/* * Diff Match and Patch * * Copyright 2006 Google Inc. * http://code.google.com/p/google-diff-match-patch/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package name.fraser.neil.plaintext; import java.io.UnsupportedEncodingException; import java.net.URLEncoder; import java.net.URLDecoder; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.ListIterator; import java.util.Map; import java.util.Set; import java.util.Stack; import java.util.regex.Matcher; import java.util.regex.Pattern; /* * Functions for diff, match and patch. * Computes the difference between two texts to create a patch. * Applies the patch onto another text, allowing for errors. * * @author fraser@google.com (Neil Fraser) */ /** * Class containing the diff, match and patch methods. * Also contains the behaviour settings. */ public class diff_match_patch { // Defaults. // Set these on your diff_match_patch instance to override the defaults. /** * Number of seconds to map a diff before giving up (0 for infinity). */ public float Diff_Timeout = 1.0f; /** * Cost of an empty edit operation in terms of edit characters. */ public short Diff_EditCost = 4; /** * The size beyond which the double-ended diff activates. * Double-ending is twice as fast, but less accurate. */ public short Diff_DualThreshold = 32; /** * At what point is no match declared (0.0 = perfection, 1.0 = very loose). */ public float Match_Threshold = 0.5f; /** * How far to search for a match (0 = exact location, 1000+ = broad match). * A match this many characters away from the expected location will add * 1.0 to the score (0.0 is a perfect match). */ public int Match_Distance = 1000; /** * When deleting a large block of text (over ~64 characters), how close does * the contents have to match the expected contents. (0.0 = perfection, * 1.0 = very loose). Note that Match_Threshold controls how closely the * end points of a delete need to match. */ public float Patch_DeleteThreshold = 0.5f; /** * Chunk size for context length. */ public short Patch_Margin = 4; /** * The number of bits in an int. */ private int Match_MaxBits = 32; /** * Internal class for returning results from diff_linesToChars(). * Other less paranoid languages just use a three-element array. */ protected static class LinesToCharsResult { protected String chars1; protected String chars2; protected List<String> lineArray; protected LinesToCharsResult(String chars1, String chars2, List<String> lineArray) { this.chars1 = chars1; this.chars2 = chars2; this.lineArray = lineArray; } } // DIFF FUNCTIONS /** * The data structure representing a diff is a Linked list of Diff objects: * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"), * Diff(Operation.EQUAL, " world.")} * which means: delete "Hello", add "Goodbye" and keep " world." */ public enum Operation { DELETE, INSERT, EQUAL } /** * Find the differences between two texts. * Run a faster slightly less optimal diff * This method allows the 'checklines' of diff_main() to be optional. * Most of the time checklines is wanted, so default to true. * @param text1 Old string to be diffed. * @param text2 New string to be diffed. * @return Linked List of Diff objects. */ public LinkedList<Diff> diff_main(String text1, String text2) { return diff_main(text1, text2, true); } /** * Find the differences between two texts. Simplifies the problem by * stripping any common prefix or suffix off the texts before diffing. * @param text1 Old string to be diffed. * @param text2 New string to be diffed. * @param checklines Speedup flag. If false, then don't run a * line-level diff first to identify the changed areas. * If true, then run a faster slightly less optimal diff * @return Linked List of Diff objects. */ public LinkedList<Diff> diff_main(String text1, String text2, boolean checklines) { // Check for null inputs. if (text1 == null || text2 == null) { throw new IllegalArgumentException("Null inputs. (diff_main)"); } // Check for equality (speedup). LinkedList<Diff> diffs; if (text1.equals(text2)) { diffs = new LinkedList<Diff>(); diffs.add(new Diff(Operation.EQUAL, text1)); return diffs; } // Trim off common prefix (speedup). int commonlength = diff_commonPrefix(text1, text2); String commonprefix = text1.substring(0, commonlength); text1 = text1.substring(commonlength); text2 = text2.substring(commonlength); // Trim off common suffix (speedup). commonlength = diff_commonSuffix(text1, text2); String commonsuffix = text1.substring(text1.length() - commonlength); text1 = text1.substring(0, text1.length() - commonlength); text2 = text2.substring(0, text2.length() - commonlength); // Compute the diff on the middle block. diffs = diff_compute(text1, text2, checklines); // Restore the prefix and suffix. if (commonprefix.length() != 0) { diffs.addFirst(new Diff(Operation.EQUAL, commonprefix)); } if (commonsuffix.length() != 0) { diffs.addLast(new Diff(Operation.EQUAL, commonsuffix)); } diff_cleanupMerge(diffs); return diffs; } /** * Find the differences between two texts. Assumes that the texts do not * have any common prefix or suffix. * @param text1 Old string to be diffed. * @param text2 New string to be diffed. * @param checklines Speedup flag. If false, then don't run a * line-level diff first to identify the changed areas. * If true, then run a faster slightly less optimal diff * @return Linked List of Diff objects. */ protected LinkedList<Diff> diff_compute(String text1, String text2, boolean checklines) { LinkedList<Diff> diffs = new LinkedList<Diff>(); if (text1.length() == 0) { // Just add some text (speedup). diffs.add(new Diff(Operation.INSERT, text2)); return diffs; } if (text2.length() == 0) { // Just delete some text (speedup). diffs.add(new Diff(Operation.DELETE, text1)); return diffs; } String longtext = text1.length() > text2.length() ? text1 : text2; String shorttext = text1.length() > text2.length() ? text2 : text1; int i = longtext.indexOf(shorttext); if (i != -1) { // Shorter text is inside the longer text (speedup). Operation op = (text1.length() > text2.length()) ? Operation.DELETE : Operation.INSERT; diffs.add(new Diff(op, longtext.substring(0, i))); diffs.add(new Diff(Operation.EQUAL, shorttext)); diffs.add(new Diff(op, longtext.substring(i + shorttext.length()))); return diffs; } longtext = shorttext = null; // Garbage collect. // Check to see if the problem can be split in two. String[] hm = diff_halfMatch(text1, text2); if (hm != null) { // A half-match was found, sort out the return data. String text1_a = hm[0]; String text1_b = hm[1]; String text2_a = hm[2]; String text2_b = hm[3]; String mid_common = hm[4]; // Send both pairs off for separate processing. LinkedList<Diff> diffs_a = diff_main(text1_a, text2_a, checklines); LinkedList<Diff> diffs_b = diff_main(text1_b, text2_b, checklines); // Merge the results. diffs = diffs_a; diffs.add(new Diff(Operation.EQUAL, mid_common)); diffs.addAll(diffs_b); return diffs; } // Perform a real diff. if (checklines && (text1.length() < 100 || text2.length() < 100)) { checklines = false; // Too trivial for the overhead. } List<String> linearray = null; if (checklines) { // Scan the text on a line-by-line basis first. LinesToCharsResult b = diff_linesToChars(text1, text2); text1 = b.chars1; text2 = b.chars2; linearray = b.lineArray; } diffs = diff_map(text1, text2); if (diffs == null) { // No acceptable result. diffs = new LinkedList<Diff>(); diffs.add(new Diff(Operation.DELETE, text1)); diffs.add(new Diff(Operation.INSERT, text2)); } if (checklines) { // Convert the diff back to original text. diff_charsToLines(diffs, linearray); // Eliminate freak matches (e.g. blank lines) diff_cleanupSemantic(diffs); // Rediff any replacement blocks, this time character-by-character. // Add a dummy entry at the end. diffs.add(new Diff(Operation.EQUAL, "")); int count_delete = 0; int count_insert = 0; String text_delete = ""; String text_insert = ""; ListIterator<Diff> pointer = diffs.listIterator(); Diff thisDiff = pointer.next(); while (thisDiff != null) { switch (thisDiff.operation) { case INSERT: count_insert++; text_insert += thisDiff.text; break; case DELETE: count_delete++; text_delete += thisDiff.text; break; case EQUAL: // Upon reaching an equality, check for prior redundancies. if (count_delete >= 1 && count_insert >= 1) { // Delete the offending records and add the merged ones. pointer.previous(); for (int j = 0; j < count_delete + count_insert; j++) { pointer.previous(); pointer.remove(); } for (Diff newDiff : diff_main(text_delete, text_insert, false)) { pointer.add(newDiff); } } count_insert = 0; count_delete = 0; text_delete = ""; text_insert = ""; break; } thisDiff = pointer.hasNext() ? pointer.next() : null; } diffs.removeLast(); // Remove the dummy entry at the end. } return diffs; } /** * Split two texts into a list of strings. Reduce the texts to a string of * hashes where each Unicode character represents one line. * @param text1 First string. * @param text2 Second string. * @return An object containing the encoded text1, the encoded text2 and * the List of unique strings. The zeroth element of the List of * unique strings is intentionally blank. */ protected LinesToCharsResult diff_linesToChars(String text1, String text2) { List<String> lineArray = new ArrayList<String>(); Map<String, Integer> lineHash = new HashMap<String, Integer>(); // e.g. linearray[4] == "Hello\n" // e.g. linehash.get("Hello\n") == 4 // "\x00" is a valid character, but various debuggers don't like it. // So we'll insert a junk entry to avoid generating a null character. lineArray.add(""); String chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash); String chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash); return new LinesToCharsResult(chars1, chars2, lineArray); } /** * Split a text into a list of strings. Reduce the texts to a string of * hashes where each Unicode character represents one line. * @param text String to encode. * @param lineArray List of unique strings. * @param lineHash Map of strings to indices. * @return Encoded string. */ private String diff_linesToCharsMunge(String text, List<String> lineArray, Map<String, Integer> lineHash) { int lineStart = 0; int lineEnd = -1; String line; StringBuilder chars = new StringBuilder(); // Walk the text, pulling out a substring for each line. // text.split('\n') would would temporarily double our memory footprint. // Modifying text would create many large strings to garbage collect. while (lineEnd < text.length() - 1) { lineEnd = text.indexOf('\n', lineStart); if (lineEnd == -1) { lineEnd = text.length() - 1; } line = text.substring(lineStart, lineEnd + 1); lineStart = lineEnd + 1; if (lineHash.containsKey(line)) { chars.append(String.valueOf((char) (int) lineHash.get(line))); } else { lineArray.add(line); lineHash.put(line, lineArray.size() - 1); chars.append(String.valueOf((char) (lineArray.size() - 1))); } } return chars.toString(); } /** * Rehydrate the text in a diff from a string of line hashes to real lines of * text. * @param diffs LinkedList of Diff objects. * @param lineArray List of unique strings. */ protected void diff_charsToLines(LinkedList<Diff> diffs, List<String> lineArray) { StringBuilder text; for (Diff diff : diffs) { text = new StringBuilder(); for (int y = 0; y < diff.text.length(); y++) { text.append(lineArray.get(diff.text.charAt(y))); } diff.text = text.toString(); } } /** * Explore the intersection points between the two texts. * @param text1 Old string to be diffed. * @param text2 New string to be diffed. * @return LinkedList of Diff objects or null if no diff available. */ protected LinkedList<Diff> diff_map(String text1, String text2) { long ms_end = System.currentTimeMillis() + (long) (Diff_Timeout * 1000); // Cache the text lengths to prevent multiple calls. int text1_length = text1.length(); int text2_length = text2.length(); int max_d = text1_length + text2_length - 1; boolean doubleEnd = Diff_DualThreshold * 2 < max_d; List<Set<Long>> v_map1 = new ArrayList<Set<Long>>(); List<Set<Long>> v_map2 = new ArrayList<Set<Long>>(); Map<Integer, Integer> v1 = new HashMap<Integer, Integer>(); Map<Integer, Integer> v2 = new HashMap<Integer, Integer>(); v1.put(1, 0); v2.put(1, 0); int x, y; Long footstep = 0L; // Used to track overlapping paths. Map<Long, Integer> footsteps = new HashMap<Long, Integer>(); boolean done = false; // If the total number of characters is odd, then the front path will // collide with the reverse path. boolean front = ((text1_length + text2_length) % 2 == 1); for (int d = 0; d < max_d; d++) { // Bail out if timeout reached. if (Diff_Timeout > 0 && System.currentTimeMillis() > ms_end) { return null; } // Walk the front path one step. v_map1.add(new HashSet<Long>()); // Adds at index 'd'. for (int k = -d; k <= d; k += 2) { if (k == -d || k != d && v1.get(k - 1) < v1.get(k + 1)) { x = v1.get(k + 1); } else { x = v1.get(k - 1) + 1; } y = x - k; if (doubleEnd) { footstep = diff_footprint(x, y); if (front && (footsteps.containsKey(footstep))) { done = true; } if (!front) { footsteps.put(footstep, d); } } while (!done && x < text1_length && y < text2_length && text1.charAt(x) == text2.charAt(y)) { x++; y++; if (doubleEnd) { footstep = diff_footprint(x, y); if (front && (footsteps.containsKey(footstep))) { done = true; } if (!front) { footsteps.put(footstep, d); } } } v1.put(k, x); v_map1.get(d).add(diff_footprint(x, y)); if (x == text1_length && y == text2_length) { // Reached the end in single-path mode. return diff_path1(v_map1, text1, text2); } else if (done) { // Front path ran over reverse path. v_map2 = v_map2.subList(0, footsteps.get(footstep) + 1); LinkedList<Diff> a = diff_path1(v_map1, text1.substring(0, x), text2.substring(0, y)); a.addAll(diff_path2(v_map2, text1.substring(x), text2.substring(y))); return a; } } if (doubleEnd) { // Walk the reverse path one step. v_map2.add(new HashSet<Long>()); // Adds at index 'd'. for (int k = -d; k <= d; k += 2) { if (k == -d || k != d && v2.get(k - 1) < v2.get(k + 1)) { x = v2.get(k + 1); } else { x = v2.get(k - 1) + 1; } y = x - k; footstep = diff_footprint(text1_length - x, text2_length - y); if (!front && (footsteps.containsKey(footstep))) { done = true; } if (front) { footsteps.put(footstep, d); } while (!done && x < text1_length && y < text2_length && text1.charAt(text1_length - x - 1) == text2.charAt(text2_length - y - 1)) { x++; y++; footstep = diff_footprint(text1_length - x, text2_length - y); if (!front && (footsteps.containsKey(footstep))) { done = true; } if (front) { footsteps.put(footstep, d); } } v2.put(k, x); v_map2.get(d).add(diff_footprint(x, y)); if (done) { // Reverse path ran over front path. v_map1 = v_map1.subList(0, footsteps.get(footstep) + 1); LinkedList<Diff> a = diff_path1(v_map1, text1.substring(0, text1_length - x), text2.substring(0, text2_length - y)); a.addAll(diff_path2(v_map2, text1.substring(text1_length - x), text2.substring(text2_length - y))); return a; } } } } // Number of diffs equals number of characters, no commonality at all. return null; } /** * Work from the middle back to the start to determine the path. * @param v_map List of path sets. * @param text1 Old string fragment to be diffed. * @param text2 New string fragment to be diffed. * @return LinkedList of Diff objects. */ protected LinkedList<Diff> diff_path1(List<Set<Long>> v_map, String text1, String text2) { LinkedList<Diff> path = new LinkedList<Diff>(); int x = text1.length(); int y = text2.length(); Operation last_op = null; for (int d = v_map.size() - 2; d >= 0; d--) { while (true) { if (v_map.get(d).contains(diff_footprint(x - 1, y))) { x--; if (last_op == Operation.DELETE) { path.getFirst().text = text1.charAt(x) + path.getFirst().text; } else { path.addFirst(new Diff(Operation.DELETE, text1.substring(x, x + 1))); } last_op = Operation.DELETE; break; } else if (v_map.get(d).contains(diff_footprint(x, y - 1))) { y--; if (last_op == Operation.INSERT) { path.getFirst().text = text2.charAt(y) + path.getFirst().text; } else { path.addFirst(new Diff(Operation.INSERT, text2.substring(y, y + 1))); } last_op = Operation.INSERT; break; } else { x--; y--; assert (text1.charAt(x) == text2.charAt(y)) : "No diagonal. Can't happen. (diff_path1)"; if (last_op == Operation.EQUAL) { path.getFirst().text = text1.charAt(x) + path.getFirst().text; } else { path.addFirst(new Diff(Operation.EQUAL, text1.substring(x, x + 1))); } last_op = Operation.EQUAL; } } } return path; } /** * Work from the middle back to the end to determine the path. * @param v_map List of path sets. * @param text1 Old string fragment to be diffed. * @param text2 New string fragment to be diffed. * @return LinkedList of Diff objects. */ protected LinkedList<Diff> diff_path2(List<Set<Long>> v_map, String text1, String text2) { LinkedList<Diff> path = new LinkedList<Diff>(); int x = text1.length(); int y = text2.length(); Operation last_op = null; for (int d = v_map.size() - 