//===--- ToolChains.cpp - ToolChain Implementations -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ToolChains.h" #include "clang/Driver/Arg.h" #include "clang/Driver/ArgList.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/ObjCRuntime.h" #include "clang/Driver/OptTable.h" #include "clang/Driver/Option.h" #include "clang/Driver/Options.h" #include "clang/Basic/Version.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Path.h" #include "llvm/Support/system_error.h" #include <cstdlib> // ::getenv #include "clang/Config/config.h" // for GCC_INSTALL_PREFIX using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang; /// Darwin - Darwin tool chain for i386 and x86_64. Darwin::Darwin(const Driver &D, const llvm::Triple& Triple) : ToolChain(D, Triple), TargetInitialized(false), ARCRuntimeForSimulator(ARCSimulator_None), LibCXXForSimulator(LibCXXSimulator_None) { // Compute the initial Darwin version from the triple unsigned Major, Minor, Micro; if (!Triple.getMacOSXVersion(Major, Minor, Micro)) getDriver().Diag(diag::err_drv_invalid_darwin_version) << Triple.getOSName(); llvm::raw_string_ostream(MacosxVersionMin) << Major << '.' << Minor << '.' << Micro; // FIXME: DarwinVersion is only used to find GCC's libexec directory. // It should be removed when we stop supporting that. DarwinVersion[0] = Minor + 4; DarwinVersion[1] = Micro; DarwinVersion[2] = 0; } types::ID Darwin::LookupTypeForExtension(const char *Ext) const { types::ID Ty = types::lookupTypeForExtension(Ext); // Darwin always preprocesses assembly files (unless -x is used explicitly). if (Ty == types::TY_PP_Asm) return types::TY_Asm; return Ty; } bool Darwin::HasNativeLLVMSupport() const { return true; } bool Darwin::hasARCRuntime() const { // FIXME: Remove this once there is a proper way to detect an ARC runtime // for the simulator. switch (ARCRuntimeForSimulator) { case ARCSimulator_None: break; case ARCSimulator_HasARCRuntime: return true; case ARCSimulator_NoARCRuntime: return false; } if (isTargetIPhoneOS()) return !isIPhoneOSVersionLT(5); else return !isMacosxVersionLT(10, 7); } bool Darwin::hasSubscriptingRuntime() const { return !isTargetIPhoneOS() && !isMacosxVersionLT(10, 8); } /// Darwin provides an ARC runtime starting in MacOS X 10.7 and iOS 5.0. void Darwin::configureObjCRuntime(ObjCRuntime &runtime) const { if (runtime.getKind() != ObjCRuntime::NeXT) return ToolChain::configureObjCRuntime(runtime); runtime.HasARC = runtime.HasWeak = hasARCRuntime(); runtime.HasSubscripting = hasSubscriptingRuntime(); // So far, objc_terminate is only available in iOS 5. // FIXME: do the simulator logic properly. if (!ARCRuntimeForSimulator && isTargetIPhoneOS()) runtime.HasTerminate = !isIPhoneOSVersionLT(5); else runtime.HasTerminate = false; } /// Darwin provides a blocks runtime starting in MacOS X 10.6 and iOS 3.2. bool Darwin::hasBlocksRuntime() const { if (isTargetIPhoneOS()) return !isIPhoneOSVersionLT(3, 2); else return !isMacosxVersionLT(10, 6); } static const char *GetArmArchForMArch(StringRef Value) { return llvm::StringSwitch<const char*>(Value) .Case("armv6k", "armv6") .Case("armv5tej", "armv5") .Case("xscale", "xscale") .Case("armv4t", "armv4t") .Case("armv7", "armv7") .Cases("armv7a", "armv7-a", "armv7") .Cases("armv7r", "armv7-r", "armv7") .Cases("armv7m", "armv7-m", "armv7") .Default(0); } static const char *GetArmArchForMCpu(StringRef Value) { return llvm::StringSwitch<const char *>(Value) .Cases("arm9e", "arm946e-s", "arm966e-s", "arm968e-s", "arm926ej-s","armv5") .Cases("arm10e", "arm10tdmi", "armv5") .Cases("arm1020t", "arm1020e", "arm1022e", "arm1026ej-s", "armv5") .Case("xscale", "xscale") .Cases("arm1136j-s", "arm1136jf-s", "arm1176jz-s", "arm1176jzf-s", "cortex-m0", "armv6") .Cases("cortex-a8", "cortex-r4", "cortex-m3", "cortex-a9", "armv7") .Default(0); } StringRef Darwin::getDarwinArchName(const ArgList &Args) const { switch (getTriple().getArch()) { default: return getArchName(); case llvm::Triple::thumb: case llvm::Triple::arm: { if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) if (const char *Arch = GetArmArchForMArch(A->getValue(Args))) return Arch; if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) if (const char *Arch = GetArmArchForMCpu(A->getValue(Args))) return Arch; return "arm"; } } } Darwin::~Darwin() { // Free tool implementations. for (llvm::DenseMap<unsigned, Tool*>::iterator it = Tools.begin(), ie = Tools.end(); it != ie; ++it) delete it->second; } std::string Darwin::ComputeEffectiveClangTriple(const ArgList &Args, types::ID InputType) const { llvm::Triple Triple(ComputeLLVMTriple(Args, InputType)); // If the target isn't initialized (e.g., an unknown Darwin platform, return // the default triple). if (!isTargetInitialized()) return Triple.getTriple(); SmallString<16> Str; Str += isTargetIPhoneOS() ? "ios" : "macosx"; Str += getTargetVersion().getAsString(); Triple.setOSName(Str); return Triple.getTriple(); } void Generic_ELF::anchor() {} Tool &Darwin::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) { // Fallback to llvm-gcc for i386 kext compiles, we don't support that ABI. if (Inputs.size() == 1 && types::isCXX(Inputs[0]->getType()) && getTriple().isOSDarwin() && getTriple().getArch() == llvm::Triple::x86 && (C.getArgs().getLastArg(options::OPT_fapple_kext) || C.getArgs().getLastArg(options::OPT_mkernel))) Key = JA.getKind(); else Key = Action::AnalyzeJobClass; } else Key = JA.getKind(); bool UseIntegratedAs = C.getArgs().hasFlag(options::OPT_integrated_as, options::OPT_no_integrated_as, IsIntegratedAssemblerDefault()); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::InputClass: case Action::BindArchClass: llvm_unreachable("Invalid tool kind."); case Action::PreprocessJobClass: T = new tools::darwin::Preprocess(*this); break; case Action::AnalyzeJobClass: case Action::MigrateJobClass: T = new tools::Clang(*this); break; case Action::PrecompileJobClass: case Action::CompileJobClass: T = new tools::darwin::Compile(*this); break; case Action::AssembleJobClass: { if (UseIntegratedAs) T = new tools::ClangAs(*this); else T = new tools::darwin::Assemble(*this); break; } case Action::LinkJobClass: T = new tools::darwin::Link(*this); break; case Action::LipoJobClass: T = new tools::darwin::Lipo(*this); break; case Action::DsymutilJobClass: T = new tools::darwin::Dsymutil(*this); break; case Action::VerifyJobClass: T = new tools::darwin::VerifyDebug(*this); break; } } return *T; } DarwinClang::DarwinClang(const Driver &D, const llvm::Triple& Triple) : Darwin(D, Triple) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); // We expect 'as', 'ld', etc. to be adjacent to our install dir. getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); // For fallback, we need to know how to find the GCC cc1 executables, so we // also add the GCC libexec paths. This is legacy code that can be removed // once fallback is no longer useful. AddGCCLibexecPath(DarwinVersion[0]); AddGCCLibexecPath(DarwinVersion[0] - 2); AddGCCLibexecPath(DarwinVersion[0] - 1); AddGCCLibexecPath(DarwinVersion[0] + 1); AddGCCLibexecPath(DarwinVersion[0] + 2); } void DarwinClang::AddGCCLibexecPath(unsigned darwinVersion) { std::string ToolChainDir = "i686-apple-darwin"; ToolChainDir += llvm::utostr(darwinVersion); ToolChainDir += "/4.2.1"; std::string Path = getDriver().Dir; Path += "/../llvm-gcc-4.2/libexec/gcc/"; Path += ToolChainDir; getProgramPaths().push_back(Path); Path = "/usr/llvm-gcc-4.2/libexec/gcc/"; Path += ToolChainDir; getProgramPaths().push_back(Path); } void DarwinClang::AddLinkSearchPathArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // The Clang toolchain uses explicit paths for internal libraries. // Unfortunately, we still might depend on a few of the libraries that are // only available in the gcc library directory (in particular // libstdc++.dylib). For now, hardcode the path to the known install location. // FIXME: This should get ripped out someday. However, when building on // 10.6 (darwin10), we're still relying on this to find libstdc++.dylib. llvm::sys::Path P(getDriver().Dir); P.eraseComponent(); // .../usr/bin -> ../usr P.appendComponent("llvm-gcc-4.2"); P.appendComponent("lib"); P.appendComponent("gcc"); switch (getTriple().getArch()) { default: llvm_unreachable("Invalid Darwin arch!"); case llvm::Triple::x86: case llvm::Triple::x86_64: P.appendComponent("i686-apple-darwin10"); break; case llvm::Triple::arm: case llvm::Triple::thumb: P.appendComponent("arm-apple-darwin10"); break; case llvm::Triple::ppc: case llvm::Triple::ppc64: