//==- CGObjCRuntime.cpp - Interface to Shared Objective-C Runtime Features ==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This abstract class defines the interface for Objective-C runtime-specific // code generation. It provides some concrete helper methods for functionality // shared between all (or most) of the Objective-C runtimes supported by clang. // //===----------------------------------------------------------------------===// #include "CGObjCRuntime.h" #include "CGRecordLayout.h" #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "CGCleanup.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtObjC.h" #include "llvm/Support/CallSite.h" using namespace clang; using namespace CodeGen; static uint64_t LookupFieldBitOffset(CodeGen::CodeGenModule &CGM, const ObjCInterfaceDecl *OID, const ObjCImplementationDecl *ID, const ObjCIvarDecl *Ivar) { const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); // FIXME: We should eliminate the need to have ObjCImplementationDecl passed // in here; it should never be necessary because that should be the lexical // decl context for the ivar. // If we know have an implementation (and the ivar is in it) then // look up in the implementation layout. const ASTRecordLayout *RL; if (ID && declaresSameEntity(ID->getClassInterface(), Container)) RL = &CGM.getContext().getASTObjCImplementationLayout(ID); else RL = &CGM.getContext().getASTObjCInterfaceLayout(Container); // Compute field index. // // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is // implemented. This should be fixed to get the information from the layout // directly. unsigned Index = 0; for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); IVD; IVD = IVD->getNextIvar()) { if (Ivar == IVD) break; ++Index; } assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); return RL->getFieldOffset(Index); } uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM, const ObjCInterfaceDecl *OID, const ObjCIvarDecl *Ivar) { return LookupFieldBitOffset(CGM, OID, 0, Ivar) / CGM.getContext().getCharWidth(); } uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM, const ObjCImplementationDecl *OID, const ObjCIvarDecl *Ivar) { return LookupFieldBitOffset(CGM, OID->getClassInterface(), OID, Ivar) / CGM.getContext().getCharWidth(); } LValue CGObjCRuntime::EmitValueForIvarAtOffset(CodeGen::CodeGenFunction &CGF, const ObjCInterfaceDecl *OID, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers, llvm::Value *Offset) { // Compute (type*) ( (char *) BaseValue + Offset) llvm::Type *I8Ptr = CGF.Int8PtrTy; QualType IvarTy = Ivar->getType(); llvm::Type *LTy = CGF.CGM.getTypes().ConvertTypeForMem(IvarTy); llvm::Value *V = CGF.Builder.CreateBitCast(BaseValue, I8Ptr); V = CGF.Builder.CreateInBoundsGEP(V, Offset, "add.ptr"); V = CGF.Builder.CreateBitCast(V, llvm::PointerType::getUnqual(LTy)); if (!Ivar->isBitField()) { LValue LV = CGF.MakeNaturalAlignAddrLValue(V, IvarTy); LV.getQuals().addCVRQualifiers(CVRQualifiers); return LV; } // We need to compute an access strategy for this bit-field. We are given the // offset to the first byte in the bit-field, the sub-byte offset is taken // from the original layout. We reuse the normal bit-field access strategy by // treating this as an access to a struct where the bit-field is in byte 0, // and adjust the containing type size as appropriate. // // FIXME: Note that currently we make a very conservative estimate of the // alignment of the bit-field, because (a) it is not clear what guarantees the // runtime makes us, and (b) we don't have a way to specify that the struct is // at an alignment plus offset. // // Note, there is a subtle invariant here: we can only call this routine on // non-synthesized ivars but we may be called for synthesized ivars. However, // a synthesized ivar can never be a bit-field, so this