//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a configuration header for soft-float routines in compiler-rt. // This file does not provide any part of the compiler-rt interface, but defines // many useful constants and utility routines that are used in the // implementation of the soft-float routines in compiler-rt. // // Assumes that float and double correspond to the IEEE-754 binary32 and // binary64 types, respectively, and that integer endianness matches floating // point endianness on the target platform. // //===----------------------------------------------------------------------===// #ifndef FP_LIB_HEADER #define FP_LIB_HEADER #include <stdint.h> #include <stdbool.h> #include <limits.h> #include "int_lib.h" #if defined SINGLE_PRECISION typedef uint32_t rep_t; typedef int32_t srep_t; typedef float fp_t; #define REP_C UINT32_C #define significandBits 23 static inline int rep_clz(rep_t a) { return __builtin_clz(a); } // 32x32 --> 64 bit multiply static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { const uint64_t product = (uint64_t)a*b; *hi = product >> 32; *lo = product; } #elif defined DOUBLE_PRECISION typedef uint64_t rep_t; typedef int64_t srep_t; typedef double fp_t; #define REP_C UINT64_C #define significandBits 52 static inline int rep_clz(rep_t a) { #if defined __LP64__ return __builtin_clzl(a); #else if (a & REP_C(0xffffffff00000000)) return __builtin_clz(a >> 32); else return 32 + __builtin_clz(a & REP_C(0xffffffff)); #endif } #define loWord(a) (a & 0xffffffffU) #define hiWord(a) (a >> 32) // 64x64 -> 128 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { // Each of the component 32x32 -> 64 products const uint64_t plolo = loWord(a) * loWord(b); const uint64_t plohi = loWord(a) * hiWord(b); const uint64_t philo = hiWord(a) * loWord(b); const uint64_t phihi = hiWord(a) * hiWord(b); // Sum terms that contribute to lo in a way that allows us to get the carry const uint64_t r0 = loWord(plolo); const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); *lo = r0 + (r1 << 32); // Sum terms contributing to hi with the carry from lo *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; } #else #error Either SINGLE_PRECISION or DOUBLE_PRECISION must be defined. #endif #define typeWidth (sizeof(rep_t)*CHAR_BIT) #define exponentBits (typeWidth - significandBits - 1) #define maxExponent ((1 << exponentBits) - 1) #define exponentBias (maxExponent >> 1) #define implicitBit (REP_C(1) << significandBits) #define significandMask (implicitBit - 1U) #define signBit (REP_C(1) << (significandBits + exponentBits)) #define absMask (signBit - 1U) #define exponentMask (absMask ^ significandMask) #define oneRep ((rep_t)exponentBias << significandBits) #define infRep exponentMask #define quietBit (implicitBit >> 1) #define qnanRep (exponentMask | quietBit) static inline rep_t toRep(fp_t x) { const union { fp_t f; rep_t i; } rep = {.f = x}; return rep.i; } static inline fp_t fromRep(rep_t x) { const union { fp_t f; rep_t i; } rep = {.i = x}; return rep.f; } static inline int normalize(rep_t *significand) { const int shift = rep_clz(*significand) - rep_clz(implicitBit); *significand <<= shift; return 1 - shift; } static inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) { *hi = *hi << count | *lo >> (typeWidth - count); *lo = *lo << count; } static inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, int count) { if (count < typeWidth) { const bool sticky = *lo << (typeWidth - count); *lo = *hi << (typeWidth - count) | *lo >> count | sticky; *hi = *hi >> count; } else if (count < 2*typeWidth) { const bool sticky = *hi << (2*typeWidth - count) | *lo; *lo = *hi >> (count - typeWidth) | sticky; *hi = 0; } else { const bool sticky = *hi | *lo; *lo = sticky; *hi = 0; } } #endif // FP_LIB_HEADER