2; d >= 0; d--) { while (true) { if (v_map.get(d).contains(diff_footprint(x - 1, y))) { x--; if (last_op == Operation.DELETE) { path.getLast().text += text1.charAt(text1.length() - x - 1); } else { path.addLast(new Diff(Operation.DELETE, text1.substring(text1.length() - x - 1, text1.length() - x))); } last_op = Operation.DELETE; break; } else if (v_map.get(d).contains(diff_footprint(x, y - 1))) { y--; if (last_op == Operation.INSERT) { path.getLast().text += text2.charAt(text2.length() - y - 1); } else { path.addLast(new Diff(Operation.INSERT, text2.substring(text2.length() - y - 1, text2.length() - y))); } last_op = Operation.INSERT; break; } else { x--; y--; assert (text1.charAt(text1.length() - x - 1) == text2.charAt(text2.length() - y - 1)) : "No diagonal. Can't happen. (diff_path2)"; if (last_op == Operation.EQUAL) { path.getLast().text += text1.charAt(text1.length() - x - 1); } else { path.addLast(new Diff(Operation.EQUAL, text1.substring(text1.length() - x - 1, text1.length() - x))); } last_op = Operation.EQUAL; } } } return path; } /** * Compute a good hash of two integers. * @param x First int. * @param y Second int. * @return A long made up of both ints. */ protected long diff_footprint(int x, int y) { // The maximum size for a long is 9,223,372,036,854,775,807 // The maximum size for an int is 2,147,483,647 // Two ints fit nicely in one long. long result = x; result = result << 32; result += y; return result; } /** * Determine the common prefix of two strings * @param text1 First string. * @param text2 Second string. * @return The number of characters common to the start of each string. */ public int diff_commonPrefix(String text1, String text2) { // Performance analysis: http://neil.fraser.name/news/2007/10/09/ int n = Math.min(text1.length(), text2.length()); for (int i = 0; i < n; i++) { if (text1.charAt(i) != text2.charAt(i)) { return i; } } return n; } /** * Determine the common suffix of two strings * @param text1 First string. * @param text2 Second string. * @return The number of characters common to the end of each string. */ public int diff_commonSuffix(String text1, String text2) { // Performance analysis: http://neil.fraser.name/news/2007/10/09/ int text1_length = text1.length(); int text2_length = text2.length(); int n = Math.min(text1_length, text2_length); for (int i = 1; i <= n; i++) { if (text1.charAt(text1_length - i) != text2.charAt(text2_length - i)) { return i - 1; } } return n; } /** * Do the two texts share a substring which is at least half the length of * the longer text? * @param text1 First string. * @param text2 Second string. * @return Five element String array, containing the prefix of text1, the * suffix of text1, the prefix of text2, the suffix of text2 and the * common middle. Or null if there was no match. */ protected String[] diff_halfMatch(String text1, String text2) { String longtext = text1.length() > text2.length() ? text1 : text2; String shorttext = text1.length() > text2.length() ? text2 : text1; if (longtext.length() < 10 || shorttext.length() < 1) { return null; // Pointless. } // First check if the second quarter is the seed for a half-match. String[] hm1 = diff_halfMatchI(longtext, shorttext, (longtext.length() + 3) / 4); // Check again based on the third quarter. String[] hm2 = diff_halfMatchI(longtext, shorttext, (longtext.length() + 1) / 2); String[] hm; if (hm1 == null && hm2 == null) { return null; } else if (hm2 == null) { hm = hm1; } else if (hm1 == null) { hm = hm2; } else { // Both matched. Select the longest. hm = hm1[4].length() > hm2[4].length() ? hm1 : hm2; } // A half-match was found, sort out the return data. if (text1.length() > text2.length()) { return hm; //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]}; } else { return new String[]{hm[2], hm[3], hm[0], hm[1], hm[4]}; } } /** * Does a substring of shorttext exist within longtext such that the * substring is at least half the length of longtext? * @param longtext Longer string. * @param shorttext Shorter string. * @param i Start index of quarter length substring within longtext. * @return Five element String array, containing the prefix of longtext, the * suffix of longtext, the prefix of shorttext, the suffix of shorttext * and the common middle. Or null if there was no match. */ private String[] diff_halfMatchI(String longtext, String shorttext, int i) { // Start with a 1/4 length substring at position i as a seed. String seed = longtext.substring(i, i + longtext.length() / 4); int j = -1; String best_common = ""; String best_longtext_a = "", best_longtext_b = ""; String best_shorttext_a = "", best_shorttext_b = ""; while ((j = shorttext.indexOf(seed, j + 1)) != -1) { int prefixLength = diff_commonPrefix(longtext.substring(i), shorttext.substring(j)); int suffixLength = diff_commonSuffix(longtext.substring(0, i), shorttext.substring(0, j)); if (best_common.length() < suffixLength + prefixLength) { best_common = shorttext.substring(j - suffixLength, j) + shorttext.substring(j, j + prefixLength); best_longtext_a = longtext.substring(0, i - suffixLength); best_longtext_b = longtext.substring(i + prefixLength); best_shorttext_a = shorttext.substring(0, j - suffixLength); best_shorttext_b = shorttext.substring(j + prefixLength); } } if (best_common.length() >= longtext.length() / 2) { return new String[]{best_longtext_a, best_longtext_b, best_shorttext_a, best_shorttext_b, best_common}; } else { return null; } } /** * Reduce the number of edits by eliminating semantically trivial equalities. * @param diffs LinkedList of Diff objects. */ public void diff_cleanupSemantic(LinkedList<Diff> diffs) { if (diffs.isEmpty()) { return; } boolean changes = false; Stack<Diff> equalities = new Stack<Diff>(); // Stack of qualities. String lastequality = null; // Always equal to equalities.lastElement().text ListIterator<Diff> pointer = diffs.listIterator(); // Number of characters that changed prior to the equality. int length_changes1 = 0; // Number of characters that changed after the equality. int length_changes2 = 0; Diff thisDiff = pointer.next(); while (thisDiff != null) { if (thisDiff.operation == Operation.EQUAL) { // equality found equalities.push(thisDiff); length_changes1 = length_changes2; length_changes2 = 0; lastequality = thisDiff.text; } else { // an insertion or deletion length_changes2 += thisDiff.text.length(); if (lastequality != null && (lastequality.length() <= length_changes1) && (lastequality.length() <= length_changes2)) { //System.out.println("Splitting: '" + lastequality + "'"); // Walk back to offending equality. while (thisDiff != equalities.lastElement()) { thisDiff = pointer.previous(); } pointer.next(); // Replace equality with a delete. pointer.set(new Diff(Operation.DELETE, lastequality)); // Insert a corresponding an insert. pointer.add(new Diff(Operation.INSERT, lastequality)); equalities.pop(); // Throw away the equality we just deleted. if (!equalities.empty()) { // Throw away the previous equality (it needs to be reevaluated). equalities.pop(); } if (equalities.empty()) { // There are no previous equalities, walk back to the start. while (pointer.hasPrevious()) { pointer.previous(); } } else { // There is a safe equality we can fall back to. thisDiff = equalities.lastElement(); while (thisDiff != pointer.previous()) { // Intentionally empty loop. } } length_changes1 = 0; // Reset the counters. length_changes2 = 0; lastequality = null; changes = true; } } thisDiff = pointer.hasNext() ? pointer.next() : null; } if (changes) { diff_cleanupMerge(diffs); } diff_cleanupSemanticLossless(diffs); } /** * Look for single edits surrounded on both sides by equalities * which can be shifted sideways to align the edit to a word boundary. * e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came. * @param diffs LinkedList of Diff objects. */ public void diff_cleanupSemanticLossless(LinkedList<Diff> diffs) { String equality1, edit, equality2; String commonString; int commonOffset; int score, bestScore; String bestEquality1, bestEdit, bestEquality2; // Create a new iterator at the start. ListIterator<Diff> pointer = diffs.listIterator(); Diff prevDiff = pointer.hasNext() ? pointer.next() : null; Diff thisDiff = pointer.hasNext() ? pointer.next() : null; Diff nextDiff = pointer.hasNext() ? pointer.next() : null; // Intentionally ignore the first and last element (don't need checking). while (nextDiff != null) { if (prevDiff.operation == Operation.EQUAL && nextDiff.operation == Operation.EQUAL) { // This is a single edit surrounded by equalities. equality1 = prevDiff.text; edit = thisDiff.text; equality2 = nextDiff.text; // First, shift the edit as far left as possible. commonOffset = diff_commonSuffix(equality1, edit); if (commonOffset != 0) { commonString = edit.substring(edit.length() - commonOffset); equality1 = equality1.substring(0, equality1.length() - commonOffset); edit = commonString + edit.substring(0, edit.length() - commonOffset); equality2 = commonString + equality2; } // Second, step character by character right, looking for the best fit. bestEquality1 = equality1; bestEdit = edit; bestEquality2 = equality2; bestScore = diff_cleanupSemanticScore(equality1, edit) + diff_cleanupSemanticScore(edit, equality2); while (edit.length() != 0 && equality2.length() != 0 && edit.charAt(0) == equality2.charAt(0)) { equality1 += edit.charAt(0); edit = edit.substring(1) + equality2.charAt(0); equality2 = equality2.substring(1); score = diff_cleanupSemanticScore(equality1, edit) + diff_cleanupSemanticScore(edit, equality2); // The >= encourages trailing rather than leading whitespace on edits. if (score >= bestScore) { bestScore = score; bestEquality1 = equality1; bestEdit = edit; bestEquality2 = equality2; } } if (!prevDiff.text.equals(bestEquality1)) { // We have an improvement, save it back to the diff. if (bestEquality1.length() != 0) { prevDiff.text = bestEquality1; } else { pointer.previous(); // Walk past nextDiff. pointer.previous(); // Walk past thisDiff. pointer.previous(); // Walk past prevDiff. pointer.remove(); // Delete prevDiff. pointer.next(); // Walk past thisDiff. pointer.next(); // Walk past nextDiff. } thisDiff.text = bestEdit; if (bestEquality2.length() != 0) { nextDiff.text = bestEquality2; } else { pointer.remove(); // Delete nextDiff. nextDiff = thisDiff; thisDiff = prevDiff; } } } prevDiff = thisDiff; thisDiff = nextDiff; nextDiff = pointer.hasNext() ? pointer.next() : null; } } /** * Given two strings, compute a score representing whether the internal * boundary falls on logical boundaries. * Scores range from 5 (best) to 0 (worst). * @param one First string. * @param two Second string. * @return The score. */ private int diff_cleanupSemanticScore(String one, String two) { if (one.length() == 0 || two.length() == 0) { // Edges are the best. return 5; } // Each port of this function behaves slightly differently due to // subtle differences in each language's definition of things like // 'whitespace'. Since this function's purpose is largely cosmetic, // the choice has been made to use each language's native features // rather than force total conformity. int score = 0; // One point for non-alphanumeric. if (!Character.isLetterOrDigit(one.charAt(one.length() - 1)) || !Character.isLetterOrDigit(two.charAt(0))) { score++; // Two points for whitespace. if (Character.isWhitespace(one.charAt(one.length() - 1)) || Character.isWhitespace(two.charAt(0))) { score++; // Three points for line breaks. if (Character.getType(one.charAt(one.length() - 1)) == Character.CONTROL || Character.getType(two.charAt(0)) == Character.CONTROL) { score++; // Four points for blank lines. if (BLANKLINEEND.matcher(one).find() || BLANKLINESTART.matcher(two).find()) { score++; } } } } return score; } private Pattern BLANKLINEEND = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL); private Pattern BLANKLINESTART = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL); /** * Reduce the number of edits by eliminating operationally trivial equalities. * @param diffs LinkedList of Diff objects. */ public void diff_cleanupEfficiency(LinkedList<Diff> diffs) { if (diffs.isEmpty()) { return; } boolean changes = false; Stack<Diff> equalities = new Stack<Diff>(); // Stack of equalities. String lastequality = null; // Always equal to equalities.lastElement().text ListIterator<Diff> pointer = diffs.listIterator(); // Is there an insertion operation before the last equality. boolean pre_ins = false; // Is there a deletion operation before the last equality. boolean pre_del = false; // Is there an insertion operation after the last equality. boolean post_ins = false; // Is there a deletion operation after the last equality. boolean post_del = false; Diff thisDiff = pointer.next(); Diff safeDiff = thisDiff; // The last Diff that is known to be unsplitable. while (thisDiff != null) { if (thisDiff.operation == Operation.EQUAL) { // equality found if (thisDiff.text.length() < Diff_EditCost && (post_ins || post_del)) { // Candidate found. equalities.push(thisDiff); pre_ins = post_ins; pre_del = post_del; lastequality = thisDiff.text; } else { // Not a candidate, and can never become one. equalities.clear(); lastequality = null; safeDiff = thisDiff; } post_ins = post_del = false; } else { // an insertion or deletion if (thisDiff.operation == Operation.DELETE) { post_del = true; } else { post_ins = true; } /* * Five types to be split: * <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del> * <ins>A</ins>X<ins>C</ins><del>D</del> * <ins>A</ins><del>B</del>X<ins>C</ins> * <ins>A</del>X<ins>C</ins><del>D</del> * <ins>A</ins><del>B</del>X<del>C</del> */ if (lastequality != null && ((pre_ins && pre_del && post_ins && post_del) || ((lastequality.length() < Diff_EditCost / 2) && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0) + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) { //System.out.println("Splitting: '" + lastequality + "'"); // Walk back to offending equality. while (thisDiff != equalities.lastElement()) { thisDiff = pointer.previous(); } pointer.next(); // Replace equality with a delete. pointer.set(new Diff(Operation.DELETE, lastequality)); // Insert a corresponding an insert. pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality)); equalities.pop(); // Throw away the equality we just deleted. lastequality = null; if (pre_ins && pre_del) { // No changes made which could affect previous entry, keep going. post_ins = post_del = true; equalities.clear(); safeDiff = thisDiff; } else { if (!equalities.empty()) { // Throw away the previous equality (it needs to be reevaluated). equalities.pop(); } if (equalities.empty()) { // There are no previous questionable equalities, // walk back to the last known safe diff. thisDiff = safeDiff; } else { // There is an equality we can fall back to. thisDiff = equalities.lastElement(); } while (thisDiff != pointer.previous()) { // Intentionally empty loop. } post_ins = post_del = false; } changes = true; } } thisDiff = pointer.hasNext() ? pointer.next() : null; } if (changes) { diff_cleanupMerge(diffs); } } /** * Reorder and merge like edit sections. Merge equalities. * Any edit section can move as long as it doesn't cross an equality. * @param diffs LinkedList of Diff objects. */ public void diff_cleanupMerge(LinkedList<Diff> diffs) { diffs.add(new Diff(Operation.EQUAL, "")); // Add a dummy entry at the end. ListIterator<Diff> pointer = diffs.listIterator(); int count_delete = 0; int count_insert = 0; String text_delete = ""; String text_insert = ""; Diff thisDiff = pointer.next(); Diff prevEqual = null; int commonlength; while (thisDiff != null) { switch (thisDiff.operation) { case INSERT: count_insert++; text_insert += thisDiff.text; prevEqual = null; break; case DELETE: count_delete++; text_delete += thisDiff.text; prevEqual = null; break; case EQUAL: if (count_delete != 0 || count_insert != 0) { // Delete the offending records. pointer.previous(); // Reverse direction. while (count_delete-- > 0) { pointer.previous(); pointer.remove(); } while (count_insert-- > 0) { pointer.previous(); pointer.remove(); } if (count_delete != 0 && count_insert != 0) { // Factor out any common prefixies. commonlength = diff_commonPrefix(text_insert, text_delete); if (commonlength != 0) { if (pointer.hasPrevious()) { thisDiff = pointer.previous(); assert thisDiff.operation == Operation.EQUAL : "Previous diff should have been an equality."; thisDiff.text += text_insert.substring(0, commonlength); pointer.next(); } else { pointer.add(new Diff(Operation.EQUAL, text_insert.substring(0, commonlength))); } text_insert = text_insert.substring(commonlength); text_delete = text_delete.substring(commonlength); } // Factor out any common suffixies. commonlength = diff_commonSuffix(text_insert, text_delete); if (commonlength != 0) { thisDiff = pointer.next(); thisDiff.text = text_insert.substring(text_insert.length() - commonlength) + thisDiff.text; text_insert = text_insert.substring(0, text_insert.length() - commonlength); text_delete = text_delete.substring(0, text_delete.length() - commonlength); pointer.previous(); } } // Insert the merged records. if (text_delete.length() != 0) { pointer.add(new Diff(Operation.DELETE, text_delete)); } if (text_insert.length() != 0) { pointer.add(new Diff(Operation.INSERT, text_insert)); } // Step forward to the equality. thisDiff = pointer.hasNext() ? pointer.next() : null; } else if (prevEqual != null) { // Merge this equality with the previous one. prevEqual.text += thisDiff.text; pointer.remove(); thisDiff = pointer.previous(); pointer.next(); // Forward direction } count_insert = 0; count_delete = 0; text_delete = ""; text_insert = ""; prevEqual = thisDiff; break; } thisDiff = pointer.hasNext() ? pointer.next() : null; } // System.out.println(diff); if (diffs.getLast().text.length() == 0) { diffs.removeLast(); // Remove the dummy entry at the end. } /* * Second pass: look for single edits surrounded on both sides by equalities * which can be shifted sideways to eliminate an equality. * e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC */ boolean changes = false; // Create a new iterator at the start. // (As opposed to walking the current one back.) pointer = diffs.listIterator(); Diff prevDiff = pointer.hasNext() ? pointer.next() : null; thisDiff = pointer.hasNext() ? pointer.next() : null; Diff nextDiff = pointer.hasNext() ? pointer.next() : null; // Intentionally ignore the first and last element (don't need checking). while (nextDiff != null) { if (prevDiff.operation == Operation.EQUAL && nextDiff.operation == Operation.EQUAL) { // This is a single edit surrounded by equalities. if (thisDiff.text.endsWith(prevDiff.text)) { // Shift the edit over the previous equality. thisDiff.text = prevDiff.text + thisDiff.text.substring(0, thisDiff.text.length() - prevDiff.text.length()); nextDiff.text = prevDiff.text + nextDiff.text; pointer.previous(); // Walk past nextDiff. pointer.previous(); // Walk past thisDiff. pointer.previous(); // Walk past prevDiff. pointer.remove(); // Delete prevDiff. pointer.next(); // Walk past thisDiff. thisDiff = pointer.next(); // Walk past nextDiff. nextDiff = pointer.hasNext() ? pointer.next() : null; changes = true; } else if (thisDiff.text.startsWith(nextDiff.text)) { // Shift the edit over the next equality. prevDiff.text += nextDiff.text; thisDiff.text = thisDiff.text.substring(nextDiff.text.length()) + nextDiff.text; pointer.remove(); // Delete nextDiff. nextDiff = pointer.hasNext() ? pointer.next() : null; changes = true; } } prevDiff = thisDiff; thisDiff = nextDiff; nextDiff = pointer.hasNext() ? pointer.next() : null; } // If shifts were made, the diff needs reordering and another shift sweep. if (changes) { diff_cleanupMerge(diffs); } } /** * loc is a location in text1, compute and return the equivalent location in * text2. * e.g. "The cat" vs "The big cat", 1->1, 5->8 * @param diffs LinkedList of Diff objects. * @param loc Location within text1. * @return Location within text2. */ public int diff_xIndex(LinkedList<Diff> diffs, int loc) { int chars1 = 0; int chars2 = 0; int last_chars1 = 0; int last_chars2 = 0; Diff lastDiff = null; for (Diff aDiff : diffs) { if (aDiff.operation != Operation.INSERT) { // Equality or deletion. chars1 += aDiff.text.length(); } if (aDiff.operation != Operation.DELETE) { // Equality or insertion. chars2 += aDiff.text.length(); } if (chars1 > loc) { // Overshot the location. lastDiff = aDiff; break; } last_chars1 = chars1; last_chars2 = chars2; } if (lastDiff != null && lastDiff.operation == Operation.DELETE) { // The location was deleted. return last_chars2; } // Add the remaining character length. return last_chars2 + (loc - last_chars1); } /** * Convert a Diff list into a pretty HTML report. * @param diffs LinkedList of Diff objects. * @return HTML representation. */ public String diff_prettyHtml(LinkedList<Diff> diffs) { StringBuilder html = new StringBuilder(); int i = 0; for (Diff aDiff : diffs) { String text = aDiff.text.replace("&", "&").replace("<", "<") .replace(">", ">").replace("\n", "¶<BR>"); switch (aDiff.operation) { case INSERT: html.append("<INS STYLE=\"background:#E6FFE6;\" TITLE=\"i=").append(i) .append("\">").append(text).append("</INS>"); break; case DELETE: html.append("<DEL STYLE=\"background:#FFE6E6;\" TITLE=\"i=").append(i) .append("\">").append(text).append("</DEL>"); break; case EQUAL: html.append("<SPAN TITLE=\"i=").append(i).append("\">").append(text) .append("</SPAN>"); break; } if (aDiff.operation != Operation.DELETE) { i += aDiff.text.length(); } } return html.toString(); } /** * Compute and return the source text (all equalities and deletions). * @param diffs LinkedList of Diff objects. * @return Source text. */ public String diff_text1(LinkedList<Diff> diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { if (aDiff.operation != Operation.INSERT) { text.append(aDiff.text); } } return text.toString(); } /** * Compute and return the destination text (all equalities and insertions). * @param diffs LinkedList of Diff objects. * @return Destination text. */ public String diff_text2(LinkedList<Diff> diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { if (aDiff.operation != Operation.DELETE) { text.append(aDiff.text); } } return text.toString(); } /** * Compute the Levenshtein distance; the number of inserted, deleted or * substituted characters. * @param diffs LinkedList of Diff objects. * @return Number of changes. */ public int diff_levenshtein(LinkedList<Diff> diffs) { int levenshtein = 0; int insertions = 0; int deletions = 0; for (Diff aDiff : diffs) { switch (aDiff.operation) { case INSERT: insertions += aDiff.text.length(); break; case DELETE: deletions += aDiff.text.length(); break; case EQUAL: // A deletion and an insertion is one substitution. levenshtein += Math.max(insertions, deletions); insertions = 0; deletions = 0; break; } } levenshtein += Math.max(insertions, deletions); return levenshtein; } /** * Crush the diff into an encoded string which describes the operations * required to transform text1 into text2. * E.g. =3\t-2\t+ing -> Keep 3 chars, delete 2 chars, insert 'ing'. * Operations are tab-separated. Inserted text is escaped using %xx notation. * @param diffs Array of diff tuples. * @return Delta text. */ public String diff_toDelta(LinkedList<Diff> diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { switch (aDiff.operation) { case INSERT: try { text.append("+").append(URLEncoder.encode(aDiff.text, "UTF-8") .replace('+', ' ')).append("\t"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } break; case DELETE: text.append("-").append(aDiff.text.length()).append("\t"); break; case EQUAL: text.append("=").append(aDiff.text.length()).append("\t"); break; } } String delta = text.toString(); if (delta.length() != 0) { // Strip off trailing tab character. delta = delta.substring(0, delta.length() - 1); delta = unescapeForEncodeUriCompatability(delta); } return delta; } /** * Given the original text1, and an encoded string which describes the * operations required to transform text1 into text2, compute the full diff. * @param text1 Source string for the diff. * @param delta Delta text. * @return Array of diff tuples or null if invalid. * @throws IllegalArgumentException If invalid input. */ public LinkedList<Diff> diff_fromDelta(String text1, String delta) throws IllegalArgumentException { LinkedList<Diff> diffs = new LinkedList<Diff>(); int pointer = 0; // Cursor in text1 String[] tokens = delta.split("\t"); for (String token : tokens) { if (token.length() == 0) { // Blank tokens are ok (from a trailing \t). continue; } // Each token begins with a one character parameter which specifies the // operation of this token (delete, insert, equality). String param = token.substring(1); switch (token.charAt(0)) { case '+': // decode would change all "+" to " " param = param.replace("+", "%2B"); try { param = URLDecoder.decode(param, "UTF-8"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } catch (IllegalArgumentException e) { // Malformed URI sequence. throw new IllegalArgumentException( "Illegal escape in diff_fromDelta: " + param, e); } diffs.add(new Diff(Operation.INSERT, param)); break; case '-': // Fall through. case '=': int n; try { n = Integer.parseInt(param); } catch (NumberFormatException e) { throw new