//===--- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PathDiagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/Basic/SourceManager.h" #include "clang/AST/Expr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtCXX.h" #include "llvm/ADT/SmallString.h" using namespace clang; using namespace ento; bool PathDiagnosticMacroPiece::containsEvent() const { for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end(); I!=E; ++I) { if (isa<PathDiagnosticEventPiece>(*I)) return true; if (PathDiagnosticMacroPiece *MP = dyn_cast<PathDiagnosticMacroPiece>(*I)) if (MP->containsEvent()) return true; } return false; } static StringRef StripTrailingDots(StringRef s) { for (StringRef::size_type i = s.size(); i != 0; --i) if (s[i - 1] != '.') return s.substr(0, i); return ""; } PathDiagnosticPiece::PathDiagnosticPiece(StringRef s, Kind k, DisplayHint hint) : str(StripTrailingDots(s)), kind(k), Hint(hint) {} PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint) : kind(k), Hint(hint) {} PathDiagnosticPiece::~PathDiagnosticPiece() {} PathDiagnosticEventPiece::~PathDiagnosticEventPiece() {} PathDiagnosticCallPiece::~PathDiagnosticCallPiece() {} PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() {} PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() {} PathPieces::~PathPieces() {} PathDiagnostic::~PathDiagnostic() {} PathDiagnostic::PathDiagnostic(const Decl *declWithIssue, StringRef bugtype, StringRef desc, StringRef category) : DeclWithIssue(declWithIssue), BugType(StripTrailingDots(bugtype)), Desc(StripTrailingDots(desc)), Category(StripTrailingDots(category)), path(pathImpl) {} void PathDiagnosticConsumer::anchor() { } PathDiagnosticConsumer::~PathDiagnosticConsumer() { // Delete the contents of the FoldingSet if it isn't empty already. for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(), et = Diags.end() ; it != et ; ++it) { delete &*it; } } void PathDiagnosticConsumer::HandlePathDiagnostic(PathDiagnostic *D) { llvm::OwningPtr<PathDiagnostic> OwningD(D); if (!D || D->path.empty()) return; // We need to flatten the locations (convert Stmt* to locations) because // the referenced statements may be freed by the time the diagnostics // are emitted. D->flattenLocations(); // If the PathDiagnosticConsumer does not support diagnostics that // cross file boundaries, prune out such diagnostics now. if (!supportsCrossFileDiagnostics()) { // Verify that the entire path is from the same FileID. FileID FID; const SourceManager &SMgr = (*D->path.begin())->getLocation().getManager(); llvm::SmallVector<const PathPieces *, 5> WorkList; WorkList.push_back(&D->path); while (!WorkList.empty()) { const PathPieces &path = *WorkList.back(); WorkList.pop_back(); for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I) { const PathDiagnosticPiece *piece = I->getPtr(); FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc(); if (FID.isInvalid()) { FID = SMgr.getFileID(L); } else if (SMgr.getFileID(L) != FID) return; // FIXME: Emit a warning? // Check the source ranges. for (PathDiagnosticPiece::range_iterator RI = piece->ranges_begin(), RE = piece->ranges_end(); RI != RE; ++RI) { SourceLocation L = SMgr.getExpansionLoc(RI->getBegin()); if (!L.isFileID() || SMgr.getFileID(L) != FID) return; // FIXME: Emit a warning? L = SMgr.getExpansionLoc(RI->getEnd()); if (!L.isFileID() || SMgr.getFileID(L) != FID) return; // FIXME: Emit a warning? } if (const PathDiagnosticCallPiece *call = dyn_cast<PathDiagnosticCallPiece>(piece)) { WorkList.push_back(&call->path); } else if (const PathDiagnosticMacroPiece *macro = dyn_cast<PathDiagnosticMacroPiece>(piece)) { WorkList.push_back(¯o->subPieces); } } } if (FID.isInvalid()) return; // FIXME: Emit a warning? } // Profile the node to see if we already have something matching it llvm::FoldingSetNodeID profile; D->Profile(profile); void *InsertPos = 0; if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) { // Keep