P.appendComponent("powerpc-apple-darwin10"); break; } P.appendComponent("4.2.1"); // Determine the arch specific GCC subdirectory. const char *ArchSpecificDir = 0; switch (getTriple().getArch()) { default: break; case llvm::Triple::arm: case llvm::Triple::thumb: { std::string Triple = ComputeLLVMTriple(Args); StringRef TripleStr = Triple; if (TripleStr.startswith("armv5") || TripleStr.startswith("thumbv5")) ArchSpecificDir = "v5"; else if (TripleStr.startswith("armv6") || TripleStr.startswith("thumbv6")) ArchSpecificDir = "v6"; else if (TripleStr.startswith("armv7") || TripleStr.startswith("thumbv7")) ArchSpecificDir = "v7"; break; } case llvm::Triple::ppc64: ArchSpecificDir = "ppc64"; break; case llvm::Triple::x86_64: ArchSpecificDir = "x86_64"; break; } if (ArchSpecificDir) { P.appendComponent(ArchSpecificDir); bool Exists; if (!llvm::sys::fs::exists(P.str(), Exists) && Exists) CmdArgs.push_back(Args.MakeArgString("-L" + P.str())); P.eraseComponent(); } bool Exists; if (!llvm::sys::fs::exists(P.str(), Exists) && Exists) CmdArgs.push_back(Args.MakeArgString("-L" + P.str())); } void DarwinClang::AddLinkARCArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CmdArgs.push_back("-force_load"); llvm::sys::Path P(getDriver().ClangExecutable); P.eraseComponent(); // 'clang' P.eraseComponent(); // 'bin' P.appendComponent("lib"); P.appendComponent("arc"); P.appendComponent("libarclite_"); std::string s = P.str(); // Mash in the platform. if (isTargetIOSSimulator()) s += "iphonesimulator"; else if (isTargetIPhoneOS()) s += "iphoneos"; // FIXME: Remove this once we depend fully on -mios-simulator-version-min. else if (ARCRuntimeForSimulator != ARCSimulator_None) s += "iphonesimulator"; else s += "macosx"; s += ".a"; CmdArgs.push_back(Args.MakeArgString(s)); } void DarwinClang::AddLinkRuntimeLib(const ArgList &Args, ArgStringList &CmdArgs, const char *DarwinStaticLib) const { llvm::sys::Path P(getDriver().ResourceDir); P.appendComponent("lib"); P.appendComponent("darwin"); P.appendComponent(DarwinStaticLib); // For now, allow missing resource libraries to support developers who may // not have compiler-rt checked out or integrated into their build. bool Exists; if (!llvm::sys::fs::exists(P.str(), Exists) && Exists) CmdArgs.push_back(Args.MakeArgString(P.str())); } void DarwinClang::AddLinkRuntimeLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // Darwin only supports the compiler-rt based runtime libraries. switch (GetRuntimeLibType(Args)) { case ToolChain::RLT_CompilerRT: break; default: getDriver().Diag(diag::err_drv_unsupported_rtlib_for_platform) << Args.getLastArg(options::OPT_rtlib_EQ)->getValue(Args) << "darwin"; return; } // Darwin doesn't support real static executables, don't link any runtime // libraries with -static. if (Args.hasArg(options::OPT_static)) return; // Reject -static-libgcc for now, we can deal with this when and if someone // cares. This is useful in situations where someone wants to statically link // something like libstdc++, and needs its runtime support routines. if (const Arg *A = Args.getLastArg(options::OPT_static_libgcc)) { getDriver().Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args); return; } // If we are building profile support, link that library in. if (Args.hasArg(options::OPT_fprofile_arcs) || Args.hasArg(options::OPT_fprofile_generate) || Args.hasArg(options::OPT_fcreate_profile) || Args.hasArg(options::OPT_coverage)) { // Select the appropriate runtime library for the target. if (isTargetIPhoneOS()) { AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.profile_ios.a"); } else { AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.profile_osx.a"); } } // Add ASAN runtime library, if required. Dynamic libraries and bundles // should not be linked with the runtime library. if (Args.hasFlag(options::OPT_faddress_sanitizer, options::OPT_fno_address_sanitizer, false)) { if (Args.hasArg(options::OPT_dynamiclib) || Args.hasArg(options::OPT_bundle)) return; if (isTargetIPhoneOS()) { getDriver().Diag(diag::err_drv_clang_unsupported_per_platform) << "-faddress-sanitizer"; } else { AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.asan_osx.a"); // The ASAN runtime library requires C++ and CoreFoundation. AddCXXStdlibLibArgs(Args, CmdArgs); CmdArgs.push_back("-framework"); CmdArgs.push_back("CoreFoundation"); } } // Otherwise link libSystem, then the dynamic runtime library, and finally any // target specific static runtime library. CmdArgs.push_back("-lSystem"); // Select the dynamic runtime library and the target specific static library. if (isTargetIPhoneOS()) { // If we are compiling as iOS / simulator, don't attempt to link libgcc_s.1, // it never went into the SDK. // Linking against libgcc_s.1 isn't needed for iOS 5.0+ if (isIPhoneOSVersionLT(5, 0) && !isTargetIOSSimulator()) CmdArgs.push_back("-lgcc_s.1"); // We currently always need a static runtime library for iOS. AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.ios.a"); } else { // The dynamic runtime library was merged with libSystem for 10.6 and // beyond; only 10.4 and 10.5 need an additional runtime library. if (isMacosxVersionLT(10, 5)) CmdArgs.push_back("-lgcc_s.10.4"); else if (isMacosxVersionLT(10, 6)) CmdArgs.push_back("-lgcc_s.10.5"); // For OS X, we thought we would only need a static runtime library when // targeting 10.4, to provide versions of the static functions which were // omitted from 10.4.dylib. // // Unfortunately, that turned out to not be true, because Darwin system // headers can still use eprintf on i386, and it is not exported from // libSystem. Therefore, we still must provide a runtime library just for // the tiny tiny handful of projects that *might* use that symbol. if (isMacosxVersionLT(10, 5)) { AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.10.4.a"); } else { if (getTriple().getArch() == llvm::Triple::x86) AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.eprintf.a"); AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.osx.a"); } } } static inline StringRef SimulatorVersionDefineName() { return "__IPHONE_OS_VERSION_MIN_REQUIRED"; } /// \brief Parse the simulator version define: /// __IPHONE_OS_VERSION_MIN_REQUIRED=([0-9])([0-9][0-9])([0-9][0-9]) // and return the grouped values as integers, e.g: // __IPHONE_OS_VERSION_MIN_REQUIRED=40201 // will return Major=4, Minor=2, Micro=1. static bool GetVersionFromSimulatorDefine(StringRef define, unsigned &Major, unsigned &Minor, unsigned &Micro) { assert(define.startswith(SimulatorVersionDefineName())); StringRef name, version; llvm::tie(name, version) = define.split('='); if (version.empty()) return false; std::string verstr = version.str(); char *end; unsigned num = (unsigned) strtol(verstr.c_str(), &end, 10); if (*end != '\0') return false; Major = num / 10000; num = num % 10000; Minor = num / 100; Micro = num % 100; return true; } void Darwin::AddDeploymentTarget(DerivedArgList &Args) const { const OptTable &Opts = getDriver().getOpts(); Arg *OSXVersion = Args.getLastArg(options::OPT_mmacosx_version_min_EQ); Arg *iOSVersion = Args.getLastArg(options::OPT_miphoneos_version_min_EQ); Arg *iOSSimVersion = Args.getLastArg( options::OPT_mios_simulator_version_min_EQ); // FIXME: HACK! When compiling for the simulator we don't get a // '-miphoneos-version-min' to help us know whether there is an ARC runtime // or not; try to parse a __IPHONE_OS_VERSION_MIN_REQUIRED // define passed in command-line. if (!iOSVersion && !iOSSimVersion) { for (arg_iterator it = Args.filtered_begin(options::OPT_D), ie = Args.filtered_end(); it != ie; ++it) { StringRef define = (*it)->getValue(Args); if (define.startswith(SimulatorVersionDefineName())) { unsigned Major = 0, Minor = 0, Micro = 0; if (GetVersionFromSimulatorDefine(define, Major, Minor, Micro) && Major < 10 && Minor < 100 && Micro < 100) { ARCRuntimeForSimulator = Major < 5 ? ARCSimulator_NoARCRuntime : ARCSimulator_HasARCRuntime; LibCXXForSimulator = Major < 5 ? LibCXXSimulator_NotAvailable : LibCXXSimulator_Available; } break; } } } if (OSXVersion && (iOSVersion || iOSSimVersion)) { getDriver().Diag(diag::err_drv_argument_not_allowed_with) << OSXVersion->getAsString(Args) << (iOSVersion ? iOSVersion : iOSSimVersion)->getAsString(Args); iOSVersion = iOSSimVersion = 0; } else if (iOSVersion && iOSSimVersion) { getDriver().Diag(diag::err_drv_argument_not_allowed_with) << iOSVersion->getAsString(Args) << iOSSimVersion->getAsString(Args); iOSSimVersion = 0; } else if (!OSXVersion && !iOSVersion && !iOSSimVersion) { // If