IllegalArgumentException( "Invalid number in diff_fromDelta: " + param, e); } if (n < 0) { throw new IllegalArgumentException( "Negative number in diff_fromDelta: " + param); } String text; try { text = text1.substring(pointer, pointer += n); } catch (StringIndexOutOfBoundsException e) { throw new IllegalArgumentException("Delta length (" + pointer + ") larger than source text length (" + text1.length() + ").", e); } if (token.charAt(0) == '=') { diffs.add(new Diff(Operation.EQUAL, text)); } else { diffs.add(new Diff(Operation.DELETE, text)); } break; default: // Anything else is an error. throw new IllegalArgumentException( "Invalid diff operation in diff_fromDelta: " + token.charAt(0)); } } if (pointer != text1.length()) { throw new IllegalArgumentException("Delta length (" + pointer + ") smaller than source text length (" + text1.length() + ")."); } return diffs; } // MATCH FUNCTIONS /** * Locate the best instance of 'pattern' in 'text' near 'loc'. * Returns -1 if no match found. * @param text The text to search. * @param pattern The pattern to search for. * @param loc The location to search around. * @return Best match index or -1. */ public int match_main(String text, String pattern, int loc) { // Check for null inputs. if (text == null || pattern == null) { throw new IllegalArgumentException("Null inputs. (match_main)"); } loc = Math.max(0, Math.min(loc, text.length())); if (text.equals(pattern)) { // Shortcut (potentially not guaranteed by the algorithm) return 0; } else if (text.length() == 0) { // Nothing to match. return -1; } else if (loc + pattern.length() <= text.length() && text.substring(loc, loc + pattern.length()).equals(pattern)) { // Perfect match at the perfect spot! (Includes case of null pattern) return loc; } else { // Do a fuzzy compare. return match_bitap(text, pattern, loc); } } /** * Locate the best instance of 'pattern' in 'text' near 'loc' using the * Bitap algorithm. Returns -1 if no match found. * @param text The text to search. * @param pattern The pattern to search for. * @param loc The location to search around. * @return Best match index or -1. */ protected int match_bitap(String text, String pattern, int loc) { assert (Match_MaxBits == 0 || pattern.length() <= Match_MaxBits) : "Pattern too long for this application."; // Initialise the alphabet. Map<Character, Integer> s = match_alphabet(pattern); // Highest score beyond which we give up. double score_threshold = Match_Threshold; // Is there a nearby exact match? (speedup) int best_loc = text.indexOf(pattern, loc); if (best_loc != -1) { score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), score_threshold); // What about in the other direction? (speedup) best_loc = text.lastIndexOf(pattern, loc + pattern.length()); if (best_loc != -1) { score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), score_threshold); } } // Initialise the bit arrays. int matchmask = 1 << (pattern.length() - 1); best_loc = -1; int bin_min, bin_mid; int bin_max = pattern.length() + text.length(); // Empty initialization added to appease Java compiler. int[] last_rd = new int[0]; for (int d = 0; d < pattern.length(); d++) { // Scan for the best match; each iteration allows for one more error. // Run a binary search to determine how far from 'loc' we can stray at // this error level. bin_min = 0; bin_mid = bin_max; while (bin_min < bin_mid) { if (match_bitapScore(d, loc + bin_mid, loc, pattern) <= score_threshold) { bin_min = bin_mid; } else { bin_max = bin_mid; } bin_mid = (bin_max - bin_min) / 2 + bin_min; } // Use the result from this iteration as the maximum for the next. bin_max = bin_mid; int start = Math.max(1, loc - bin_mid + 1); int finish = Math.min(loc + bin_mid, text.length()) + pattern.length(); int[] rd = new int[finish + 2]; rd[finish + 1] = (1 << d) - 1; for (int j = finish; j >= start; j--) { int charMatch; if (text.length() <= j - 1 || !s.containsKey(text.charAt(j - 1))) { // Out of range. charMatch = 0; } else { charMatch = s.get(text.charAt(j - 1)); } if (d == 0) { // First pass: exact match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch; } else { // Subsequent passes: fuzzy match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1]; } if ((rd[j] & matchmask) != 0) { double score = match_bitapScore(d, j - 1, loc, pattern); // This match will almost certainly be better than any existing // match. But check anyway. if (score <= score_threshold) { // Told you so. score_threshold = score; best_loc = j - 1; if (best_loc > loc) { // When passing loc, don't exceed our current distance from loc. start = Math.max(1, 2 * loc - best_loc); } else { // Already passed loc, downhill from here on in. break; } } } } if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) { // No hope for a (better) match at greater error levels. break; } last_rd = rd; } return best_loc; } /** * Compute and return the score for a match with e errors and x location. * @param e Number of errors in match. * @param x Location of match. * @param loc Expected location of match. * @param pattern Pattern being sought. * @return Overall score for match (0.0 = good, 1.0 = bad). */ private double match_bitapScore(int e, int x, int loc, String pattern) { float accuracy = (float) e / pattern.length(); int proximity = Math.abs(loc - x); if (Match_Distance == 0) { // Dodge divide by zero error. return proximity == 0 ? accuracy : 1.0; } return accuracy + (proximity / (float) Match_Distance); } /** * Initialise the alphabet for the Bitap algorithm. * @param pattern The text to encode. * @return Hash of character locations. */ protected Map<Character, Integer> match_alphabet(String pattern) { Map<Character, Integer> s = new HashMap<Character, Integer>(); char[] char_pattern = pattern.toCharArray(); for (char c : char_pattern) { s.put(c, 0); } int i = 0; for (char c : char_pattern) { s.put(c, s.get(c) | (1 << (pattern.length() - i - 1))); i++; } return s; } // PATCH FUNCTIONS /** * Increase the context until it is unique, * but don't let the pattern expand beyond Match_MaxBits. * @param patch The patch to grow. * @param text Source text. */ protected void patch_addContext(Patch patch, String text) { if (text.length() == 0) { return; } String pattern = text.substring(patch.start2, patch.start2 + patch.length1); int padding = 0; // Look for the first and last matches of pattern in text. If two different // matches are found, increase the pattern length. while (text.indexOf(pattern) != text.lastIndexOf(pattern) && pattern.length() < Match_MaxBits - Patch_Margin - Patch_Margin) { padding += Patch_Margin; pattern = text.substring(Math.max(0, patch.start2 - padding), Math.min(text.length(), patch.start2 + patch.length1 + padding)); } // Add one chunk for good luck. padding += Patch_Margin; // Add the prefix. String prefix = text.substring(Math.max(0, patch.start2 - padding), patch.start2); if (prefix.length() != 0) { patch.diffs.addFirst(new Diff(Operation.EQUAL, prefix)); } // Add the suffix. String suffix = text.substring(patch.start2 + patch.length1, Math.min(text.length(), patch.start2 + patch.length1 + padding)); if (suffix.length() != 0) { patch.diffs.addLast(new Diff(Operation.EQUAL, suffix)); } // Roll back the start points. patch.start1 -= prefix.length(); patch.start2 -= prefix.length(); // Extend the lengths. patch.length1 += prefix.length() + suffix.length(); patch.length2 += prefix.length() + suffix.length(); } /** * Compute a list of patches to turn text1 into text2. * A set of diffs will be computed. * @param text1 Old text. * @param text2 New text. * @return LinkedList of Patch objects. */ public LinkedList<Patch> patch_make(String text1, String text2) { if (text1 == null || text2 == null) { throw new IllegalArgumentException("Null inputs. (patch_make)"); } // No diffs provided, compute our own. LinkedList<Diff> diffs = diff_main(text1, text2, true); if (diffs.size() > 2) { diff_cleanupSemantic(diffs); diff_cleanupEfficiency(diffs); } return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text1 will be derived from the provided diffs. * @param diffs Array of diff tuples for text1 to text2. * @return LinkedList of Patch objects. */ public LinkedList<Patch> patch_make(LinkedList<Diff> diffs) { if (diffs == null) { throw new IllegalArgumentException("Null inputs. (patch_make)"); } // No origin string provided, compute our own. String text1 = diff_text1(diffs); return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text2 is ignored, diffs