//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of virtual tables. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "CGCXXABI.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/RecordLayout.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Format.h" #include "llvm/Transforms/Utils/Cloning.h" #include <algorithm> #include <cstdio> using namespace clang; using namespace CodeGen; CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) : CGM(CGM), VTContext(CGM.getContext()) { } bool CodeGenVTables::ShouldEmitVTableInThisTU(const CXXRecordDecl *RD) { assert(RD->isDynamicClass() && "Non dynamic classes have no VTable."); TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) return false; const CXXMethodDecl *KeyFunction = CGM.getContext().getKeyFunction(RD); if (!KeyFunction) return true; // Itanium C++ ABI, 5.2.6 Instantiated Templates: // An instantiation of a class template requires: // - In the object where instantiated, the virtual table... if (TSK == TSK_ImplicitInstantiation || TSK == TSK_ExplicitInstantiationDefinition) return true; // If we're building with optimization, we always emit VTables since that // allows for virtual function calls to be devirtualized. // (We don't want to do this in -fapple-kext mode however). if (CGM.getCodeGenOpts().OptimizationLevel && !CGM.getLangOpts().AppleKext) return true; return KeyFunction->hasBody(); } llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); // Compute the mangled name. SmallString<256> Name; llvm::raw_svector_ostream Out(Name); if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), Thunk.This, Out); else getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); Out.flush(); llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true); } static llvm::Value *PerformTypeAdjustment(CodeGenFunction &CGF, llvm::Value *Ptr, int64_t NonVirtualAdjustment, int64_t VirtualAdjustment) { if (!NonVirtualAdjustment && !VirtualAdjustment) return Ptr; llvm::Type *Int8PtrTy = CGF.Int8PtrTy; llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy); if (NonVirtualAdjustment) { // Do the non-virtual adjustment. V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); } if (VirtualAdjustment) { llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); // Do the virtual adjustment. llvm::Value *VTablePtrPtr = CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo()); llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); // Load the adjustment offset from the vtable. llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr); // Adjust our pointer. V = CGF.Builder.CreateInBoundsGEP(V, Offset); } // Cast back to the original type. return CGF.Builder.CreateBitCast(V, Ptr->getType()); } static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, const ThunkInfo &Thunk, llvm::Function *Fn) { CGM.setGlobalVisibility(Fn, MD); if (!CGM.getCodeGenOpts().HiddenWeakVTables) return; // If the thunk has weak/linkonce linkage, but the function must be // emitted in every translation unit that references it, then we can // emit its thunks with hidden visibility, since its thunks must be // emitted when the function is. // This follows CodeGenModule::setTypeVisibility; see the comments // there for explanation. if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage && Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) || Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility) return; if (MD->getExplicitVisibility()) return; switch (MD->getTemplateSpecializationKind()) { case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitInstantiationDeclaration: return; case TSK_Undeclared: break; case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: if (!CGM.getCodeGenOpts().HiddenWeakTemplateVTables) return; break; } // If there's an explicit definition, and that definition is // out-of-line, then we can't assume that all users will have a // definition to emit. const FunctionDecl *Def = 0; if (MD->hasBody(Def) && Def->isOutOfLine()) return; Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); } #ifndef NDEBUG static bool similar(const ABIArgInfo &infoL, CanQualType typeL, const ABIArgInfo &infoR, CanQualType typeR) { return (infoL.getKind() == infoR.getKind() && (typeL == typeR || (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); } #endif static RValue PerformReturnAdjustment(CodeGenFunction &CGF, QualType ResultType, RValue RV, const ThunkInfo &Thunk) { // Emit the return adjustment. bool NullCheckValue = !ResultType->isReferenceType(); llvm::BasicBlock *AdjustNull = 0; llvm::BasicBlock *AdjustNotNull = 0; llvm::BasicBlock *AdjustEnd = 0; llvm::Value *ReturnValue = RV.getScalarVal(); if (NullCheckValue) { AdjustNull = CGF.createBasicBlock("adjust.null"); AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); AdjustEnd = CGF.createBasicBlock("adjust.end"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); CGF.EmitBlock(AdjustNotNull); } ReturnValue = PerformTypeAdjustment(CGF, ReturnValue, Thunk.Return.NonVirtual, Thunk.Return.VBaseOffsetOffset); if (NullCheckValue) { CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustNull); CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustEnd); llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); PHI->addIncoming(ReturnValue, AdjustNotNull); PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), AdjustNull); ReturnValue = PHI; } return RValue::get(ReturnValue); } // This function does roughly the same thing as GenerateThunk, but in a // very different way, so that va_start and va_end work correctly. // FIXME: This function assumes "this" is the first non-sret LLVM argument of // a function, and that there is an alloca built in the entry block // for all accesses to "this". // FIXME: This function assumes there is only one "ret" statement per function. // FIXME: Cloning isn't correct in the presence of indirect goto! // FIXME: This implementation of thunks bloats codesize by duplicating the // function definition. There are alternatives: // 1. Add some sort of stub support to LLVM for cases where we can // do a this adjustment, then a sibcall. // 2. We could transform the definition to take a va_list instead of an // actual variable argument list, then have the thunks (including a // no-op thunk for the regular definition) call va_start/va_end. // There's a bit of per-call overhead for this solution, but it's // better for codesize if the definition is long. void CodeGenFunction::GenerateVarArgsThunk( llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); QualType ResultType = FPT->getResultType(); // Get the original function assert(FnInfo.isVariadic()); llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); llvm::Function *BaseFn = cast<llvm::Function>(Callee); // Clone to thunk. llvm::Function *NewFn = llvm::CloneFunction(BaseFn); CGM.getModule().getFunctionList().push_back(NewFn); Fn->replaceAllUsesWith(NewFn); NewFn->takeName(Fn); Fn->eraseFromParent(); Fn = NewFn; // "Initialize" CGF (minimally). CurFn = Fn; // Get the "this" value llvm::Function::arg_iterator AI = Fn->arg_begin(); if (CGM.ReturnTypeUsesSRet(FnInfo)) ++AI; // Find the first store of "this", which will be to the alloca associated // with "this". llvm::Value *ThisPtr = &*AI; llvm::BasicBlock *EntryBB = Fn->begin(); llvm::Instruction *ThisStore = 0; for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); I != E; I++) { if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) { ThisStore = cast<llvm::StoreInst>(I); break; } } assert(ThisStore && "Store of this should be in entry block?"); // Adjust "this", if necessary. Builder.SetInsertPoint(ThisStore); llvm::Value *AdjustedThisPtr = PerformTypeAdjustment(*this, ThisPtr, Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset); ThisStore->setOperand(0, AdjustedThisPtr); if (!Thunk.Return.isEmpty()) { // Fix up the returned value, if necessary. for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { llvm::Instruction *T = I->getTerminator(); if (isa<llvm::ReturnInst>(T)) { RValue RV = RValue::get(T->getOperand(0)); T->eraseFromParent(); Builder.SetInsertPoint(&*I); RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); Builder.CreateRet(RV.getScalarVal()); break; } } } } void CodeGenFunction::GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); QualType ResultType = FPT->getResultType(); QualType ThisType = MD->getThisType(getContext()); FunctionArgList FunctionArgs; // FIXME: It would be nice if more of this code could be shared with // CodeGenFunction::GenerateCode. // Create the implicit 'this' parameter declaration. CurGD = GD; CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs); // Add the rest of the parameters. for (FunctionDecl::param_const_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I) { ParmVarDecl *Param = *I; FunctionArgs.push_back(Param); } StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, SourceLocation()); CGM.getCXXABI().EmitInstanceFunctionProlog(*this); CXXThisValue = CXXABIThisValue; // Adjust the 'this' pointer if necessary. llvm::Value *AdjustedThisPtr = PerformTypeAdjustment(*this, LoadCXXThis(), Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset); CallArgList CallArgs; // Add our adjusted 'this' pointer. CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); // Add the rest of the parameters. for (FunctionDecl::param_const_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I) { ParmVarDecl *param = *I; EmitDelegateCallArg(CallArgs, param); } // Get our callee. llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); #ifndef NDEBUG const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeFunctionCall(ResultType, CallArgs, FPT->getExtInfo(), RequiredArgs::forPrototypePlus(FPT, 1)); assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() && CallFnInfo.isNoReturn() == FnInfo.isNoReturn() && CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention()); assert(similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), FnInfo.getReturnInfo(), FnInfo.getReturnType())); assert(CallFnInfo.arg_size() == FnInfo.arg_size()); for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i) assert(similar(CallFnInfo.arg_begin()[i].info, CallFnInfo.arg_begin()[i].type, FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type)); #endif // Determine whether we have a return value slot to use. ReturnValueSlot Slot; if (!ResultType->isVoidType() && FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && hasAggregateLLVMType(CurFnInfo->getReturnType())) Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); // Now emit our call. RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD); if (!Thunk.Return.isEmpty()) RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); if (!ResultType->isVoidType() && Slot.isNull()) CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); FinishFunction(); // Set the right linkage. CGM.setFunctionLinkage(MD, Fn); // Set the right visibility. setThunkVisibility(CGM, MD, Thunk, Fn); } void CodeGenVTables::EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk, bool UseAvailableExternallyLinkage) { const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); // FIXME: re-use FnInfo in this computation. llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk); // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { assert(CE->getOpcode() == llvm::Instruction::BitCast); Entry = CE->getOperand(0); } // There's already a declaration with the same name, check if it has the same // type or if we need to replace it. if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != CGM.getTypes().GetFunctionTypeForVTable(GD)) { llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry); // If the types mismatch then we have to rewrite the definition. assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); // Remove the name from the old thunk function and get a new thunk. OldThunkFn->setName(StringRef()); Entry = CGM.GetAddrOfThunk(GD, Thunk); // If needed, replace the old thunk with a bitcast. if (!OldThunkFn->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); } // Remove the old thunk. OldThunkFn->eraseFromParent(); } llvm::Function *ThunkFn = cast<llvm::Function>(Entry); if (!ThunkFn->isDeclaration()) { if (UseAvailableExternallyLinkage) { // There is already a thunk emitted for this function, do nothing. return; } // If a function has a body, it should have available_externally linkage. assert(ThunkFn->hasAvailableExternallyLinkage() && "Function should have available_externally linkage!"); // Change the linkage. CGM.setFunctionLinkage(cast<CXXMethodDecl>(GD.getDecl()), ThunkFn); return; } if (ThunkFn->isVarArg()) { // Varargs thunks are special; we can't just generate a call because // we can't copy the varargs. Our implementation is rather // expensive/sucky at the moment, so don't generate the thunk unless // we have to. // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. if (!UseAvailableExternallyLinkage) CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); } else { // Normal thunk body generation. CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); } if (UseAvailableExternallyLinkage) ThunkFn->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); } void CodeGenVTables::MaybeEmitThunkAvailableExternally(GlobalDecl GD, const ThunkInfo &Thunk) { // We only want to do this when building with optimizations. if (!CGM.getCodeGenOpts().OptimizationLevel) return; // We can't emit thunks for member functions with incomplete types. const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); if (!CGM.getTypes().isFuncTypeConvertible( cast<FunctionType>(MD->getType().getTypePtr()))) return; EmitThunk(GD, Thunk, /*UseAvailableExternallyLinkage=*/true); } void CodeGenVTables::EmitThunks(GlobalDecl GD) { const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); // We don't need to generate thunks for the base destructor. if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) return; const VTableContext::ThunkInfoVectorTy *ThunkInfoVector = VTContext.getThunkInfo(MD); if (!ThunkInfoVector) return; for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) EmitThunk(GD, (*ThunkInfoVector)[I], /*UseAvailableExternallyLinkage=*/false); } llvm::Constant * CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD, const VTableComponent *Components, unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, unsigned NumVTableThunks) { SmallVector<llvm::Constant *, 64> Inits; llvm::Type *Int8PtrTy = CGM.Int8PtrTy; llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); QualType ClassType = CGM.getContext().getTagDeclType(RD); llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType); unsigned NextVTableThunkIndex = 0; llvm::Constant* PureVirtualFn = 0; for (unsigned I = 0; I != NumComponents; ++I) { VTableComponent Component = Components[I]; llvm::Constant *Init = 0; switch (Component.getKind()) { case VTableComponent::CK_VCallOffset: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getVCallOffset().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_VBaseOffset: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getVBaseOffset().