no deployment target was specified on the command line, check for // environment defines. StringRef OSXTarget; StringRef iOSTarget; StringRef iOSSimTarget; if (char *env = ::getenv("MACOSX_DEPLOYMENT_TARGET")) OSXTarget = env; if (char *env = ::getenv("IPHONEOS_DEPLOYMENT_TARGET")) iOSTarget = env; if (char *env = ::getenv("IOS_SIMULATOR_DEPLOYMENT_TARGET")) iOSSimTarget = env; // If no '-miphoneos-version-min' specified on the command line and // IPHONEOS_DEPLOYMENT_TARGET is not defined, see if we can set the default // based on -isysroot. if (iOSTarget.empty()) { if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { StringRef first, second; StringRef isysroot = A->getValue(Args); llvm::tie(first, second) = isysroot.split(StringRef("SDKs/iPhoneOS")); if (second != "") iOSTarget = second.substr(0,3); } } // If no OSX or iOS target has been specified and we're compiling for armv7, // go ahead as assume we're targeting iOS. if (OSXTarget.empty() && iOSTarget.empty()) if (getDarwinArchName(Args) == "armv7") iOSTarget = "0.0"; // Handle conflicting deployment targets // // FIXME: Don't hardcode default here. // Do not allow conflicts with the iOS simulator target. if (!iOSSimTarget.empty() && (!OSXTarget.empty() || !iOSTarget.empty())) { getDriver().Diag(diag::err_drv_conflicting_deployment_targets) << "IOS_SIMULATOR_DEPLOYMENT_TARGET" << (!OSXTarget.empty() ? "MACOSX_DEPLOYMENT_TARGET" : "IPHONEOS_DEPLOYMENT_TARGET"); } // Allow conflicts among OSX and iOS for historical reasons, but choose the // default platform. if (!OSXTarget.empty() && !iOSTarget.empty()) { if (getTriple().getArch() == llvm::Triple::arm || getTriple().getArch() == llvm::Triple::thumb) OSXTarget = ""; else iOSTarget = ""; } if (!OSXTarget.empty()) { const Option *O = Opts.getOption(options::OPT_mmacosx_version_min_EQ); OSXVersion = Args.MakeJoinedArg(0, O, OSXTarget); Args.append(OSXVersion); } else if (!iOSTarget.empty()) { const Option *O = Opts.getOption(options::OPT_miphoneos_version_min_EQ); iOSVersion = Args.MakeJoinedArg(0, O, iOSTarget); Args.append(iOSVersion); } else if (!iOSSimTarget.empty()) { const Option *O = Opts.getOption( options::OPT_mios_simulator_version_min_EQ); iOSSimVersion = Args.MakeJoinedArg(0, O, iOSSimTarget); Args.append(iOSSimVersion); } else { // Otherwise, assume we are targeting OS X. const Option *O = Opts.getOption(options::OPT_mmacosx_version_min_EQ); OSXVersion = Args.MakeJoinedArg(0, O, MacosxVersionMin); Args.append(OSXVersion); } } // Reject invalid architecture combinations. if (iOSSimVersion && (getTriple().getArch() != llvm::Triple::x86 && getTriple().getArch() != llvm::Triple::x86_64)) { getDriver().Diag(diag::err_drv_invalid_arch_for_deployment_target) << getTriple().getArchName() << iOSSimVersion->getAsString(Args); } // Set the tool chain target information. unsigned Major, Minor, Micro; bool HadExtra; if (OSXVersion) { assert((!iOSVersion && !iOSSimVersion) && "Unknown target platform!"); if (!Driver::GetReleaseVersion(OSXVersion->getValue(Args), Major, Minor, Micro, HadExtra) || HadExtra || Major != 10 || Minor >= 100 || Micro >= 100) getDriver().Diag(diag::err_drv_invalid_version_number) << OSXVersion->getAsString(Args); } else { const Arg *Version = iOSVersion ? iOSVersion : iOSSimVersion; assert(Version && "Unknown target platform!"); if (!Driver::GetReleaseVersion(Version->getValue(Args), Major, Minor, Micro, HadExtra) || HadExtra || Major >= 10 || Minor >= 100 || Micro >= 100) getDriver().Diag(diag::err_drv_invalid_version_number) << Version->getAsString(Args); } bool IsIOSSim = bool(iOSSimVersion); // In GCC, the simulator historically was treated as being OS X in some // contexts, like determining the link logic, despite generally being called // with an iOS deployment target. For compatibility, we detect the // simulator as iOS + x86, and treat it differently in a few contexts. if (iOSVersion && (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64)) IsIOSSim = true; setTarget(/*IsIPhoneOS=*/ !OSXVersion, Major, Minor, Micro, IsIOSSim); } void DarwinClang::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CXXStdlibType Type = GetCXXStdlibType(Args); switch (Type) { case ToolChain::CST_Libcxx: CmdArgs.push_back("-lc++"); break; case ToolChain::CST_Libstdcxx: { // Unfortunately, -lstdc++ doesn't always exist in the standard search path; // it was previously found in the gcc lib dir. However, for all the Darwin // platforms we care about it was -lstdc++.6, so we search for that // explicitly if we can't see an obvious -lstdc++ candidate. // Check in the sysroot first. bool Exists; if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { llvm::sys::Path P(A->getValue(Args)); P.appendComponent("usr"); P.appendComponent("lib"); P.appendComponent("libstdc++.dylib"); if (llvm::sys::fs::exists(P.str(), Exists) || !Exists) { P.eraseComponent(); P.appendComponent("libstdc++.6.dylib"); if (!llvm::sys::fs::exists(P.str(), Exists) && Exists) { CmdArgs.push_back(Args.MakeArgString(P.str())); return; } } } // Otherwise, look in the root. // FIXME: This should be removed someday when we don't have to care about // 10.6 and earlier, where /usr/lib/libstdc++.dylib does not exist. if ((llvm::sys::fs::exists("/usr/lib/libstdc++.dylib", Exists) || !Exists)&& (!llvm::sys::fs::exists("/usr/lib/libstdc++.6.dylib", Exists) && Exists)){ CmdArgs.push_back("/usr/lib/libstdc++.6.dylib"); return; } // Otherwise, let the linker search. CmdArgs.push_back("-lstdc++"); break; } } } void DarwinClang::AddCCKextLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // For Darwin platforms, use the compiler-rt-based support library // instead of the gcc-provided one (which is also incidentally // only present in the gcc lib dir, which makes it hard to find). llvm::sys::Path P(getDriver().ResourceDir); P.appendComponent("lib"); P.appendComponent("darwin"); P.appendComponent("libclang_rt.cc_kext.a"); // For now, allow missing resource libraries to support developers who may // not have compiler-rt checked out or integrated into their build. bool Exists; if (!llvm::sys::fs::exists(P.str(), Exists) && Exists) CmdArgs.push_back(Args.MakeArgString(P.str())); } DerivedArgList *Darwin::TranslateArgs(const DerivedArgList &Args, const char *BoundArch) const { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // FIXME: We really want to get out of the tool chain level argument // translation business, as it makes the driver functionality much // more opaque. For now, we follow gcc closely solely for the // purpose of easily achieving feature parity & testability. Once we // have something that works, we should reevaluate each translation // and try to push it down into tool specific logic. for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it) { Arg *A = *it; if (A->getOption().matches(options::OPT_Xarch__)) { // Skip this argument unless the architecture matches either the toolchain // triple arch, or the arch being bound. // // FIXME: Canonicalize name. StringRef XarchArch = A->getValue(Args, 0); if (!(XarchArch == getArchName() || (BoundArch && XarchArch == BoundArch))) continue; Arg *OriginalArg = A; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(Args, 1)); unsigned Prev = Index; Arg *XarchArg = Opts.ParseOneArg(Args, Index); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); continue; } else if (XarchArg->getOption().isDriverOption()) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); continue; } XarchArg->setBaseArg(A); A = XarchArg; DAL->AddSynthesizedArg(A); // Linker input arguments require custom handling. The problem is that we // have already constructed the phase actions, so we can not treat them as // "input arguments". if (A->getOption().isLinkerInput()) { // Convert the argument into individual Zlinker_input_args. for (unsigned i = 0, e = A->getNumValues(); i != e; ++i) { DAL->AddSeparateArg(OriginalArg, Opts.getOption(options::OPT_Zlinker_input), A->getValue(Args, i)); } continue; } } // Sob. These is strictly gcc compatible for the time being. Apple // gcc translates options twice, which means that self-expanding // options add duplicates. switch ((options::ID) A->getOption().getID()) { default: DAL->append(A); break; case options::OPT_mkernel: case options::OPT_fapple_kext: DAL->append(A); DAL->AddFlagArg(A, Opts.getOption(options::OPT_static)); break; case options::OPT_dependency_file: DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(Args)); break; case options::OPT_gfull: