(); if (IIF == ZeroArg) return 0; if (IIF == OneArg) return 1; // We point to a MultiKeywordSelector (pointer doesn't contain any flags). MultiKeywordSelector *SI = reinterpret_cast<MultiKeywordSelector *>(InfoPtr); return SI->getNumArgs(); } IdentifierInfo *Selector::getIdentifierInfoForSlot(unsigned argIndex) const { if (getIdentifierInfoFlag()) { assert(argIndex == 0 && "illegal keyword index"); return getAsIdentifierInfo(); } // We point to a MultiKeywordSelector (pointer doesn't contain any flags). MultiKeywordSelector *SI = reinterpret_cast<MultiKeywordSelector *>(InfoPtr); return SI->getIdentifierInfoForSlot(argIndex); } StringRef Selector::getNameForSlot(unsigned int argIndex) const { IdentifierInfo *II = getIdentifierInfoForSlot(argIndex); return II? II->getName() : StringRef(); } std::string MultiKeywordSelector::getName() const { SmallString<256> Str; llvm::raw_svector_ostream OS(Str); for (keyword_iterator I = keyword_begin(), E = keyword_end(); I != E; ++I) { if (*I) OS << (*I)->getName(); OS << ':'; } return OS.str(); } std::string Selector::getAsString() const { if (InfoPtr == 0) return "<null selector>"; if (InfoPtr & ArgFlags) { IdentifierInfo *II = getAsIdentifierInfo(); // If the number of arguments is 0 then II is guaranteed to not be null. if (getNumArgs() == 0) return II->getName(); if (!II) return ":"; return II->getName().str() + ":"; } // We have a multiple keyword selector (no embedded flags). return reinterpret_cast<MultiKeywordSelector *>(InfoPtr)->getName(); } /// Interpreting the given string using the normal CamelCase /// conventions, determine whether the given string starts with the /// given "word", which is assumed to end in a lowercase letter. static bool startsWithWord(StringRef name, StringRef word) { if (name.size() < word.size()) return false; return ((name.size() == word.size() || !islower(name[word.size()])) && name.startswith(word)); } ObjCMethodFamily Selector::getMethodFamilyImpl(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return OMF_None; StringRef name = first->getName(); if (sel.isUnarySelector()) { if (name == "autorelease") return OMF_autorelease; if (name == "dealloc") return OMF_dealloc; if (name == "finalize") return OMF_finalize; if (name == "release") return OMF_release; if (name == "retain") return OMF_retain; if (name == "retainCount") return OMF_retainCount; if (name == "self") return OMF_self; } if (name == "performSelector") return OMF_performSelector; // The other method families may begin with a prefix of underscores. while (!name.empty() && name.front() == '_') name = name.substr(1); if (name.empty()) return OMF_None; switch (name.front()) { case 'a': if (startsWithWord(name, "alloc")) return OMF_alloc; break; case 'c': if (startsWithWord(name, "copy")) return OMF_copy; break; case 'i': if (startsWithWord(name, "init")) return OMF_init; break; case 'm': if (startsWithWord(name, "mutableCopy")) return OMF_mutableCopy; break; case 'n': if (startsWithWord(name, "new")) return OMF_new; break; default: break; } return OMF_None; } namespace { struct SelectorTableImpl { llvm::FoldingSet<MultiKeywordSelector> Table; llvm::BumpPtrAllocator Allocator; }; } // end anonymous namespace. static SelectorTableImpl &getSelectorTableImpl(void *P) { return *static_cast<SelectorTableImpl*>(P); } /*static*/ Selector SelectorTable::constructSetterName(IdentifierTable &Idents, SelectorTable &SelTable, const IdentifierInfo *Name) { SmallString<100> SelectorName; SelectorName = "set"; SelectorName += Name->getName(); SelectorName[3] = toupper(SelectorName[3]); IdentifierInfo *SetterName = &Idents.get(SelectorName); return SelTable.getUnarySelector(SetterName); } size_t SelectorTable::getTotalMemory() const { SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); return SelTabImpl.Allocator.getTotalMemory(); } Selector SelectorTable::getSelector(unsigned nKeys, IdentifierInfo **IIV) { if (nKeys < 2) return Selector(IIV[0], nKeys); SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); // Unique selector, to guarantee there is one per name. llvm::FoldingSetNodeID ID; MultiKeywordSelector::Profile(ID, IIV, nKeys); void *InsertPos = 0; if (MultiKeywordSelector *SI = SelTabImpl.Table.FindNodeOrInsertPos(ID, InsertPos)) return Selector(SI); // MultiKeywordSelector objects are not allocated with new because they have a // variable size array (for parameter types) at the end of them. unsigned Size = sizeof(MultiKeywordSelector) + nKeys*sizeof(IdentifierInfo *); MultiKeywordSelector *SI = (MultiKeywordSelector*)SelTabImpl.Allocator.Allocate(Size, llvm::alignOf<MultiKeywordSelector>()); new (SI) MultiKeywordSelector(nKeys, IIV); SelTabImpl.Table.InsertNode(SI, InsertPos); return Selector(SI); } SelectorTable::SelectorTable() { Impl = new SelectorTableImpl(); } SelectorTable::~SelectorTable() { delete &getSelectorTableImpl(Impl); } const char *clang::getOperatorSpelling(OverloadedOperatorKind Operator) { switch (Operator) { case OO_None: case NUM_OVERLOADED_OPERATORS: return 0; #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ case OO_##Name: return Spelling; #include "clang/Basic/OperatorKinds.def" } llvm_unreachable("Invalid OverloadedOperatorKind!"); }