the PathDiagnostic with the shorter path. const unsigned orig_size = orig->full_size(); const unsigned new_size = D->full_size(); if (orig_size <= new_size) { bool shouldKeepOriginal = true; if (orig_size == new_size) { // Here we break ties in a fairly arbitrary, but deterministic, way. llvm::FoldingSetNodeID fullProfile, fullProfileOrig; D->FullProfile(fullProfile); orig->FullProfile(fullProfileOrig); if (fullProfile.ComputeHash() < fullProfileOrig.ComputeHash()) shouldKeepOriginal = false; } if (shouldKeepOriginal) return; } Diags.RemoveNode(orig); delete orig; } Diags.InsertNode(OwningD.take()); } namespace { struct CompareDiagnostics { // Compare if 'X' is "<" than 'Y'. bool operator()(const PathDiagnostic *X, const PathDiagnostic *Y) const { // First compare by location const FullSourceLoc &XLoc = X->getLocation().asLocation(); const FullSourceLoc &YLoc = Y->getLocation().asLocation(); if (XLoc < YLoc) return true; if (XLoc != YLoc) return false; // Next, compare by bug type. StringRef XBugType = X->getBugType(); StringRef YBugType = Y->getBugType(); if (XBugType < YBugType) return true; if (XBugType != YBugType) return false; // Next, compare by bug description. StringRef XDesc = X->getDescription(); StringRef YDesc = Y->getDescription(); if (XDesc < YDesc) return true; if (XDesc != YDesc) return false; // FIXME: Further refine by comparing PathDiagnosticPieces? return false; } }; } void PathDiagnosticConsumer::FlushDiagnostics(SmallVectorImpl<std::string> *Files) { if (flushed) return; flushed = true; std::vector<const PathDiagnostic *> BatchDiags; for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(), et = Diags.end(); it != et; ++it) { BatchDiags.push_back(&*it); } // Clear out the FoldingSet. Diags.clear(); // Sort the diagnostics so that they are always emitted in a deterministic // order. if (!BatchDiags.empty()) std::sort(BatchDiags.begin(), BatchDiags.end(), CompareDiagnostics()); FlushDiagnosticsImpl(BatchDiags, Files); // Delete the flushed diagnostics. for (std::vector<const PathDiagnostic *>::iterator it = BatchDiags.begin(), et = BatchDiags.end(); it != et; ++it) { const PathDiagnostic *D = *it; delete D; } } //===----------------------------------------------------------------------===// // PathDiagnosticLocation methods. //===----------------------------------------------------------------------===// static SourceLocation getValidSourceLocation(const Stmt* S, LocationOrAnalysisDeclContext LAC) { SourceLocation L = S->getLocStart(); assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should " "be passed to PathDiagnosticLocation upon creation."); // S might be a temporary statement that does not have a location in the // source code, so find an enclosing statement and use it's location. if (!L.isValid()) { ParentMap *PM = 0; if (LAC.is<const LocationContext*>()) PM = &LAC.get<const LocationContext*>()->getParentMap(); else PM = &LAC.get<AnalysisDeclContext*>()->getParentMap(); while (!L.isValid()) { S = PM->getParent(S); L = S->getLocStart(); } } return L; } PathDiagnosticLocation PathDiagnosticLocation::createBegin(const Decl *D, const SourceManager &SM) { return PathDiagnosticLocation(D->getLocStart(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createBegin(const Stmt *S, const SourceManager &SM, LocationOrAnalysisDeclContext LAC) { return PathDiagnosticLocation(getValidSourceLocation(S, LAC), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO, const SourceManager &SM) { return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME, const SourceManager &SM) { return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS, const SourceManager &SM) { SourceLocation L = CS->getLBracLoc(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS, const SourceManager &SM) { SourceLocation L = CS->getRBracLoc(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createDeclBegin(const LocationContext *LC, const SourceManager &SM) { // FIXME: Should handle CXXTryStmt if analyser starts supporting C++. if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody())) if (!CS->body_empty()) { SourceLocation Loc = (*CS->body_begin())->getLocStart(); return PathDiagnosticLocation(Loc, SM, SingleLocK); } return PathDiagnosticLocation(); } PathDiagnosticLocation PathDiagnosticLocation::createDeclEnd(const LocationContext *LC, const SourceManager &SM) { SourceLocation L = LC->getDecl()->getBodyRBrace(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::create(const ProgramPoint& P, const SourceManager &SMng) { const Stmt* S = 0; if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { const CFGBlock *BSrc = BE->getSrc(); S = BSrc->getTerminatorCondition(); } else if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) { S = PS->getStmt(); } return PathDiagnosticLocation(S, SMng, P.getLocationContext()); } PathDiagnosticLocation PathDiagnosticLocation::createEndOfPath(const ExplodedNode* N, const SourceManager &SM) { assert(N && "Cannot create a location with a null node."); const ExplodedNode *NI = N; while (NI) { ProgramPoint P = NI->getLocation(); const LocationContext *LC = P.getLocationContext(); if (const StmtPoint *PS = dyn_cast<StmtPoint>(&P)) return PathDiagnosticLocation(PS->getStmt(), SM, LC); else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { const Stmt *Term = BE->getSrc()->getTerminator(); if (Term) { return PathDiagnosticLocation(Term, SM, LC); } } NI = NI->succ_empty() ? 0 : *(NI->succ_begin()); } return createDeclEnd(N->getLocationContext(), SM); } PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation( const PathDiagnosticLocation &PDL) { FullSourceLoc L = PDL.asLocation(); return PathDiagnosticLocation(L, L.getManager(), SingleLocK); } FullSourceLoc PathDiagnosticLocation::genLocation(SourceLocation L, LocationOrAnalysisDeclContext LAC) const { assert(isValid()); // Note that we want a 'switch' here so that the compiler can warn us in // case we add more cases. switch (K) { case SingleLocK: case RangeK: break; case StmtK: // Defensive checking. if (!S) break; return FullSourceLoc(getValidSourceLocation(S, LAC), const_cast<SourceManager&>(*SM)); case DeclK: // Defensive checking. if (!D) break; return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM)); } return FullSourceLoc(L, const_cast<SourceManager&>(*SM)); } PathDiagnosticRange PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const { assert(isValid()); // Note that we want a 'switch' here so that the compiler can warn us in // case we add more cases. switch (K) { case SingleLocK: return PathDiagnosticRange(SourceRange(Loc,Loc), true); case RangeK: break; case StmtK: { const Stmt *S = asStmt(); switch (S->getStmtClass()) { default: break; case Stmt::DeclStmtClass: { const DeclStmt *DS = cast<DeclStmt>(S); if (DS->isSingleDecl()) { // Should always be the case, but we'll be defensive. return SourceRange(DS->getLocStart(), DS->getSingleDecl()->getLocation()); } break; } // FIXME: Provide better range information for different // terminators. case Stmt::IfStmtClass: case Stmt::WhileStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::ChooseExprClass: case Stmt::IndirectGotoStmtClass: case Stmt::SwitchStmtClass: case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: case Stmt::ObjCForCollectionStmtClass: { SourceLocation L = getValidSourceLocation(S, LAC); return SourceRange(L, L); } } SourceRange R = S->getSourceRange(); if (R.isValid()) return R; break; } case DeclK: if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) return MD->getSourceRange(); if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { if (Stmt *Body = FD->getBody()) return Body->getSourceRange(); } else { SourceLocation L = D->getLocation(); return PathDiagnosticRange(SourceRange(L, L), true); } } return SourceRange(Loc,Loc); } void PathDiagnosticLocation::flatten() { if (K == StmtK) { K = RangeK; S = 0; D = 0; } else if (K == DeclK) { K = SingleLocK; S = 0; D = 0; } } PathDiagnosticLocation PathDiagnostic::getLocation() const { assert(path.size() > 0 && "getLocation() requires a non-empty PathDiagnostic."); PathDiagnosticPiece *p = path.rbegin()->getPtr(); while (true) { if (PathDiagnosticCallPiece *cp = dyn_cast<PathDiagnosticCallPiece>(p)) { assert(!cp->path.empty()); p = cp->path.rbegin()->getPtr(); continue; } break; } return p->getLocation(); } //===----------------------------------------------------------------------===// // Manipulation of PathDiagnosticCallPieces. //===----------------------------------------------------------------------===// static PathDiagnosticLocation getLastStmtLoc(const ExplodedNode *N, const SourceManager &SM) { while (N) { ProgramPoint PP = N->getLocation(); if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) return PathDiagnosticLocation(SP->getStmt(), SM, PP.getLocationContext()); if (N->pred_empty()) break; N = *N->pred_begin(); } return PathDiagnosticLocation(); } PathDiagnosticCallPiece * PathDiagnosticCallPiece::construct(const ExplodedNode *N, const CallExit &CE, const SourceManager &SM) { const Decl *caller = CE.getLocationContext()->getParent()->getDecl(); PathDiagnosticLocation pos = getLastStmtLoc(N, SM); return new PathDiagnosticCallPiece(caller, pos); } PathDiagnosticCallPiece * PathDiagnosticCallPiece::construct(PathPieces &path, const Decl *caller) { PathDiagnosticCallPiece *C = new PathDiagnosticCallPiece(path, caller); path.clear(); path.push_front(C); return C; } void PathDiagnosticCallPiece::setCallee(const CallEnter &CE, const SourceManager &SM) { const Decl *D = CE.getCalleeContext()->getDecl(); Callee = D; callEnter = PathDiagnosticLocation(CE.getCallExpr(), SM, CE.getLocationContext()); callEnterWithin = PathDiagnosticLocation::createBegin(D, SM); } IntrusiveRefCntPtr<PathDiagnosticEventPiece> PathDiagnosticCallPiece::getCallEnterEvent() const { if (!Callee) return 0; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); if (isa<BlockDecl>(Callee)) Out << "Calling anonymous block"; else if (const NamedDecl *ND = dyn_cast<NamedDecl>(Callee)) Out << "Calling '" << *ND << "'"; StringRef msg = Out.str(); if (msg.empty()) return 0; return new PathDiagnosticEventPiece(callEnter, msg); } IntrusiveRefCntPtr<PathDiagnosticEventPiece> PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const { SmallString<256> buf; llvm::raw_svector_ostream Out(buf); if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Caller)) Out << "Entered call from '" << *ND << "'"; else Out << "Entered call"; StringRef msg = Out.str(); if (msg.empty()) return 0; return new PathDiagnosticEventPiece(callEnterWithin, msg); } IntrusiveRefCntPtr<PathDiagnosticEventPiece> PathDiagnosticCallPiece::getCallExitEvent() const { if (NoExit) return 0; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); if (!CallStackMessage.empty()) Out << CallStackMessage; else if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Callee)) Out << "Returning from '" << *ND << "'"; else Out << "Returning to caller"; return new PathDiagnosticEventPiece(callReturn, Out.str()); } static void compute_path_size(const PathPieces &pieces, unsigned &size) { for (PathPieces::const_iterator it = pieces.begin(), et = pieces.end(); it != et; ++it) { const PathDiagnosticPiece *piece = it->getPtr(); if (const PathDiagnosticCallPiece *cp = dyn_cast<PathDiagnosticCallPiece>(piece)) { compute_path_size(cp->path, size); } else ++size; } } unsigned PathDiagnostic::full_size() { unsigned size = 0; compute_path_size(path, size); return size; } //===----------------------------------------------------------------------===// // FoldingSet profiling methods. //===----------------------------------------------------------------------===// void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Range.getBegin().getRawEncoding()); ID.AddInteger(Range.getEnd().getRawEncoding()); ID.AddInteger(Loc.getRawEncoding()); return; } void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger((unsigned) getKind()); ID.AddString(str); // FIXME: Add profiling support for code hints. ID.AddInteger((unsigned) getDisplayHint()); for (range_iterator I = ranges_begin(), E = ranges_end(); I != E; ++I) { ID.AddInteger(I->getBegin().getRawEncoding()); ID.AddInteger(I->getEnd().getRawEncoding()); } } void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); for (PathPieces::const_iterator it = path.begin(), et = path.end(); it != et; ++it) { ID.Add(**it); } } void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); ID.Add(Pos); } void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); for (const_iterator I = begin(), E = end(); I != E; ++I) ID.Add(*I); } void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticSpotPiece::Profile(ID); for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end(); I != E; ++I) ID.Add(**I); } void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const { if (!path.empty()) getLocation().Profile(ID); ID.AddString(BugType); ID.AddString(Desc); ID.AddString(Category); } void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const { Profile(ID); for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I) ID.Add(**I); for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I) ID.AddString(*I); } StackHintGenerator::~StackHintGenerator() {} std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ ProgramPoint P = N->getLocation(); const CallExit *CExit = dyn_cast<CallExit>(&P); assert(CExit && "Stack Hints should be constructed at CallExit points."); const CallExpr *CE = dyn_cast_or_null<CallExpr>(CExit->getStmt()); if (!CE) return ""; // Get the successor node to make sure the return statement is evaluated and // CE is set to the result value. N = *N->succ_begin(); if (!N) return getMessageForSymbolNotFound(); // Check if one of the parameters are set to the interesting symbol. ProgramStateRef State = N->getState(); const LocationContext *LCtx = N->getLocationContext(); unsigned ArgIndex = 0; for (CallExpr::const_arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I, ++ArgIndex){ SVal SV = State->getSVal(*I, LCtx); // Check if the variable corresponding to the symbol is passed by value. SymbolRef AS = SV.getAsLocSymbol(); if (AS == Sym) { return getMessageForArg(*I, ArgIndex); } // Check if the parameter is a pointer to the symbol. if (const loc::MemRegionVal *Reg = dyn_cast<loc::MemRegionVal>(&SV)) { SVal PSV = State->getSVal(Reg->getRegion()); SymbolRef AS = PSV.getAsLocSymbol(); if (AS == Sym) { return getMessageForArg(*I, ArgIndex); } } } // Check if we are returning the interesting symbol. SVal SV = State->getSVal(CE, LCtx); SymbolRef RetSym = SV.getAsLocSymbol(); if (RetSym == Sym) { return getMessageForReturn(CE); } return getMessageForSymbolNotFound(); } /// TODO: This is copied from clang diagnostics. Maybe we could just move it to /// some common place. (Same as HandleOrdinalModifier.) void StackHintGeneratorForSymbol::printOrdinal(unsigned ValNo, llvm::raw_svector_ostream &Out) { assert(ValNo != 0 && "ValNo must be strictly positive!"); // We could use text forms for the first N ordinals, but the numeric // forms are actually nicer in diagnostics because they stand out. Out << ValNo; // It is critically important that we do this perfectly for // user-written sequences with over 100 elements. switch (ValNo % 100) { case 11: case 12: case 13: Out << "th"; return; default: switch (ValNo % 10) { case 1: Out << "st"; return; case 2: Out << "nd"; return; case 3: Out << "rd"; return; default: Out << "th"; return; } } } std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, unsigned ArgIndex) { SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << Msg << " via "; // Printed parameters start at 1, not 0. printOrdinal(++ArgIndex, os); os << " parameter"; return os.str(); }