is safe. const ASTRecordLayout &RL = CGF.CGM.getContext().getASTObjCInterfaceLayout(OID); uint64_t TypeSizeInBits = CGF.CGM.getContext().toBits(RL.getSize()); uint64_t FieldBitOffset = LookupFieldBitOffset(CGF.CGM, OID, 0, Ivar); uint64_t BitOffset = FieldBitOffset % CGF.CGM.getContext().getCharWidth(); uint64_t ContainingTypeAlign = CGF.CGM.getContext().getTargetInfo().getCharAlign(); uint64_t ContainingTypeSize = TypeSizeInBits - (FieldBitOffset - BitOffset); uint64_t BitFieldSize = Ivar->getBitWidthValue(CGF.getContext()); // Allocate a new CGBitFieldInfo object to describe this access. // // FIXME: This is incredibly wasteful, these should be uniqued or part of some // layout object. However, this is blocked on other cleanups to the // Objective-C code, so for now we just live with allocating a bunch of these // objects. CGBitFieldInfo *Info = new (CGF.CGM.getContext()) CGBitFieldInfo( CGBitFieldInfo::MakeInfo(CGF.CGM.getTypes(), Ivar, BitOffset, BitFieldSize, ContainingTypeSize, ContainingTypeAlign)); return LValue::MakeBitfield(V, *Info, IvarTy.withCVRQualifiers(CVRQualifiers)); } namespace { struct CatchHandler { const VarDecl *Variable; const Stmt *Body; llvm::BasicBlock *Block; llvm::Value *TypeInfo; }; struct CallObjCEndCatch : EHScopeStack::Cleanup { CallObjCEndCatch(bool MightThrow, llvm::Value *Fn) : MightThrow(MightThrow), Fn(Fn) {} bool MightThrow; llvm::Value *Fn; void Emit(CodeGenFunction &CGF, Flags flags) { if (!MightThrow) { CGF.Builder.CreateCall(Fn)->setDoesNotThrow(); return; } CGF.EmitCallOrInvoke(Fn); } }; } void CGObjCRuntime::EmitTryCatchStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S, llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, llvm::Constant *exceptionRethrowFn) { // Jump destination for falling out of catch bodies. CodeGenFunction::JumpDest Cont; if (S.getNumCatchStmts()) Cont = CGF.getJumpDestInCurrentScope("eh.cont"); CodeGenFunction::FinallyInfo FinallyInfo; if (const ObjCAtFinallyStmt *Finally = S.getFinallyStmt()) FinallyInfo.enter(CGF, Finally->getFinallyBody(), beginCatchFn, endCatchFn, exceptionRethrowFn); SmallVector<CatchHandler, 8> Handlers; // Enter the catch, if there is one. if (S.getNumCatchStmts()) { for (unsigned I = 0, N = S.getNumCatchStmts(); I != N; ++I) { const ObjCAtCatchStmt *CatchStmt = S.getCatchStmt(I); const VarDecl *CatchDecl = CatchStmt->getCatchParamDecl(); Handlers.push_back(CatchHandler()); CatchHandler &Handler = Handlers.back(); Handler.Variable = CatchDecl; Handler.Body = CatchStmt->getCatchBody(); Handler.Block = CGF.createBasicBlock("catch"); // @catch(...) always matches. if (!CatchDecl) { Handler.TypeInfo = 0; // catch-all // Don't consider any other catches. break; } Handler.TypeInfo = GetEHType(CatchDecl->getType()); } EHCatchScope *Catch = CGF.EHStack.pushCatch(Handlers.size()); for (unsigned I = 0, E = Handlers.size(); I != E; ++I) Catch->setHandler(I, Handlers[I].TypeInfo, Handlers[I].Block); } // Emit the try body. CGF.EmitStmt(S.getTryBody()); // Leave the try. if (S.getNumCatchStmts()) CGF.popCatchScope(); // Remember where we were. CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); // Emit the handlers. for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { CatchHandler &Handler = Handlers[I]; CGF.EmitBlock(Handler.Block); llvm::Value *RawExn = CGF.getExceptionFromSlot(); // Enter the catch. llvm::Value *Exn = RawExn; if (beginCatchFn) { Exn = CGF.Builder.CreateCall(beginCatchFn, RawExn, "exn.adjusted"); cast<llvm::CallInst>(Exn)->setDoesNotThrow(); } CodeGenFunction::LexicalScope cleanups(CGF, Handler.Body->getSourceRange()); if (endCatchFn) { // Add a cleanup to leave the catch. bool EndCatchMightThrow = (Handler.Variable == 0); CGF.EHStack.pushCleanup<CallObjCEndCatch>(NormalAndEHCleanup, EndCatchMightThrow, endCatchFn); } // Bind the catch parameter