DAL->AddFlagArg(A, Opts.getOption(options::OPT_g_Flag)); DAL->AddFlagArg(A, Opts.getOption(options::OPT_fno_eliminate_unused_debug_symbols)); break; case options::OPT_gused: DAL->AddFlagArg(A, Opts.getOption(options::OPT_g_Flag)); DAL->AddFlagArg(A, Opts.getOption(options::OPT_feliminate_unused_debug_symbols)); break; case options::OPT_shared: DAL->AddFlagArg(A, Opts.getOption(options::OPT_dynamiclib)); break; case options::OPT_fconstant_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mconstant_cfstrings)); break; case options::OPT_fno_constant_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_constant_cfstrings)); break; case options::OPT_Wnonportable_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mwarn_nonportable_cfstrings)); break; case options::OPT_Wno_nonportable_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_warn_nonportable_cfstrings)); break; case options::OPT_fpascal_strings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mpascal_strings)); break; case options::OPT_fno_pascal_strings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_pascal_strings)); break; } } if (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64) if (!Args.hasArgNoClaim(options::OPT_mtune_EQ)) DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mtune_EQ), "core2"); // Add the arch options based on the particular spelling of -arch, to match // how the driver driver works. if (BoundArch) { StringRef Name = BoundArch; const Option *MCpu = Opts.getOption(options::OPT_mcpu_EQ); const Option *MArch = Opts.getOption(options::OPT_march_EQ); // This code must be kept in sync with LLVM's getArchTypeForDarwinArch, // which defines the list of which architectures we accept. if (Name == "ppc") ; else if (Name == "ppc601") DAL->AddJoinedArg(0, MCpu, "601"); else if (Name == "ppc603") DAL->AddJoinedArg(0, MCpu, "603"); else if (Name == "ppc604") DAL->AddJoinedArg(0, MCpu, "604"); else if (Name == "ppc604e") DAL->AddJoinedArg(0, MCpu, "604e"); else if (Name == "ppc750") DAL->AddJoinedArg(0, MCpu, "750"); else if (Name == "ppc7400") DAL->AddJoinedArg(0, MCpu, "7400"); else if (Name == "ppc7450") DAL->AddJoinedArg(0, MCpu, "7450"); else if (Name == "ppc970") DAL->AddJoinedArg(0, MCpu, "970"); else if (Name == "ppc64") DAL->AddFlagArg(0, Opts.getOption(options::OPT_m64)); else if (Name == "i386") ; else if (Name == "i486") DAL->AddJoinedArg(0, MArch, "i486"); else if (Name == "i586") DAL->AddJoinedArg(0, MArch, "i586"); else if (Name == "i686") DAL->AddJoinedArg(0, MArch, "i686"); else if (Name == "pentium") DAL->AddJoinedArg(0, MArch, "pentium"); else if (Name == "pentium2") DAL->AddJoinedArg(0, MArch, "pentium2"); else if (Name == "pentpro") DAL->AddJoinedArg(0, MArch, "pentiumpro"); else if (Name == "pentIIm3") DAL->AddJoinedArg(0, MArch, "pentium2"); else if (Name == "x86_64") DAL->AddFlagArg(0, Opts.getOption(options::OPT_m64)); else if (Name == "arm") DAL->AddJoinedArg(0, MArch, "armv4t"); else if (Name == "armv4t") DAL->AddJoinedArg(0, MArch, "armv4t"); else if (Name == "armv5") DAL->AddJoinedArg(0, MArch, "armv5tej"); else if (Name == "xscale") DAL->AddJoinedArg(0, MArch, "xscale"); else if (Name == "armv6") DAL->AddJoinedArg(0, MArch, "armv6k"); else if (Name == "armv7") DAL->AddJoinedArg(0, MArch, "armv7a"); else llvm_unreachable("invalid Darwin arch"); } // Add an explicit version min argument for the deployment target. We do this // after argument translation because -Xarch_ arguments may add a version min // argument. AddDeploymentTarget(*DAL); // Validate the C++ standard library choice. CXXStdlibType Type = GetCXXStdlibType(*DAL); if (Type == ToolChain::CST_Libcxx) { switch (LibCXXForSimulator) { case LibCXXSimulator_None: // Handle non-simulator cases. if (isTargetIPhoneOS()) { if (isIPhoneOSVersionLT(5, 0)) { getDriver().Diag(clang::diag::err_drv_invalid_libcxx_deployment) << "iOS 5.0"; } } break; case LibCXXSimulator_NotAvailable: getDriver().Diag(clang::diag::err_drv_invalid_libcxx_deployment) << "iOS 5.0"; break; case LibCXXSimulator_Available: break; } } return DAL; } bool Darwin::IsUnwindTablesDefault() const { // FIXME: Gross; we should probably have some separate target // definition, possibly even reusing the one in clang. return getArchName() == "x86_64"; } bool Darwin::UseDwarfDebugFlags() const { if (const char *S = ::getenv("RC_DEBUG_OPTIONS")) return S[0] != '\0'; return false; } bool Darwin::UseSjLjExceptions() const { // Darwin uses SjLj exceptions on ARM. return (getTriple().getArch() == llvm::Triple::arm || getTriple().getArch() == llvm::Triple::thumb); } const char *Darwin::GetDefaultRelocationModel() const { return "pic"; } const char *Darwin::GetForcedPicModel() const { if (getArchName() == "x86_64") return "pic"; return 0; } bool Darwin::SupportsProfiling() const { // Profiling instrumentation is only supported on x86. return getArchName() == "i386" || getArchName() == "x86_64"; } bool Darwin::SupportsObjCGC() const { // Garbage collection is supported everywhere except on iPhone OS. return !isTargetIPhoneOS(); } bool Darwin::SupportsObjCARC() const { return isTargetIPhoneOS() || !isMacosxVersionLT(10, 6); } std::string Darwin_Generic_GCC::ComputeEffectiveClangTriple(const ArgList &Args, types::ID InputType) const { return ComputeLLVMTriple(Args, InputType); } /// Generic_GCC - A tool chain using the 'gcc' command to perform /// all subcommands; this relies on gcc translating the majority of /// command line options. /// \brief Parse a GCCVersion object out of a string of text. /// /// This is the primary means of forming GCCVersion objects. /*static*/ Generic_GCC::GCCVersion Linux::GCCVersion::Parse(StringRef VersionText) { const GCCVersion BadVersion = { VersionText.str(), -1, -1, -1, "" }; std::pair<StringRef, StringRef> First = VersionText.split('.'); std::pair<StringRef, StringRef> Second = First.second.split('.'); GCCVersion GoodVersion = { VersionText.str(), -1, -1, -1, "" }; if (First.first.getAsInteger(10, GoodVersion.Major) || GoodVersion.Major < 0) return BadVersion; if (Second.first.getAsInteger(10, GoodVersion.Minor) || GoodVersion.Minor < 0) return BadVersion; // First look for a number prefix and parse that if present. Otherwise just // stash the entire patch string in the suffix, and leave the number // unspecified. This covers versions strings such as: // 4.4 // 4.4.0 // 4.4.x // 4.4.2-rc4 // 4.4.x-patched // And retains any patch number it finds. StringRef PatchText = GoodVersion.PatchSuffix = Second.second.str(); if (!PatchText.empty()) { if (unsigned EndNumber = PatchText.find_first_not_of("0123456789")) { // Try to parse the number and any suffix. if (PatchText.slice(0, EndNumber).getAsInteger(10, GoodVersion.Patch) || GoodVersion.Patch < 0) return BadVersion; GoodVersion.PatchSuffix = PatchText.substr(EndNumber).str(); } } return GoodVersion; } /// \brief Less-than for GCCVersion, implementing a Strict Weak Ordering. bool Generic_GCC::GCCVersion::operator<(const GCCVersion &RHS) const { if (Major < RHS.Major) return true; if (Major > RHS.Major) return false; if (Minor < RHS.Minor) return true; if (Minor > RHS.Minor) return false; // Note that we rank versions with *no* patch specified is better than ones // hard-coding a patch version. Thus if the RHS has no patch, it always // wins, and the LHS only wins if it has no patch and the RHS does have // a patch. if (RHS.Patch == -1) return true; if (Patch == -1) return false; if (Patch < RHS.Patch) return true; if (Patch > RHS.Patch) return false; if (PatchSuffix == RHS.PatchSuffix) return false; // Finally, between completely tied version numbers, the version with the // suffix loses as we prefer full releases. if (RHS.PatchSuffix.empty()) return true; return false; } static StringRef getGCCToolchainDir(const ArgList &Args) { const Arg *A = Args.getLastArg(options::OPT_gcc_toolchain); if (A) return A->getValue(Args); return GCC_INSTALL_PREFIX; } /// \brief Construct a GCCInstallationDetector from the driver. /// /// This performs all of the autodetection and sets up the various paths. /// Once constructed, a GCCInstallationDetector is essentially immutable. /// /// FIXME: We shouldn't need an explicit TargetTriple parameter here, and /// should instead pull the target out of the driver. This is currently /// necessary because the driver doesn't store the final version of the target /// triple. Generic_GCC::GCCInstallationDetector::GCCInstallationDetector( const Driver &D, const llvm::Triple &TargetTriple, const ArgList &Args) : IsValid(false) { llvm::Triple MultiarchTriple = TargetTriple.isArch32Bit() ? TargetTriple.get64BitArchVariant() : TargetTriple.get32BitArchVariant(); llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); // The library directories which may contain GCC installations. SmallVector<StringRef, 4> CandidateLibDirs, CandidateMultiarchLibDirs; // The compatible GCC triples for this particular architecture. SmallVector<StringRef, 10> CandidateTripleAliases; SmallVector<StringRef, 10> CandidateMultiarchTripleAliases; CollectLibDirsAndTriples(TargetTriple, MultiarchTriple, CandidateLibDirs, CandidateTripleAliases, CandidateMultiarchLibDirs, CandidateMultiarchTripleAliases); // Compute the set of prefixes for our search. SmallVector<std::string, 8> Prefixes(D.PrefixDirs.begin(), D.PrefixDirs.end()); StringRef GCCToolchainDir = getGCCToolchainDir(Args); if (GCCToolchainDir != "") { if (GCCToolchainDir.back() == '/') GCCToolchainDir = GCCToolchainDir.drop_back(); // remove the / Prefixes.push_back(GCCToolchainDir); } else { Prefixes.push_back(D.SysRoot); Prefixes.push_back(D.SysRoot + "/usr"); Prefixes.push_back(D.InstalledDir + "/.."); } // Loop over the various components which exist and select the best GCC // installation available. GCC installs are ranked by version number. Version = GCCVersion::Parse("0.0.0"); for (unsigned i = 0, ie = Prefixes.size(); i < ie; ++i) { if (!llvm::sys::fs::exists(Prefixes[i])) continue; for (unsigned j = 0, je = CandidateLibDirs.size(); j < je; ++j) { const std::string LibDir = Prefixes[i] + CandidateLibDirs[j].str(); if (!llvm::sys::fs::exists(LibDir)) continue; for (unsigned k = 0, ke = CandidateTripleAliases.size(); k < ke; ++k) ScanLibDirForGCCTriple(TargetArch, LibDir, CandidateTripleAliases[k]); } for (unsigned j = 0, je = CandidateMultiarchLibDirs.size(); j < je; ++j) { const std::string LibDir = Prefixes[i] + CandidateMultiarchLibDirs[j].str(); if (!llvm::sys::fs::exists(LibDir)) continue; for (unsigned k = 0, ke = CandidateMultiarchTripleAliases.size(); k < ke; ++k) ScanLibDirForGCCTriple(TargetArch, LibDir, CandidateMultiarchTripleAliases[k], /*NeedsMultiarchSuffix=*/true); } } } /*static*/ void Generic_GCC::GCCInstallationDetector::CollectLibDirsAndTriples( const llvm::Triple &TargetTriple, const llvm::Triple &MultiarchTriple, SmallVectorImpl<StringRef> &LibDirs, SmallVectorImpl<StringRef> &TripleAliases, SmallVectorImpl<StringRef> &MultiarchLibDirs, SmallVectorImpl<StringRef> &MultiarchTripleAliases) { // Declare a bunch of static data sets that we'll select between below. These // are specifically designed to always refer to string literals to avoid any // lifetime or initialization issues. static const char *const ARMLibDirs[] = { "/lib" }; static const char *const ARMTriples[] = { "arm-linux-gnueabi", "arm-linux-androideabi" }; static const char *const X86_64LibDirs[] = { "/lib64", "/lib" }; static const char *const X86_64Triples[] = { "x86_64-linux-gnu", "x86_64-unknown-linux-gnu", "x86_64-pc-linux-gnu", "x86_64-redhat-linux6E", "x86_64-redhat-linux", "x86_64-suse-linux", "x86_64-manbo-linux-gnu", "x86_64-linux-gnu", "x86_64-slackware-linux" }; static const char *const X86LibDirs[] = { "/lib32", "/lib" }; static const char *const X86Triples[] = { "i686-linux-gnu", "i686-pc-linux-gnu", "i486-linux-gnu", "i386-linux-gnu", "i686-redhat-linux", "i586-redhat-linux", "i386-redhat-linux", "i586-suse-linux", "i486-slackware-linux" }; static const char *const MIPSLibDirs[] = { "/lib" }; static const char *const MIPSTriples[] = { "mips-linux-gnu" }; static const char *const MIPSELLibDirs[] = { "/lib" }; static const char *const MIPSELTriples[] = { "mipsel-linux-gnu" }; static const char *const PPCLibDirs[] = { "/lib32", "/lib" }; static const char *const PPCTriples[] = { "powerpc-linux-gnu", "powerpc-unknown-linux-gnu", "powerpc-suse-linux" }; static const char *const PPC64LibDirs[] = { "/lib64", "/lib" }; static const char *const PPC64Triples[] = { "powerpc64-linux-gnu", "powerpc64-unknown-linux-gnu", "powerpc64-suse-linux", "ppc64-redhat-linux" }; switch (TargetTriple.getArch()) { case llvm::Triple::arm: case llvm::Triple::thumb: LibDirs.append(ARMLibDirs, ARMLibDirs + llvm::array_lengthof(ARMLibDirs)); TripleAliases.append( ARMTriples, ARMTriples + llvm::array_lengthof(ARMTriples)); break; case llvm::Triple::x86_64: LibDirs.append( X86_64LibDirs, X86_64LibDirs + llvm::array_lengthof(X86_64LibDirs)); TripleAliases.append( X86_64Triples, X86_64Triples + llvm::array_lengthof(X86_64Triples)); MultiarchLibDirs.append( X86LibDirs, X86LibDirs + llvm::array_lengthof(X86LibDirs)); MultiarchTripleAliases.append( X86Triples, X86Triples + llvm::array_lengthof(X86Triples)); break; case llvm::Triple::x86: LibDirs.append(X86LibDirs, X86LibDirs + llvm::array_lengthof(X86LibDirs)); TripleAliases.append( X86Triples, X86Triples + llvm::array_lengthof(X86Triples)); MultiarchLibDirs.append( X86_64LibDirs, X86_64LibDirs + llvm::array_lengthof(X86_64LibDirs)); MultiarchTripleAliases.append( X86_64Triples, X86_64Triples + llvm::array_lengthof(X86_64Triples)); break; case llvm::Triple::mips: LibDirs.append( MIPSLibDirs, MIPSLibDirs + llvm::array_lengthof(MIPSLibDirs)); TripleAliases.append( MIPSTriples, MIPSTriples + llvm::array_lengthof(MIPSTriples)); break; case llvm::Triple::mipsel: LibDirs.append( MIPSELLibDirs, MIPSELLibDirs + llvm::array_lengthof(MIPSELLibDirs)); TripleAliases.append( MIPSELTriples, MIPSELTriples + llvm::array_lengthof(MIPSELTriples)); break; case llvm::Triple::ppc: LibDirs.append(PPCLibDirs, PPCLibDirs + llvm::array_lengthof(PPCLibDirs)); TripleAliases.append( PPCTriples, PPCTriples + llvm::array_lengthof(PPCTriples)); MultiarchLibDirs.append( PPC64LibDirs, PPC64LibDirs + llvm::array_lengthof(PPC64LibDirs)); MultiarchTripleAliases.append( PPC64Triples, PPC64Triples + llvm::array_lengthof(PPC64Triples)); break; case llvm::Triple::ppc64: LibDirs.append( PPC64LibDirs, PPC64LibDirs + llvm::array_lengthof(PPC64LibDirs)); TripleAliases.append( PPC64Triples, PPC64Triples + llvm::array_lengthof(PPC64Triples)); MultiarchLibDirs.append( PPCLibDirs, PPCLibDirs + llvm::array_lengthof(PPCLibDirs)); MultiarchTripleAliases.append( PPCTriples, PPCTriples + llvm::array_lengthof(PPCTriples)); break; default: // By default, just rely on the standard lib directories and the original // triple. break; } // Always append the drivers target triple to the end, in case it doesn't // match any of our aliases. TripleAliases.push_back(TargetTriple.str()); // Also include the multiarch variant if it's different. if (TargetTriple.str() != MultiarchTriple.str()) MultiarchTripleAliases.push_back(MultiarchTriple.str()); } void Generic_GCC::GCCInstallationDetector::ScanLibDirForGCCTriple( llvm::Triple::ArchType TargetArch, const std::string &LibDir, StringRef CandidateTriple, bool NeedsMultiarchSuffix) { // There are various different suffixes involving the triple we // check for. We also record what is necessary to walk from each back // up to the lib directory. const std::string LibSuffixes[] = { "/gcc/" + CandidateTriple.str(), "/" + CandidateTriple.str() + "/gcc/" + CandidateTriple.str(), // Ubuntu has a strange mis-matched pair of triples that this happens to // match. // FIXME: It may be worthwhile to generalize this and look for a second // triple. "/i386-linux-gnu/gcc/" + CandidateTriple.str() }; const std::string InstallSuffixes[] = { "/../../..", "/../../../..", "/../../../.." }; // Only look at the final, weird Ubuntu suffix for i386-linux-gnu. const unsigned NumLibSuffixes = (llvm::array_lengthof(LibSuffixes) - (TargetArch != llvm::Triple::x86)); for (unsigned i = 0; i < NumLibSuffixes; ++i) { StringRef LibSuffix = LibSuffixes[i]; llvm::error_code EC; for (llvm::sys::fs::directory_iterator LI(LibDir + LibSuffix, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->path()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); static const GCCVersion MinVersion = { "4.1.1", 4, 1, 1, "" }; if (CandidateVersion < MinVersion) continue; if (CandidateVersion <= Version) continue; // Some versions of SUSE and Fedora on ppc64 put 32-bit libs // in what would normally be GCCInstallPath and put the 64-bit // libs in a subdirectory named 64. The simple logic we follow is that // *if* there is a subdirectory of the right name with crtbegin.o in it, // we use that. If not, and if not a multiarch triple, we look for // crtbegin.o without the subdirectory. StringRef MultiarchSuffix = (TargetArch == llvm::Triple::x86_64 || TargetArch == llvm::Triple::ppc64) ? "/64" : "/32"; if (llvm::sys::fs::exists(LI->path() + MultiarchSuffix + "/crtbegin.o")) { GCCMultiarchSuffix = MultiarchSuffix.str(); } else { if (NeedsMultiarchSuffix || !llvm::sys::fs::exists(LI->path() + "/crtbegin.o")) continue; GCCMultiarchSuffix.clear(); } Version = CandidateVersion; GCCTriple.setTriple(CandidateTriple); // FIXME: We hack together the directory name here instead of // using LI to ensure stable path separators across Windows and // Linux. GCCInstallPath = LibDir + LibSuffixes[i] + "/" + VersionText.str(); GCCParentLibPath = GCCInstallPath + InstallSuffixes[i]; IsValid = true; } } } Generic_GCC::Generic_GCC(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : ToolChain(D, Triple), GCCInstallation(getDriver(), Triple, Args) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); } Generic_GCC::~Generic_GCC() { // Free tool implementations. for (llvm::DenseMap<unsigned, Tool*>::iterator it = Tools.begin(), ie = Tools.end(); it != ie; ++it) delete it->second; } Tool &Generic_GCC::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::InputClass: case Action::BindArchClass: llvm_unreachable("Invalid tool kind."); case Action::PreprocessJobClass: T = new tools::gcc::Preprocess(*this); break; case Action::PrecompileJobClass: T = new tools::gcc::Precompile(*this); break; case Action::AnalyzeJobClass: case Action::MigrateJobClass: T = new tools::Clang(*this); break; case Action::CompileJobClass: T = new tools::gcc::Compile(*this); break; case Action::AssembleJobClass: T = new tools::gcc::Assemble(*this); break; case Action::LinkJobClass: T = new tools::gcc::Link(*this); break; // This is a bit ungeneric, but the only platform using a driver // driver is Darwin. case Action::LipoJobClass: T = new tools::darwin::Lipo(*this); break; case Action::DsymutilJobClass: T = new tools::darwin::Dsymutil(*this); break; case Action::VerifyJobClass: T = new tools::darwin::VerifyDebug(*this); break; } } return *T; } bool Generic_GCC::IsUnwindTablesDefault() const { // FIXME: Gross; we should probably have some separate target // definition, possibly even reusing the one in clang. return getArchName() == "x86_64"; } const char *Generic_GCC::GetDefaultRelocationModel() const { return "static"; } const char *Generic_GCC::GetForcedPicModel() const { return 0; } /// Hexagon Toolchain Hexagon_TC::Hexagon_TC(const Driver &D, const llvm::Triple& Triple) : ToolChain(D, Triple) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir.c_str()) getProgramPaths().push_back(getDriver().Dir); } Hexagon_TC::~Hexagon_TC() { // Free tool implementations. for (llvm::DenseMap<unsigned, Tool*>::iterator it = Tools.begin(), ie = Tools.end(); it != ie; ++it) delete it->second; } Tool &Hexagon_TC::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; // if (JA.getKind () == Action::CompileJobClass) // Key = JA.getKind (); // else if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); // if ((JA.getKind () == Action::CompileJobClass) // && (JA.getType () != types::TY_LTO_BC)) { // Key = JA.getKind (); // } Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::InputClass: case Action::BindArchClass: assert(0 && "Invalid tool kind."); case Action::AnalyzeJobClass: T = new tools::Clang(*this); break; case Action::AssembleJobClass: T = new tools::hexagon::Assemble(*this); break; case Action::LinkJobClass: T = new tools::hexagon::Link(*this); break; default: assert(false && "Unsupported action for Hexagon target."); } } return *T; } bool Hexagon_TC::IsUnwindTablesDefault() const { // FIXME: Gross; we should probably have some separate target // definition, possibly even reusing the one in clang. return getArchName() == "x86_64"; } const char *Hexagon_TC::GetDefaultRelocationModel() const { return "static"; } const char *Hexagon_TC::GetForcedPicModel() const { return 0; } // End Hexagon /// TCEToolChain - A tool chain using the llvm bitcode tools to perform /// all subcommands. See http://tce.cs.tut.fi for our peculiar target. /// Currently does not support anything else but compilation. TCEToolChain::TCEToolChain(const Driver &D, const llvm::Triple& Triple) : ToolChain(D, Triple) { // Path mangling to find libexec std::string Path(getDriver().Dir); Path += "/../libexec"; getProgramPaths().push_back(Path); } TCEToolChain::~TCEToolChain() { for (llvm::DenseMap<unsigned, Tool*>::iterator it = Tools.begin(), ie = Tools.end(); it != ie; ++it) delete it->second; } bool TCEToolChain::IsMathErrnoDefault() const { return true; } bool TCEToolChain::IsUnwindTablesDefault() const { return false; } const char *TCEToolChain::GetDefaultRelocationModel() const { return "static"; } const char *TCEToolChain::GetForcedPicModel() const { return 0; } Tool &TCEToolChain::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; Key = Action::AnalyzeJobClass; Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::PreprocessJobClass: T = new tools::gcc::Preprocess(*this); break; case Action::AnalyzeJobClass: T = new tools::Clang(*this); break; default: llvm_unreachable("Unsupported action for TCE target."); } } return *T; } /// OpenBSD - OpenBSD tool chain which can call as(1) and ld(1) directly. OpenBSD::OpenBSD(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); } Tool &OpenBSD::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); bool UseIntegratedAs = C.getArgs().hasFlag(options::OPT_integrated_as, options::OPT_no_integrated_as, IsIntegratedAssemblerDefault()); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: { if (UseIntegratedAs) T = new tools::ClangAs(*this); else T = new tools::openbsd::Assemble(*this); break; } case Action::LinkJobClass: T = new tools::openbsd::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } /// FreeBSD - FreeBSD tool chain which can call as(1) and ld(1) directly. FreeBSD::FreeBSD(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { // When targeting 32-bit platforms, look for '/usr/lib32/crt1.o' and fall // back to '/usr/lib' if it doesn't exist. if ((Triple.getArch() == llvm::Triple::x86 || Triple.getArch() == llvm::Triple::ppc) && llvm::sys::fs::exists(getDriver().SysRoot + "/usr/lib32/crt1.o")) getFilePaths().push_back(getDriver().SysRoot + "/usr/lib32"); else getFilePaths().push_back(getDriver().SysRoot + "/usr/lib"); } Tool &FreeBSD::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); bool UseIntegratedAs = C.getArgs().hasFlag(options::OPT_integrated_as, options::OPT_no_integrated_as, IsIntegratedAssemblerDefault()); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: if (UseIntegratedAs) T = new tools::ClangAs(*this); else T = new tools::freebsd::Assemble(*this); break; case Action::LinkJobClass: T = new tools::freebsd::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } /// NetBSD - NetBSD tool chain which can call as(1) and ld(1) directly. NetBSD::NetBSD(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { if (getDriver().UseStdLib) { // When targeting a 32-bit platform, try the special directory used on // 64-bit hosts, and only fall back to the main library directory if that // doesn't work. // FIXME: It'd be nicer to test if this directory exists, but I'm not sure // what all logic is needed to emulate the '=' prefix here. if (Triple.getArch() == llvm::Triple::x86) getFilePaths().push_back("=/usr/lib/i386"); getFilePaths().push_back("=/usr/lib"); } } Tool &NetBSD::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); bool UseIntegratedAs = C.getArgs().hasFlag(options::OPT_integrated_as, options::OPT_no_integrated_as, IsIntegratedAssemblerDefault()); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: if (UseIntegratedAs) T = new tools::ClangAs(*this); else T = new tools::netbsd::Assemble(*this); break; case Action::LinkJobClass: T = new tools::netbsd::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } /// Minix - Minix tool chain which can call as(1) and ld(1) directly. Minix::Minix(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); } Tool &Minix::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: T = new tools::minix::Assemble(*this); break; case Action::LinkJobClass: T = new tools::minix::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } /// AuroraUX - AuroraUX tool chain which can call as(1) and ld(1) directly. AuroraUX::AuroraUX(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_GCC(D, Triple, Args) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); getFilePaths().push_back("/usr/sfw/lib"); getFilePaths().push_back("/opt/gcc4/lib"); getFilePaths().push_back("/opt/gcc4/lib/gcc/i386-pc-solaris2.11/4.2.4"); } Tool &AuroraUX::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: T = new tools::auroraux::Assemble(*this); break; case Action::LinkJobClass: T = new tools::auroraux::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } /// Solaris - Solaris tool chain which can call as(1) and ld(1) directly. Solaris::Solaris(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_GCC(D, Triple, Args) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); } Tool &Solaris::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: T = new tools::solaris::Assemble(*this); break; case Action::LinkJobClass: T = new tools::solaris::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } /// Linux toolchain (very bare-bones at the moment). enum LinuxDistro { ArchLinux, DebianLenny, DebianSqueeze, DebianWheezy, Exherbo, RHEL4, RHEL5, RHEL6, Fedora13, Fedora14, Fedora15, Fedora16, FedoraRawhide, OpenSuse11_3, OpenSuse11_4, OpenSuse12_1, UbuntuHardy, UbuntuIntrepid, UbuntuJaunty, UbuntuKarmic, UbuntuLucid, UbuntuMaverick, UbuntuNatty, UbuntuOneiric, UbuntuPrecise, UnknownDistro }; static bool IsRedhat(enum LinuxDistro Distro) { return (Distro >= Fedora13 && Distro <= FedoraRawhide) || (Distro >= RHEL4 && Distro <= RHEL6); } static bool IsOpenSuse(enum LinuxDistro Distro) { return Distro >= OpenSuse11_3 && Distro <= OpenSuse12_1; } static bool IsDebian(enum LinuxDistro Distro) { return Distro >= DebianLenny && Distro <= DebianWheezy; } static bool IsUbuntu(enum LinuxDistro Distro) { return Distro >= UbuntuHardy && Distro <= UbuntuPrecise; } static LinuxDistro DetectLinuxDistro(llvm::Triple::ArchType Arch) { OwningPtr<llvm::MemoryBuffer> File; if (!llvm::MemoryBuffer::getFile("/etc/lsb-release", File)) { StringRef Data = File.get()->getBuffer(); SmallVector<StringRef, 8> Lines; Data.split(Lines, "\n"); LinuxDistro Version = UnknownDistro; for (unsigned i = 0, s = Lines.size(); i != s; ++i) if (Version == UnknownDistro && Lines[i].startswith("DISTRIB_CODENAME=")) Version = llvm::StringSwitch<LinuxDistro>(Lines[i].substr(17)) .Case("hardy", UbuntuHardy) .Case("intrepid", UbuntuIntrepid) .Case("jaunty", UbuntuJaunty) .Case("karmic", UbuntuKarmic) .Case("lucid", UbuntuLucid) .Case("maverick", UbuntuMaverick) .Case("natty", UbuntuNatty) .Case("oneiric", UbuntuOneiric) .Case("precise", UbuntuPrecise) .Default(UnknownDistro); return Version; } if (!llvm::MemoryBuffer::getFile("/etc/redhat-release", File)) { StringRef Data = File.get()->getBuffer(); if (Data.startswith("Fedora release 16")) return Fedora16; else if (Data.startswith("Fedora release 15")) return Fedora15; else if (Data.startswith("Fedora release 14")) return Fedora14; else if (Data.startswith("Fedora release 13")) return Fedora13; else if (Data.startswith("Fedora release") && Data.find("Rawhide") != StringRef::npos) return FedoraRawhide; else if (Data.startswith("Red Hat Enterprise Linux") && Data.find("release 6") != StringRef::npos) return RHEL6; else if ((Data.startswith("Red Hat Enterprise Linux") || Data.startswith("CentOS")) && Data.find("release 5") != StringRef::npos) return RHEL5; else if ((Data.startswith("Red Hat Enterprise Linux") || Data.startswith("CentOS")) && Data.find("release 4") != StringRef::npos) return RHEL4; return UnknownDistro; } if (!llvm::MemoryBuffer::getFile("/etc/debian_version", File)) { StringRef Data = File.get()->getBuffer(); if (Data[0] == '5') return DebianLenny; else if (Data.startswith("squeeze/sid") || Data[0] == '6') return DebianSqueeze; else if (Data.startswith("wheezy/sid") || Data[0] == '7') return DebianWheezy; return UnknownDistro; } if (!llvm::MemoryBuffer::getFile("/etc/SuSE-release", File)) return llvm::StringSwitch<LinuxDistro>(File.get()->getBuffer()) .StartsWith("openSUSE 11.3", OpenSuse11_3) .StartsWith("openSUSE 11.4", OpenSuse11_4) .StartsWith("openSUSE 12.1", OpenSuse12_1) .Default(UnknownDistro); bool Exists; if (!llvm::sys::fs::exists("/etc/exherbo-release", Exists) && Exists) return Exherbo; if (!llvm::sys::fs::exists("/etc/arch-release", Exists) && Exists) return ArchLinux; return UnknownDistro; } /// \brief Get our best guess at the multiarch triple for a target. /// /// Debian-based systems are starting to use a multiarch setup where they use /// a target-triple directory in the library and header search paths. /// Unfortunately, this triple does not align with the vanilla target triple, /// so we provide a rough mapping here. static std::string getMultiarchTriple(const llvm::Triple TargetTriple, StringRef SysRoot) { // For most architectures, just use whatever we have rather than trying to be // clever. switch (TargetTriple.getArch()) { default: return TargetTriple.str(); // We use the existence of '/lib/<triple>' as a directory to detect some // common linux triples that don't quite match the Clang triple for both // 32-bit and 64-bit targets. Multiarch fixes its install triples to these // regardless of what the actual target triple is. case llvm::Triple::x86: if (llvm::sys::fs::exists(SysRoot + "/lib/i386-linux-gnu")) return "i386-linux-gnu"; return TargetTriple.str(); case llvm::Triple::x86_64: if (llvm::sys::fs::exists(SysRoot + "/lib/x86_64-linux-gnu")) return "x86_64-linux-gnu"; return TargetTriple.str(); case llvm::Triple::mips: if (llvm::sys::fs::exists(SysRoot + "/lib/mips-linux-gnu")) return "mips-linux-gnu"; return TargetTriple.str(); case llvm::Triple::mipsel: if (llvm::sys::fs::exists(SysRoot + "/lib/mipsel-linux-gnu")) return "mipsel-linux-gnu"; return TargetTriple.str(); case llvm::Triple::ppc: if (llvm::sys::fs::exists(SysRoot + "/lib/powerpc-linux-gnu")) return "powerpc-linux-gnu"; return TargetTriple.str(); case llvm::Triple::ppc64: if (llvm::sys::fs::exists(SysRoot + "/lib/powerpc64-linux-gnu")) return "powerpc64-linux-gnu"; return TargetTriple.str(); } } static void addPathIfExists(Twine Path, ToolChain::path_list &Paths) { if (llvm::sys::fs::exists(Path)) Paths.push_back(Path.str()); } Linux::Linux(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { llvm::Triple::ArchType Arch = Triple.getArch(); const std::string &SysRoot = getDriver().SysRoot; // OpenSuse stores the linker with the compiler, add that to the search // path. ToolChain::path_list &PPaths = getProgramPaths(); PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../" + GCCInstallation.getTriple().str() + "/bin").str()); Linker = GetProgramPath("ld"); LinuxDistro Distro = DetectLinuxDistro(Arch); if (IsOpenSuse(Distro) || IsUbuntu(Distro)) { ExtraOpts.push_back("-z"); ExtraOpts.push_back("relro"); } if (Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb) ExtraOpts.push_back("-X"); const bool IsMips = Arch == llvm::Triple::mips || Arch == llvm::Triple::mipsel || Arch == llvm::Triple::mips64 || Arch == llvm::Triple::mips64el; const bool IsAndroid = Triple.getEnvironment() == llvm::Triple::ANDROIDEABI; // Do not use 'gnu' hash style for Mips targets because .gnu.hash // and the MIPS ABI require .dynsym to be sorted in different ways. // .gnu.hash needs symbols to be grouped by hash code whereas the MIPS // ABI requires a mapping between the GOT and the symbol table. // Android loader does not support .gnu.hash. if (!IsMips && !IsAndroid) { if (IsRedhat(Distro) || IsOpenSuse(Distro) || (IsUbuntu(Distro) && Distro >= UbuntuMaverick)) ExtraOpts.push_back("--hash-style=gnu"); if (IsDebian(Distro) || IsOpenSuse(Distro) || Distro == UbuntuLucid || Distro == UbuntuJaunty || Distro == UbuntuKarmic) ExtraOpts.push_back("--hash-style=both"); } if (IsRedhat(Distro)) ExtraOpts.push_back("--no-add-needed"); if (Distro == DebianSqueeze || Distro == DebianWheezy || IsOpenSuse(Distro) || (IsRedhat(Distro) && Distro != RHEL4 && Distro != RHEL5) || (IsUbuntu(Distro) && Distro >= UbuntuKarmic)) ExtraOpts.push_back("--build-id"); if (IsOpenSuse(Distro)) ExtraOpts.push_back("--enable-new-dtags"); // The selection of paths to try here is designed to match the patterns which // the GCC driver itself uses, as this is part of the GCC-compatible driver. // This was determined by running GCC in a fake filesystem, creating all // possible permutations of these directories, and seeing which ones it added // to the link paths. path_list &Paths = getFilePaths(); const std::string Multilib = Triple.isArch32Bit() ? "lib32" : "lib64"; const std::string MultiarchTriple = getMultiarchTriple(Triple, SysRoot); // Add the multilib suffixed paths where they are available. if (GCCInstallation.isValid()) { const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); const std::string &LibPath = GCCInstallation.getParentLibPath(); addPathIfExists((GCCInstallation.getInstallPath() + GCCInstallation.getMultiarchSuffix()), Paths); // If