//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Expr nodes with complex types as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/StmtVisitor.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/ADT/SmallString.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Complex Expression Emitter //===----------------------------------------------------------------------===// typedef CodeGenFunction::ComplexPairTy ComplexPairTy; namespace { class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { CodeGenFunction &CGF; CGBuilderTy &Builder; // True is we should ignore the value of a bool IgnoreReal; bool IgnoreImag; public: ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { } //===--------------------------------------------------------------------===// // Utilities //===--------------------------------------------------------------------===// bool TestAndClearIgnoreReal() { bool I = IgnoreReal; IgnoreReal = false; return I; } bool TestAndClearIgnoreImag() { bool I = IgnoreImag; IgnoreImag = false; return I; } /// EmitLoadOfLValue - Given an expression with complex type that represents a /// value l-value, this method emits the address of the l-value, then loads /// and returns the result. ComplexPairTy EmitLoadOfLValue(const Expr *E) { return EmitLoadOfLValue(CGF.EmitLValue(E)); } ComplexPairTy EmitLoadOfLValue(LValue LV) { assert(LV.isSimple() && "complex l-value must be simple"); return EmitLoadOfComplex(LV.getAddress(), LV.isVolatileQualified()); } /// EmitLoadOfComplex - Given a pointer to a complex value, emit code to load /// the real and imaginary pieces. ComplexPairTy EmitLoadOfComplex(llvm::Value *SrcPtr, bool isVolatile); /// EmitStoreThroughLValue - Given an l-value of complex type, store /// a complex number into it. void EmitStoreThroughLValue(ComplexPairTy Val, LValue LV) { assert(LV.isSimple() && "complex l-value must be simple"); return EmitStoreOfComplex(Val, LV.getAddress(), LV.isVolatileQualified()); } /// EmitStoreOfComplex - Store the specified real/imag parts into the /// specified value pointer. void EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *ResPtr, bool isVol); /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, QualType DestType); //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// ComplexPairTy Visit(Expr *E) { return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); } ComplexPairTy VisitStmt(Stmt *S) { S->dump(CGF.getContext().getSourceManager()); llvm_unreachable("Stmt can't have complex result type!"); } ComplexPairTy VisitExpr(Expr *S); ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { return Visit(GE->getResultExpr()); } ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); ComplexPairTy VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { return Visit(PE->getReplacement()); } // l-values. ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { if (result.isReference()) return EmitLoadOfLValue(result.getReferenceLValue(CGF, E)); llvm::ConstantStruct *pair = cast<llvm::ConstantStruct>(result.getValue()); return ComplexPairTy(pair->getOperand(0), pair->getOperand(1)); } return EmitLoadOfLValue(E); } ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { return CGF.EmitObjCMessageExpr(E).getComplexVal(); } ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { if (E->isGLValue()) return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); return CGF.getOpaqueRValueMapping(E).getComplexVal(); } ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { return CGF.EmitPseudoObjectRValue(E).getComplexVal(); } // FIXME: CompoundLiteralExpr ComplexPairTy EmitCast(CastExpr::CastKind CK, Expr *Op, QualType DestTy); ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { // Unlike for scalars, we don't have to worry about function->ptr demotion // here. return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); } ComplexPairTy VisitCastExpr(CastExpr *E) { return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); } ComplexPairTy VisitCallExpr(const CallExpr *E); ComplexPairTy VisitStmtExpr(const StmtExpr *E); // Operators. ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) { LValue LV = CGF.EmitLValue(E->getSubExpr()); return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); } ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { return VisitPrePostIncDec(E, false, false); } ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { return VisitPrePostIncDec(E, true, false); } ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { return VisitPrePostIncDec(E, false, true); } ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { return VisitPrePostIncDec(E, true, true); } ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); return Visit(E->getSubExpr()); } ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); ComplexPairTy VisitUnaryNot (const UnaryOperator *E); // LNot,Real,Imag never return complex. ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { return Visit(DAE->getExpr()); } ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { CGF.enterFullExpression(E); CodeGenFunction::RunCleanupsScope Scope(CGF); return Visit(E->getSubExpr()); } ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { assert(E->getType()->isAnyComplexType() && "Expected complex type!"); QualType Elem = E->getType()->getAs<ComplexType>()->getElementType(); llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); return ComplexPairTy(Null, Null); } ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { assert(E->getType()->isAnyComplexType() && "Expected complex type!"); QualType Elem = E->getType()->getAs<ComplexType>()->getElementType(); llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); return ComplexPairTy(Null, Null); } struct BinOpInfo { ComplexPairTy LHS; ComplexPairTy RHS; QualType Ty; // Computation Type. }; BinOpInfo EmitBinOps(const BinaryOperator *E); LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func) (const BinOpInfo &), ComplexPairTy &Val); ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func) (const BinOpInfo &)); ComplexPairTy EmitBinAdd(const BinOpInfo &Op); ComplexPairTy EmitBinSub(const BinOpInfo &Op); ComplexPairTy EmitBinMul(const BinOpInfo &Op); ComplexPairTy EmitBinDiv(const BinOpInfo &Op); ComplexPairTy VisitBinAdd(const BinaryOperator *E) { return EmitBinAdd(EmitBinOps(E)); } ComplexPairTy VisitBinSub(const BinaryOperator *E) { return EmitBinSub(EmitBinOps(E)); } ComplexPairTy VisitBinMul(const BinaryOperator *E) { return EmitBinMul(EmitBinOps(E)); } ComplexPairTy VisitBinDiv(const BinaryOperator *E) { return EmitBinDiv(EmitBinOps(E)); } // Compound assignments. ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); } ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); } ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); } ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); } // GCC rejects rem/and/or/xor for integer complex. // Logical and/or always return int, never complex. // No comparisons produce a complex result. LValue EmitBinAssignLValue(const BinaryOperator *E, ComplexPairTy &Val); ComplexPairTy VisitBinAssign (const BinaryOperator *E); ComplexPairTy VisitBinComma (const BinaryOperator *E); ComplexPairTy VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); ComplexPairTy VisitChooseExpr(ChooseExpr *CE); ComplexPairTy VisitInitListExpr(InitListExpr *E); ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitVAArgExpr(VAArgExpr *E); ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { return CGF.EmitAtomicExpr(E).getComplexVal(); } }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// /// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to /// load the real and imaginary pieces, returning them as Real/Imag. ComplexPairTy ComplexExprEmitter::EmitLoadOfComplex(llvm::Value *SrcPtr, bool isVolatile) { llvm::Value *Real=0, *Imag=0; if (!IgnoreReal || isVolatile) { llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0, SrcPtr->getName() + ".realp"); Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr->getName() + ".real"); } if (!IgnoreImag || isVolatile) { llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1, SrcPtr->getName() + ".imagp"); Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr->getName() + ".imag"); } return ComplexPairTy(Real, Imag); } /// EmitStoreOfComplex - Store the specified real/imag parts into the /// specified value pointer. void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *Ptr, bool isVolatile) { llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real"); llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag"); Builder.CreateStore(Val.first, RealPtr, isVolatile); Builder.CreateStore(Val.second, ImagPtr, isVolatile); } //===----------------------------------------------------------------------===// // Visitor Methods //===----------------------------------------------------------------------===// ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { CGF.ErrorUnsupported(E, "complex expression"); llvm::Type *EltTy = CGF.ConvertType(E->getType()->getAs<ComplexType>()->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return ComplexPairTy(U, U); } ComplexPairTy ComplexExprEmitter:: VisitImaginaryLiteral(const ImaginaryLiteral *IL) { llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); } ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { if (E->getCallReturnType()->isReferenceType()) return EmitLoadOfLValue(E); return CGF.EmitCallExpr(E).getComplexVal(); } ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { CodeGenFunction::StmtExprEvaluation eval(CGF); return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getComplexVal(); } /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType. ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, QualType DestType) { // Get the src/dest element type. SrcType = SrcType->getAs<ComplexType>()->getElementType(); DestType = DestType->getAs<ComplexType>()->getElementType(); // C99 6.3.1.6: When a value of complex type is converted to another // complex type, both the real and imaginary parts follow the conversion // rules for the corresponding real types. Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType); Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType); return Val; } ComplexPairTy ComplexExprEmitter::EmitCast(CastExpr::CastKind CK, Expr *Op, QualType DestTy) { switch (CK) { case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); // Atomic to non-atomic casts may be more than a no-op for some platforms and // for some types. case CK_AtomicToNonAtomic: case CK_NonAtomicToAtomic: case CK_NoOp: case CK_LValueToRValue: case CK_UserDefinedConversion: return Visit(Op); case CK_LValueBitCast: { llvm::Value *V = CGF.EmitLValue(Op).getAddress(); V = Builder.CreateBitCast(V, CGF.ConvertType(CGF.getContext().getPointerType(DestTy))); // FIXME: Are the qualifiers correct here? return EmitLoadOfComplex(V, DestTy.isVolatileQualified()); } case CK_BitCast: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_Dynamic: case CK_ToUnion: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToPointer: case CK_NullToMemberPointer: case CK_BaseToDerivedMemberPointer: case CK_DerivedToBaseMemberPointer: case CK_MemberPointerToBoolean: case CK_ReinterpretMemberPointer: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_PointerToBoolean: case CK_ToVoid: case CK_VectorSplat: case CK_IntegralCast: case CK_IntegralToBoolean: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingToBoolean: case CK_FloatingCast: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_ObjCObjectLValueCast: case CK_FloatingComplexToReal: case CK_FloatingComplexToBoolean: case CK_IntegralComplexToReal: case CK_IntegralComplexToBoolean: case CK_ARCProduceObject: case CK_ARCConsumeObject: case CK_ARCReclaimReturnedObject: case CK_ARCExtendBlockObject: case CK_CopyAndAutoreleaseBlockObject: llvm_unreachable("invalid cast kind for complex value"); case CK_FloatingRealToComplex: case CK_IntegralRealToComplex: { llvm::Value *Elt = CGF.EmitScalarExpr(Op); // Convert the input element to the element type of the complex. DestTy = DestTy->getAs<ComplexType>()->getElementType(); Elt = CGF.EmitScalarConversion(Elt, Op->getType(), DestTy); // Return (realval, 0). return ComplexPairTy(Elt, llvm::Constant::getNullValue(Elt->getType())); } case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy); } llvm_unreachable("unknown cast resulting in complex value"); } ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); ComplexPairTy Op = Visit(E->getSubExpr()); llvm::Value *ResR, *ResI; if (Op.first->getType()->isFloatingPointTy()) { ResR = Builder.CreateFNeg(Op.first, "neg.r"); ResI = Builder.CreateFNeg(Op.second, "neg.i"); } else { ResR = Builder.CreateNeg(Op.first, "neg.r"); ResI = Builder.CreateNeg(Op.second, "neg.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); // ~(a+ib) = a + i*-b ComplexPairTy Op = Visit(E->getSubExpr()); llvm::Value *ResI; if (Op.second->getType()->isFloatingPointTy()) ResI = Builder.CreateFNeg(Op.second, "conj.i"); else ResI = Builder.CreateNeg(Op.second, "conj.i"); return ComplexPairTy(Op.first, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { llvm::Value *ResR, *ResI; if (Op.LHS.first->getType()->isFloatingPointTy()) { ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); } else { ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { llvm::Value *ResR, *ResI; if (Op.LHS.first->getType()->isFloatingPointTy()) { ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); } else { ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { using llvm::Value; Value *ResR, *ResI; if (Op.LHS.first->getType()->isFloatingPointTy()) { Value *ResRl = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); Value *ResRr = Builder.CreateFMul(Op.LHS.second, Op.RHS.second,"mul.rr"); ResR = Builder.CreateFSub(ResRl, ResRr, "mul.r"); Value *ResIl = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il"); Value *ResIr = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); ResI = Builder.CreateFAdd(ResIl, ResIr, "mul.i"); } else { Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second,"mul.rr"); ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; llvm::Value *DSTr, *DSTi; if (Op.LHS.first->getType()->isFloatingPointTy()) { // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) llvm::Value *Tmp1 = Builder.CreateFMul(LHSr, RHSr); // a*c llvm::Value *Tmp2 = Builder.CreateFMul(LHSi, RHSi); // b*d llvm::Value *Tmp3 = Builder.CreateFAdd(Tmp1, Tmp2); // ac+bd llvm::Value *Tmp4 = Builder.CreateFMul(RHSr, RHSr); // c*c llvm::Value *Tmp5 = Builder.CreateFMul(RHSi, RHSi); // d*d llvm::Value *Tmp6 = Builder.CreateFAdd(Tmp4, Tmp5); // cc+dd llvm::Value *Tmp7 = Builder.CreateFMul(LHSi, RHSr); // b*c llvm::Value *Tmp8 = Builder.CreateFMul(LHSr, RHSi); // a*d llvm::Value *Tmp9 = Builder.CreateFSub(Tmp7, Tmp8); // bc-ad DSTr = Builder.CreateFDiv(Tmp3, Tmp6); DSTi = Builder.CreateFDiv(Tmp9, Tmp6); } else { // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad if (Op.Ty->getAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { DSTr = Builder.CreateUDiv(Tmp3, Tmp6); DSTi = Builder.CreateUDiv(Tmp9, Tmp6); } else { DSTr = Builder.CreateSDiv(Tmp3, Tmp6); DSTi = Builder.CreateSDiv(Tmp9, Tmp6); } } return ComplexPairTy(DSTr, DSTi); } ComplexExprEmitter::BinOpInfo ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); BinOpInfo Ops; Ops.LHS = Visit(E->getLHS()); Ops.RHS = Visit(E->getRHS()); Ops.Ty = E->getType(); return Ops; } LValue ComplexExprEmitter:: EmitCompoundAssignLValue(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), ComplexPairTy &Val) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); QualType LHSTy = E->getLHS()->getType(); BinOpInfo OpInfo; // Load the RHS and LHS operands. // __block variables need to have the rhs evaluated first, plus this should // improve codegen a little. OpInfo.Ty = E->getComputationResultType(); // The RHS should have been converted to the computation type. assert(OpInfo.Ty->isAnyComplexType()); assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); OpInfo.RHS = Visit(E->getRHS()); LValue LHS = CGF.EmitLValue(E->getLHS()); // Load from the l-value. ComplexPairTy LHSComplexPair = EmitLoadOfLValue(LHS); OpInfo.LHS = EmitComplexToComplexCast(LHSComplexPair, LHSTy, OpInfo.Ty); // Expand the binary operator. ComplexPairTy Result = (this->*Func)(OpInfo); // Truncate the result back to the LHS type. Result = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); Val = Result; // Store the result value into the LHS lvalue. EmitStoreThroughLValue(Result, LHS); return LHS; } // Compound assignments. ComplexPairTy ComplexExprEmitter:: EmitCompoundAssign(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ ComplexPairTy Val; LValue LV = EmitCompoundAssignLValue(E, Func, Val); // The result of an assignment in C is the assigned r-value. if (!CGF.getContext().getLangOpts().CPlusPlus) return Val; // If the lvalue is non-volatile, return the computed value of the assignment. if (!LV.isVolatileQualified()) return Val; return EmitLoadOfComplex(LV.getAddress(), LV.isVolatileQualified()); } LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, ComplexPairTy &Val) { assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), E->getRHS()->getType()) && "Invalid assignment"); TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); // Emit the RHS. __block variables need the RHS evaluated first. Val = Visit(E->getRHS()); // Compute the address to store into. LValue LHS = CGF.EmitLValue(E->getLHS()); // Store the result value into the LHS lvalue. EmitStoreThroughLValue(Val, LHS); return LHS; } ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { ComplexPairTy Val; LValue LV = EmitBinAssignLValue(E, Val); // The result of an assignment in C is the assigned r-value. if (!CGF.getContext().getLangOpts().CPlusPlus) return Val; // If the lvalue is non-volatile, return the computed value of the assignment. if (!LV.isVolatileQualified()) return Val; return EmitLoadOfComplex(LV.getAddress(), LV.isVolatileQualified()); } ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { CGF.EmitIgnoredExpr(E->getLHS()); return Visit(E->getRHS()); } ComplexPairTy ComplexExprEmitter:: VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); // Bind