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_OffsetToTop: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getOffsetToTop().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_RTTI: Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); break; case VTableComponent::CK_FunctionPointer: case VTableComponent::CK_CompleteDtorPointer: case VTableComponent::CK_DeletingDtorPointer: { GlobalDecl GD; // Get the right global decl. switch (Component.getKind()) { default: llvm_unreachable("Unexpected vtable component kind"); case VTableComponent::CK_FunctionPointer: GD = Component.getFunctionDecl(); break; case VTableComponent::CK_CompleteDtorPointer: GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); break; case VTableComponent::CK_DeletingDtorPointer: GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); break; } if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { // We have a pure virtual member function. if (!PureVirtualFn) { llvm::FunctionType *Ty = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); PureVirtualFn = CGM.CreateRuntimeFunction(Ty, "__cxa_pure_virtual"); PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, Int8PtrTy); } Init = PureVirtualFn; } else { // Check if we should use a thunk. if (NextVTableThunkIndex < NumVTableThunks && VTableThunks[NextVTableThunkIndex].first == I) { const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; MaybeEmitThunkAvailableExternally(GD, Thunk); Init = CGM.GetAddrOfThunk(GD, Thunk); NextVTableThunkIndex++; } else { llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); } Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); } break; } case VTableComponent::CK_UnusedFunctionPointer: Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); break; }; Inits.push_back(Init); } llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); return llvm::ConstantArray::get(ArrayType, Inits); } llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTable(const CXXRecordDecl *RD) { llvm::GlobalVariable *&VTable = VTables[RD]; if (VTable) return VTable; // We may need to generate a definition for this vtable. if (ShouldEmitVTableInThisTU(RD)) CGM.DeferredVTables.push_back(RD); SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out); Out.flush(); StringRef Name = OutName.str(); llvm::ArrayType *ArrayType = llvm::ArrayType::get(CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents()); VTable = CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, llvm::GlobalValue::ExternalLinkage); VTable->setUnnamedAddr(true); return VTable; } void CodeGenVTables::EmitVTableDefinition(llvm::GlobalVariable *VTable, llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) { const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); // Create and set the initializer. llvm::Constant *Init = CreateVTableInitializer(RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks()); VTable->setInitializer(Init); // Set the correct linkage. VTable->setLinkage(Linkage); // Set the right visibility. CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable); } llvm::GlobalVariable * CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, llvm::GlobalVariable::LinkageTypes Linkage, VTableAddressPointsMapTy& AddressPoints) { OwningPtr<VTableLayout> VTLayout( VTContext.createConstructionVTableLayout(Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); // Add the address points. AddressPoints = VTLayout->getAddressPoints(); // Get the mangled construction vtable name. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext(). mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(), Out); Out.flush(); StringRef Name = OutName.str(); llvm::ArrayType *ArrayType = llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); // Create the variable that will hold the construction vtable. llvm::GlobalVariable *VTable = CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable); // V-tables are always unnamed_addr. VTable->setUnnamedAddr(true); // Create and set the initializer. llvm::Constant *Init = CreateVTableInitializer(Base.getBase(), VTLayout->vtable_component_begin(), VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), VTLayout->getNumVTableThunks()); VTable->setInitializer(Init); return VTable; } void CodeGenVTables::GenerateClassData(llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) { llvm::GlobalVariable *VTable = GetAddrOfVTable(RD); if (VTable->hasInitializer()) return; EmitVTableDefinition(VTable, Linkage, RD); if (RD->getNumVBases()) { llvm::GlobalVariable *VTT = GetAddrOfVTT(RD); EmitVTTDefinition(VTT, Linkage, RD); } // If this is the magic class __cxxabiv1::__fundamental_type_info, // we will emit the typeinfo for the fundamental types. This is the // same behaviour as GCC. const DeclContext *DC = RD->getDeclContext(); if (RD->getIdentifier() && RD->getIdentifier()->isStr("__fundamental_type_info") && isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() && cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && DC->getParent()->isTranslationUnit()) CGM.EmitFundamentalRTTIDescriptors(); }