the GCC installation we found is inside of the sysroot, we want to // prefer libraries installed in the parent prefix of the GCC installation. // It is important to *not* use these paths when the GCC installation is // outside of the system root as that can pick up unintended libraries. // This usually happens when there is an external cross compiler on the // host system, and a more minimal sysroot available that is the target of // the cross. if (StringRef(LibPath).startswith(SysRoot)) { addPathIfExists(LibPath + "/../" + GCCTriple.str() + "/lib/../" + Multilib, Paths); addPathIfExists(LibPath + "/" + MultiarchTriple, Paths); addPathIfExists(LibPath + "/../" + Multilib, Paths); } } addPathIfExists(SysRoot + "/lib/" + MultiarchTriple, Paths); addPathIfExists(SysRoot + "/lib/../" + Multilib, Paths); addPathIfExists(SysRoot + "/usr/lib/" + MultiarchTriple, Paths); addPathIfExists(SysRoot + "/usr/lib/../" + Multilib, Paths); // Try walking via the GCC triple path in case of multiarch GCC // installations with strange symlinks. if (GCCInstallation.isValid()) addPathIfExists(SysRoot + "/usr/lib/" + GCCInstallation.getTriple().str() + "/../../" + Multilib, Paths); // Add the non-multilib suffixed paths (if potentially different). if (GCCInstallation.isValid()) { const std::string &LibPath = GCCInstallation.getParentLibPath(); const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); if (!GCCInstallation.getMultiarchSuffix().empty()) addPathIfExists(GCCInstallation.getInstallPath(), Paths); if (StringRef(LibPath).startswith(SysRoot)) { addPathIfExists(LibPath + "/../" + GCCTriple.str() + "/lib", Paths); addPathIfExists(LibPath, Paths); } } addPathIfExists(SysRoot + "/lib", Paths); addPathIfExists(SysRoot + "/usr/lib", Paths); } bool Linux::HasNativeLLVMSupport() const { return true; } Tool &Linux::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); bool UseIntegratedAs = C.getArgs().hasFlag(options::OPT_integrated_as, options::OPT_no_integrated_as, IsIntegratedAssemblerDefault()); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: if (UseIntegratedAs) T = new tools::ClangAs(*this); else T = new tools::linuxtools::Assemble(*this); break; case Action::LinkJobClass: T = new tools::linuxtools::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; } void Linux::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { const Driver &D = getDriver(); if (DriverArgs.hasArg(options::OPT_nostdinc)) return; if (!DriverArgs.hasArg(options::OPT_nostdlibinc)) addSystemInclude(DriverArgs, CC1Args, D.SysRoot + "/usr/local/include"); if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { llvm::sys::Path P(D.ResourceDir); P.appendComponent("include"); addSystemInclude(DriverArgs, CC1Args, P.str()); } if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; // Check for configure-time C include directories. StringRef CIncludeDirs(C_INCLUDE_DIRS); if (CIncludeDirs != "") { SmallVector<StringRef, 5> dirs; CIncludeDirs.split(dirs, ":"); for (SmallVectorImpl<StringRef>::iterator I = dirs.begin(), E = dirs.end(); I != E; ++I) { StringRef Prefix = llvm::sys::path::is_absolute(*I) ? D.SysRoot : ""; addExternCSystemInclude(DriverArgs, CC1Args, Prefix + *I); } return; } // Lacking those, try to detect the correct set of system includes for the // target triple. // Implement generic Debian multiarch support. const StringRef X86_64MultiarchIncludeDirs[] = { "/usr/include/x86_64-linux-gnu", // FIXME: These are older forms of multiarch. It's not clear that they're // in use in any released version of Debian, so we should consider // removing them. "/usr/include/i686-linux-gnu/64", "/usr/include/i486-linux-gnu/64" }; const StringRef X86MultiarchIncludeDirs[] = { "/usr/include/i386-linux-gnu", // FIXME: These are older forms of multiarch. It's not clear that they're // in use in any released version of Debian, so we should consider // removing them. "/usr/include/x86_64-linux-gnu/32", "/usr/include/i686-linux-gnu", "/usr/include/i486-linux-gnu" }; const StringRef ARMMultiarchIncludeDirs[] = { "/usr/include/arm-linux-gnueabi" }; const StringRef MIPSMultiarchIncludeDirs[] = { "/usr/include/mips-linux-gnu" }; const StringRef MIPSELMultiarchIncludeDirs[] = { "/usr/include/mipsel-linux-gnu" }; const StringRef PPCMultiarchIncludeDirs[] = { "/usr/include/powerpc-linux-gnu" }; const StringRef PPC64MultiarchIncludeDirs[] = { "/usr/include/powerpc64-linux-gnu" }; ArrayRef<StringRef> MultiarchIncludeDirs; if (getTriple().getArch() == llvm::Triple::x86_64) { MultiarchIncludeDirs = X86_64MultiarchIncludeDirs; } else if (getTriple().getArch() == llvm::Triple::x86) { MultiarchIncludeDirs = X86MultiarchIncludeDirs; } else if (getTriple().getArch() == llvm::Triple::arm) { MultiarchIncludeDirs = ARMMultiarchIncludeDirs; } else if (getTriple().getArch() == llvm::Triple::mips) { MultiarchIncludeDirs = MIPSMultiarchIncludeDirs; } else if (getTriple().getArch() == llvm::Triple::mipsel) { MultiarchIncludeDirs = MIPSELMultiarchIncludeDirs; } else if (getTriple().getArch() == llvm::Triple::ppc) { MultiarchIncludeDirs = PPCMultiarchIncludeDirs; } else if (getTriple().getArch() == llvm::Triple::ppc64) { MultiarchIncludeDirs = PPC64MultiarchIncludeDirs; } for (ArrayRef<StringRef>::iterator I = MultiarchIncludeDirs.begin(), E = MultiarchIncludeDirs.end(); I != E; ++I) { if (llvm::sys::fs::exists(D.SysRoot + *I)) { addExternCSystemInclude(DriverArgs, CC1Args, D.SysRoot + *I); break; } } if (getTriple().getOS() == llvm::Triple::RTEMS) return; // Add an include of '/include' directly. This isn't provided by default by // system GCCs, but is often used with cross-compiling GCCs, and harmless to // add even when Clang is acting as-if it were a system compiler. addExternCSystemInclude(DriverArgs, CC1Args, D.SysRoot + "/include"); addExternCSystemInclude(DriverArgs, CC1Args, D.SysRoot + "/usr/include"); } /// \brief Helper to add the thre variant paths for a libstdc++ installation. /*static*/ bool Linux::addLibStdCXXIncludePaths(Twine Base, Twine TargetArchDir, const ArgList &DriverArgs, ArgStringList &CC1Args) { if (!llvm::sys::fs::exists(Base)) return false; addSystemInclude(DriverArgs, CC1Args, Base); addSystemInclude(DriverArgs, CC1Args, Base + "/" + TargetArchDir); addSystemInclude(DriverArgs, CC1Args, Base + "/backward"); return true; } void Linux::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; // Check if libc++ has been enabled and provide its include paths if so. if (GetCXXStdlibType(DriverArgs) == ToolChain::CST_Libcxx) { // libc++ is always installed at a fixed path on Linux currently. addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/usr/include/c++/v1"); return; } // We need a detected GCC installation on Linux to provide libstdc++'s // headers. We handled the libc++ case above. if (!GCCInstallation.isValid()) return; // By default, look for the C++ headers in an include directory adjacent to // the lib directory of the GCC installation. Note that this is expect to be // equivalent to '/usr/include/c++/X.Y' in almost all cases. StringRef LibDir = GCCInstallation.getParentLibPath(); StringRef InstallDir = GCCInstallation.getInstallPath(); StringRef Version = GCCInstallation.getVersion(); if (!addLibStdCXXIncludePaths(LibDir + "/../include/c++/" + Version, (GCCInstallation.getTriple().str() + GCCInstallation.getMultiarchSuffix()), DriverArgs, CC1Args)) { // Gentoo is weird and places its headers inside the GCC install, so if the // first attempt to find the headers fails, try this pattern. addLibStdCXXIncludePaths(InstallDir + "/include/g++-v4", (GCCInstallation.getTriple().str() + GCCInstallation.getMultiarchSuffix()), DriverArgs, CC1Args); } } /// DragonFly - DragonFly tool chain which can call as(1) and ld(1) directly. DragonFly::DragonFly(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { // Path mangling to find libexec getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); getFilePaths().push_back("/usr/lib/gcc41"); } Tool &DragonFly::SelectTool(const Compilation &C, const JobAction &JA, const ActionList &Inputs) const { Action::ActionClass Key; if (getDriver().ShouldUseClangCompiler(C, JA, getTriple())) Key = Action::AnalyzeJobClass; else Key = JA.getKind(); Tool *&T = Tools[Key]; if (!T) { switch (Key) { case Action::AssembleJobClass: T = new tools::dragonfly::Assemble(*this); break; case Action::LinkJobClass: T = new tools::dragonfly::Link(*this); break; default: T = &Generic_GCC::SelectTool(C, JA, Inputs); } } return *T; }