the common expression if necessary. CodeGenFunction::OpaqueValueMapping binding(CGF, E); CodeGenFunction::ConditionalEvaluation eval(CGF); CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); eval.begin(CGF); CGF.EmitBlock(LHSBlock); ComplexPairTy LHS = Visit(E->getTrueExpr()); LHSBlock = Builder.GetInsertBlock(); CGF.EmitBranch(ContBlock); eval.end(CGF); eval.begin(CGF); CGF.EmitBlock(RHSBlock); ComplexPairTy RHS = Visit(E->getFalseExpr()); RHSBlock = Builder.GetInsertBlock(); CGF.EmitBlock(ContBlock); eval.end(CGF); // Create a PHI node for the real part. llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); RealPN->addIncoming(LHS.first, LHSBlock); RealPN->addIncoming(RHS.first, RHSBlock); // Create a PHI node for the imaginary part. llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); ImagPN->addIncoming(LHS.second, LHSBlock); ImagPN->addIncoming(RHS.second, RHSBlock); return ComplexPairTy(RealPN, ImagPN); } ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { return Visit(E->getChosenSubExpr(CGF.getContext())); } ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { bool Ignore = TestAndClearIgnoreReal(); (void)Ignore; assert (Ignore == false && "init list ignored"); Ignore = TestAndClearIgnoreImag(); (void)Ignore; assert (Ignore == false && "init list ignored"); if (E->getNumInits() == 2) { llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); return ComplexPairTy(Real, Imag); } else if (E->getNumInits() == 1) { return Visit(E->getInit(0)); } // Empty init list intializes to null assert(E->getNumInits() == 0 && "Unexpected number of inits"); QualType Ty = E->getType()->getAs<ComplexType>()->getElementType(); llvm::Type* LTy = CGF.ConvertType(Ty); llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); return ComplexPairTy(zeroConstant, zeroConstant); } ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr()); llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType()); if (!ArgPtr) { CGF.ErrorUnsupported(E, "complex va_arg expression"); llvm::Type *EltTy = CGF.ConvertType(E->getType()->getAs<ComplexType>()->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return ComplexPairTy(U, U); } // FIXME Volatility. return EmitLoadOfComplex(ArgPtr, false); } //===----------------------------------------------------------------------===// // Entry Point into this File //===----------------------------------------------------------------------===// /// EmitComplexExpr - Emit the computation of the specified expression of /// complex type, ignoring the result. ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, bool IgnoreImag) { assert(E && E->getType()->isAnyComplexType() && "Invalid complex expression to emit"); return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) .Visit(const_cast<Expr*>(E)); } /// EmitComplexExprIntoAddr - Emit the computation of the specified expression /// of complex type, storing into the specified Value*. void CodeGenFunction::EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, bool DestIsVolatile) { assert(E && E->getType()->isAnyComplexType() && "Invalid complex expression to emit"); ComplexExprEmitter Emitter(*this); ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); Emitter.EmitStoreOfComplex(Val, DestAddr, DestIsVolatile); } /// StoreComplexToAddr - Store a complex number into the specified address. void CodeGenFunction::StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, bool DestIsVolatile) { ComplexExprEmitter(*this).EmitStoreOfComplex(V, DestAddr, DestIsVolatile); } /// LoadComplexFromAddr - Load a complex number from the specified address. ComplexPairTy CodeGenFunction::LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile) { return ComplexExprEmitter(*this).EmitLoadOfComplex(SrcAddr, SrcIsVolatile); } LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { assert(E->getOpcode() == BO_Assign); ComplexPairTy Val; // ignored return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); } LValue CodeGenFunction:: EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { ComplexPairTy(ComplexExprEmitter::*Op)(const ComplexExprEmitter::BinOpInfo &); switch (E->getOpcode()) { case BO_MulAssign: Op = &ComplexExprEmitter::EmitBinMul; break; case BO_DivAssign: Op = &ComplexExprEmitter::EmitBinDiv; break; case BO_SubAssign: Op = &ComplexExprEmitter::EmitBinSub; break; case BO_AddAssign: Op = &ComplexExprEmitter::EmitBinAdd; break; default: llvm_unreachable("unexpected complex compound assignment"); } ComplexPairTy Val; // ignored return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); }