if it exists. if (const VarDecl *CatchParam = Handler.Variable) { llvm::Type *CatchType = CGF.ConvertType(CatchParam->getType()); llvm::Value *CastExn = CGF.Builder.CreateBitCast(Exn, CatchType); CGF.EmitAutoVarDecl(*CatchParam); llvm::Value *CatchParamAddr = CGF.GetAddrOfLocalVar(CatchParam); switch (CatchParam->getType().getQualifiers().getObjCLifetime()) { case Qualifiers::OCL_Strong: CastExn = CGF.EmitARCRetainNonBlock(CastExn); // fallthrough case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: CGF.Builder.CreateStore(CastExn, CatchParamAddr); break; case Qualifiers::OCL_Weak: CGF.EmitARCInitWeak(CatchParamAddr, CastExn); break; } } CGF.ObjCEHValueStack.push_back(Exn); CGF.EmitStmt(Handler.Body); CGF.ObjCEHValueStack.pop_back(); // Leave any cleanups associated with the catch. cleanups.ForceCleanup(); CGF.EmitBranchThroughCleanup(Cont); } // Go back to the try-statement fallthrough. CGF.Builder.restoreIP(SavedIP); // Pop out of the finally. if (S.getFinallyStmt()) FinallyInfo.exit(CGF); if (Cont.isValid()) CGF.EmitBlock(Cont.getBlock()); } namespace { struct CallSyncExit : EHScopeStack::Cleanup { llvm::Value *SyncExitFn; llvm::Value *SyncArg; CallSyncExit(llvm::Value *SyncExitFn, llvm::Value *SyncArg) : SyncExitFn(SyncExitFn), SyncArg(SyncArg) {} void Emit(CodeGenFunction &CGF, Flags flags) { CGF.Builder.CreateCall(SyncExitFn, SyncArg)->setDoesNotThrow(); } }; } void CGObjCRuntime::EmitAtSynchronizedStmt(CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S, llvm::Function *syncEnterFn, llvm::Function *syncExitFn) { CodeGenFunction::RunCleanupsScope cleanups(CGF); // Evaluate the lock operand. This is guaranteed to dominate the // ARC release and lock-release cleanups. const Expr *lockExpr = S.getSynchExpr(); llvm::Value *lock; if (CGF.getLangOpts().ObjCAutoRefCount) { lock = CGF.EmitARCRetainScalarExpr(lockExpr); lock = CGF.EmitObjCConsumeObject(lockExpr->getType(), lock); } else { lock = CGF.EmitScalarExpr(lockExpr); } lock = CGF.Builder.CreateBitCast(lock, CGF.VoidPtrTy); // Acquire the lock. CGF.Builder.CreateCall(syncEnterFn, lock)->setDoesNotThrow(); // Register an all-paths cleanup to release the lock. CGF.EHStack.pushCleanup<CallSyncExit>(NormalAndEHCleanup, syncExitFn, lock); // Emit the body of the statement. CGF.EmitStmt(S.getSynchBody()); } /// Compute the pointer-to-function type to which a message send /// should be casted in order to correctly call the given method /// with the given arguments. /// /// \param method - may be null /// \param resultType - the result type to use if there's no method /// \param argInfo - the actual arguments, including implicit ones CGObjCRuntime::MessageSendInfo CGObjCRuntime::getMessageSendInfo(const ObjCMethodDecl *method, QualType resultType, CallArgList &callArgs) { // If there's a method, use information from that. if (method) { const CGFunctionInfo &signature = CGM.getTypes().arrangeObjCMessageSendSignature(method, callArgs[0].Ty); llvm::PointerType *signatureType = CGM.getTypes().GetFunctionType(signature)->getPointerTo(); // If that's not variadic, there's no need to recompute the ABI // arrangement. if (!signature.isVariadic()) return MessageSendInfo(signature, signatureType); // Otherwise, there is. FunctionType::ExtInfo einfo = signature.getExtInfo(); const CGFunctionInfo &argsInfo = CGM.getTypes().arrangeFunctionCall(resultType, callArgs, einfo, signature.getRequiredArgs()); return MessageSendInfo(argsInfo, signatureType); } // There's no method; just use a default CC. const CGFunctionInfo &argsInfo = CGM.getTypes().arrangeFunctionCall(resultType, callArgs, FunctionType::ExtInfo(), RequiredArgs::All); // Derive the signature to call from that. llvm::PointerType *signatureType = CGM.getTypes().GetFunctionType(argsInfo)->getPointerTo(); return MessageSendInfo(argsInfo, signatureType); }