are the delta between text1 and text2. * @param text1 Old text * @param text2 Ignored. * @param diffs Array of diff tuples for text1 to text2. * @return LinkedList of Patch objects. * @deprecated Prefer patch_make(String text1, LinkedList<Diff> diffs). */ public LinkedList<Patch> patch_make(String text1, String text2, LinkedList<Diff> diffs) { return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text2 is not provided, diffs are the delta between text1 and text2. * @param text1 Old text. * @param diffs Array of diff tuples for text1 to text2. * @return LinkedList of Patch objects. */ public LinkedList<Patch> patch_make(String text1, LinkedList<Diff> diffs) { if (text1 == null || diffs == null) { throw new IllegalArgumentException("Null inputs. (patch_make)"); } LinkedList<Patch> patches = new LinkedList<Patch>(); if (diffs.isEmpty()) { return patches; // Get rid of the null case. } Patch patch = new Patch(); int char_count1 = 0; // Number of characters into the text1 string. int char_count2 = 0; // Number of characters into the text2 string. // Start with text1 (prepatch_text) and apply the diffs until we arrive at // text2 (postpatch_text). We recreate the patches one by one to determine // context info. String prepatch_text = text1; String postpatch_text = text1; for (Diff aDiff : diffs) { if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) { // A new patch starts here. patch.start1 = char_count1; patch.start2 = char_count2; } switch (aDiff.operation) { case INSERT: patch.diffs.add(aDiff); patch.length2 += aDiff.text.length(); postpatch_text = postpatch_text.substring(0, char_count2) + aDiff.text + postpatch_text.substring(char_count2); break; case DELETE: patch.length1 += aDiff.text.length(); patch.diffs.add(aDiff); postpatch_text = postpatch_text.substring(0, char_count2) + postpatch_text.substring(char_count2 + aDiff.text.length()); break; case EQUAL: if (aDiff.text.length() <= 2 * Patch_Margin && !patch.diffs.isEmpty() && aDiff != diffs.getLast()) { // Small equality inside a patch. patch.diffs.add(aDiff); patch.length1 += aDiff.text.length(); patch.length2 += aDiff.text.length(); } if (aDiff.text.length() >= 2 * Patch_Margin) { // Time for a new patch. if (!patch.diffs.isEmpty()) { patch_addContext(patch, prepatch_text); patches.add(patch); patch = new Patch(); // Unlike Unidiff, our patch lists have a rolling context. // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff // Update prepatch text & pos to reflect the application of the // just completed patch. prepatch_text = postpatch_text; char_count1 = char_count2; } } break; } // Update the current character count. if (aDiff.operation != Operation.INSERT) { char_count1 += aDiff.text.length(); } if (aDiff.operation != Operation.DELETE) { char_count2 += aDiff.text.length(); } } // Pick up the leftover patch if not empty. if (!patch.diffs.isEmpty()) { patch_addContext(patch, prepatch_text); patches.add(patch); } return patches; } /** * Given an array of patches, return another array that is identical. * @param patches Array of patch objects. * @return Array of patch objects. */ public LinkedList<Patch> patch_deepCopy(LinkedList<Patch> patches) { LinkedList<Patch> patchesCopy = new LinkedList<Patch>(); for (Patch aPatch : patches) { Patch patchCopy = new Patch(); for (Diff aDiff : aPatch.diffs) { Diff diffCopy = new Diff(aDiff.operation, aDiff.text); patchCopy.diffs.add(diffCopy); } patchCopy.start1 = aPatch.start1; patchCopy.start2 = aPatch.start2; patchCopy.length1 = aPatch.length1; patchCopy.length2 = aPatch.length2; patchesCopy.add(patchCopy); } return patchesCopy; } /** * Merge a set of patches onto the text. Return a patched text, as well * as an array of true/false values indicating which patches were applied. * @param patches Array of patch objects * @param text Old text. * @return Two element Object array, containing the new text and an array of * boolean values. */ public Object[] patch_apply(LinkedList<Patch> patches, String text) { if (patches.isEmpty()) { return new Object[]{text, new boolean[0]}; } // Deep copy the patches so that no changes are made to originals. patches = patch_deepCopy(patches); String nullPadding = patch_addPadding(patches); text = nullPadding + text + nullPadding; patch_splitMax(patches); int x = 0; // delta keeps track of the offset between the expected and actual location // of the previous patch. If there are patches expected at positions 10 and // 20, but the first patch was found at 12, delta is 2 and the second patch // has an effective expected position of 22. int delta = 0; boolean[] results = new boolean[patches.size()]; for (Patch aPatch : patches) { int expected_loc = aPatch.start2 + delta; String text1 = diff_text1(aPatch.diffs); int start_loc; int end_loc = -1; if (text1.length() > this.Match_MaxBits) { // patch_splitMax will only provide an oversized pattern in the case of // a monster delete. start_loc = match_main(text, text1.substring(0, this.Match_MaxBits), expected_loc); if (start_loc != -1) { end_loc = match_main(text, text1.substring(text1.length() - this.Match_MaxBits), expected_loc + text1.length() - this.Match_MaxBits); if (end_loc == -1 || start_loc >= end_loc) { // Can't find valid trailing context. Drop this patch. start_loc = -1; } } } else { start_loc = match_main(text, text1, expected_loc); } if (start_loc == -1) { // No match found. :( results[x] = false; // Subtract the delta for this failed patch from subsequent patches. delta -= aPatch.length2 - aPatch.length1; } else { // Found a match. :) results[x] = true; delta = start_loc - expected_loc; String text2; if (end_loc == -1) { text2 = text.substring(start_loc, Math.min(start_loc + text1.length(), text.length())); } else { text2 = text.substring(start_loc, Math.min(end_loc + this.Match_MaxBits, text.length())); } if (text1.equals(text2)) { // Perfect match, just shove the replacement text in. text = text.substring(0, start_loc) + diff_text2(aPatch.diffs) + text.substring(start_loc + text1.length()); } else { // Imperfect match. Run a diff to get a framework of equivalent // indices. LinkedList<Diff> diffs = diff_main(text1, text2, false); if (text1.length() > this.Match_MaxBits && diff_levenshtein(diffs) / (float) text1.length() > this.Patch_DeleteThreshold) { // The end points match, but the content is unacceptably bad. results[x] = false; } else { diff_cleanupSemanticLossless(diffs); int index1 = 0; for (Diff aDiff : aPatch.diffs) { if (aDiff.operation != Operation.EQUAL) { int index2 = diff_xIndex(diffs, index1); if (aDiff.operation == Operation.INSERT) { // Insertion text = text.substring(0, start_loc + index2) + aDiff.text + text.substring(start_loc + index2); } else if (aDiff.operation == Operation.DELETE) { // Deletion text = text.substring(0, start_loc + index2) + text.substring(start_loc + diff_xIndex(diffs, index1 + aDiff.text.length())); } } if (aDiff.operation != Operation.DELETE) { index1 += aDiff.text.length(); } } } } } x++; } // Strip the padding off. text = text.substring(nullPadding.length(), text.length() - nullPadding.length()); return new Object[]{text, results}; } /** * Add some padding on text start and end so that edges can match something. * Intended to be called only from within patch_apply. * @param patches Array of patch objects. * @return The padding string added to each side. */ public String patch_addPadding(LinkedList<Patch> patches) { int paddingLength = this.Patch_Margin; String nullPadding = ""; for (int x = 1; x <= paddingLength; x++) { nullPadding += String.valueOf((char) x); } // Bump all the patches forward. for (Patch aPatch : patches) { aPatch.start1 += paddingLength; aPatch.start2 += paddingLength; } // Add some padding on start of first diff. Patch patch = patches.getFirst(); LinkedList<Diff> diffs = patch.diffs; if (diffs.isEmpty() || diffs.getFirst().operation != Operation.EQUAL) { // Add nullPadding equality. diffs.addFirst(new Diff(Operation.EQUAL, nullPadding)); patch.start1 -= paddingLength; // Should be 0. patch.start2 -= paddingLength; // Should be 0. patch.length1 += paddingLength; patch.length2 += paddingLength; } else if (paddingLength > diffs.getFirst().text.length()) { // Grow first equality. Diff firstDiff = diffs.getFirst(); int extraLength = paddingLength - firstDiff.text.length(); firstDiff.text = nullPadding.substring(firstDiff.text.length()) + firstDiff.text; patch.start1 -= extraLength; patch.start2 -= extraLength; patch.length1 += extraLength; patch.length2 += extraLength; } // Add some padding on end of last diff. patch = patches.getLast(); diffs = patch.diffs; if (diffs.isEmpty() || diffs.getLast().operation != Operation.EQUAL) { // Add nullPadding equality. diffs.addLast(new Diff(Operation.EQUAL, nullPadding)); patch.length1 += paddingLength; patch.length2 += paddingLength; } else if (paddingLength > diffs.getLast().text.length()) { // Grow last equality. Diff lastDiff = diffs.getLast(); int extraLength = paddingLength - lastDiff.text.length(); lastDiff.text += nullPadding.substring(0, extraLength); patch.length1 += extraLength; patch.length2 += extraLength; } return nullPadding; } /** * Look through the patches and break up any which are longer than the * maximum limit of the match algorithm. * @param patches LinkedList of Patch objects. */ public void patch_splitMax(LinkedList<Patch> patches) { int patch_size; String precontext, postcontext; Patch patch; int start1, start2; boolean empty; Operation diff_type; String diff_text; ListIterator<Patch> pointer = patches.listIterator(); Patch bigpatch = pointer.hasNext() ? pointer.next() : null; while (bigpatch != null) { if (bigpatch.length1 <= Match_MaxBits) { bigpatch = pointer.hasNext() ? pointer.next() : null; continue; } // Remove the big old patch. pointer.remove(); patch_size = Match_MaxBits; start1 = bigpatch.start1; start2 = bigpatch.start2; precontext = ""; while (!bigpatch.diffs.isEmpty()) { // Create one of several smaller patches. patch = new Patch(); empty = true; patch.start1 = start1 - precontext.length(); patch.start2 = start2 - precontext.length(); if (precontext.length() != 0) { patch.length1 = patch.length2 = precontext.length(); patch.diffs.add(new Diff(Operation.EQUAL, precontext)); } while (!bigpatch.diffs.isEmpty() && patch.length1 < patch_size - Patch_Margin) { diff_type = bigpatch.diffs.getFirst().operation; diff_text = bigpatch.diffs.getFirst().text; if (diff_type == Operation.INSERT) { // Insertions are harmless. patch.length2 += diff_text.length(); start2 += diff_text.length(); patch.diffs.addLast(bigpatch.diffs.removeFirst()); empty = false; } else if (diff_type == Operation.DELETE && patch.diffs.size() == 1 && patch.diffs.getFirst().operation == Operation.EQUAL && diff_text.length() > 2 * patch_size) { // This is a large deletion. Let it pass in one chunk. patch.length1 += diff_text.length(); start1 += diff_text.length(); empty = false; patch.diffs.add(new Diff(diff_type, diff_text)); bigpatch.diffs.removeFirst(); } else { // Deletion or equality. Only take as much as we can stomach. diff_text = diff_text.substring(0, Math.min(diff_text.length(), patch_size - patch.length1 - Patch_Margin)); patch.length1 += diff_text.length(); start1 += diff_text.length(); if (diff_type == Operation.EQUAL) { patch.length2 += diff_text.length(); start2 += diff_text.length(); } else { empty = false; } patch.diffs.add(new Diff(diff_type, diff_text)); if (diff_text.equals(bigpatch.diffs.getFirst().text)) { bigpatch.diffs.removeFirst(); } else { bigpatch.diffs.getFirst().text = bigpatch.diffs.getFirst().text .substring(diff_text.length()); } } } // Compute the head context for the next patch. precontext = diff_text2(patch.diffs); precontext = precontext.substring(Math.max(0, precontext.length() - Patch_Margin)); // Append the end context for this patch. if (diff_text1(bigpatch.diffs).length() > Patch_Margin) { postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin); } else { postcontext = diff_text1(bigpatch.diffs); } if (postcontext.length() != 0) { patch.length1 += postcontext.length(); patch.length2 += postcontext.length(); if (!patch.diffs.isEmpty() && patch.diffs.getLast().operation == Operation.EQUAL) { patch.diffs.getLast().text += postcontext; } else { patch.diffs.add(new Diff(Operation.EQUAL, postcontext)); } } if (!empty) { pointer.add(patch); } } bigpatch = pointer.hasNext() ? pointer.next() : null; } } /** * Take a list of patches and return a textual representation. * @param patches List of Patch objects. * @return Text representation of patches. */ public String patch_toText(List<Patch> patches) { StringBuilder text = new StringBuilder(); for (Patch aPatch : patches) { text.append(aPatch); } return text.toString(); } /** * Parse a textual representation of patches and return a List of Patch * objects. * @param textline Text representation of patches. * @return List of Patch objects. * @throws IllegalArgumentException If invalid input. */ public List<Patch> patch_fromText(String textline) throws IllegalArgumentException { List<Patch> patches = new LinkedList<Patch>(); if (textline.length() == 0) { return patches; } List<String> textList = Arrays.asList(textline.split("\n")); LinkedList<String> text = new LinkedList<String>(textList); Patch patch; Pattern patchHeader = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$"); Matcher m; char sign; String line; while (!text.isEmpty()) { m = patchHeader.matcher(text.getFirst()); if (!m.matches()) { throw new IllegalArgumentException( "Invalid patch string: " + text.getFirst()); } patch = new Patch(); patches.add(patch); patch.start1 = Integer.parseInt(m.group(1)); if (m.group(2).length() == 0) { patch.start1--; patch.length1 = 1; } else if (m.group(2).equals("0")) { patch.length1 = 0; } else { patch.start1--; patch.length1 = Integer.parseInt(m.group(2)); } patch.start2 = Integer.parseInt(m.group(3)); if (m.group(4).length() == 0) { patch.start2--; patch.length2 = 1; } else if (m.group(4).equals("0")) { patch.length2 = 0; } else { patch.start2--; patch.length2 = Integer.parseInt(m.group(4)); } text.removeFirst(); while (!text.isEmpty()) { try { sign = text.getFirst().charAt(0); } catch (IndexOutOfBoundsException e) { // Blank line? Whatever. text.removeFirst(); continue; } line = text.getFirst().substring(1); line = line.replace("+", "%2B"); // decode would change all "+" to " " try { line = URLDecoder.decode(line, "UTF-8"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } catch (IllegalArgumentException e) { // Malformed URI sequence. throw new IllegalArgumentException( "Illegal escape in patch_fromText: " + line, e); } if (sign == '-') { // Deletion. patch.diffs.add(new Diff(Operation.DELETE, line)); } else if (sign == '+') { // Insertion. patch.diffs.add(new Diff(Operation.INSERT, line)); } else if (sign == ' ') { // Minor equality. patch.diffs.add(new Diff(Operation.EQUAL, line)); } else if (sign == '@') { // Start of next patch. break; } else { // WTF? throw new IllegalArgumentException( "Invalid patch mode '" + sign + "' in: " + line); } text.removeFirst(); } } return patches; } /** * Class representing one diff operation. */ public static class Diff { /** * One of: INSERT, DELETE or EQUAL. */ public Operation operation; /** * The text associated with this diff operation. */ public String text; /** * Constructor. Initializes the diff with the provided values. * @param operation One of INSERT, DELETE or EQUAL. * @param text The text being applied. */ public Diff(Operation operation, String text) { // Construct a diff with the specified operation and text. this.operation = operation; this.text = text; } /** * Display a human-readable version of this Diff. * @return text version. */ public String toString() { String prettyText = this.text.replace('\n', '\u00b6'); return "Diff(" + this.operation + ",\"" + prettyText + "\")"; } /** * Is this Diff equivalent to another Diff? * @param d Another Diff to compare against. * @return true or false. */ public boolean equals(Object d) { try { return (((Diff) d).operation == this.operation) && (((Diff) d).text.equals(this.text)); } catch (ClassCastException e) { return false; } } } /** * Class representing one patch operation. */ public static class Patch { public LinkedList<Diff> diffs; public int start1; public int start2; public int length1; public int length2; /** * Constructor. Initializes with an empty list of diffs. */ public Patch() { this.diffs = new LinkedList<Diff>(); } /** * Emmulate GNU diff's format. * Header: @@ -382,8 +481,9 @@ * Indicies are printed as 1-based, not 0-based. * @return The GNU diff string. */ public String toString() { String coords1, coords2; if (this.length1 == 0) { coords1 = this.start1 + ",0"; } else if (this.length1 == 1) { coords1 = Integer.toString(this.start1 + 1); } else { coords1 = (this.start1 + 1) + "," + this.length1; } if (this.length2 == 0) { coords2 = this.start2 + ",0"; } else if (this.length2 == 1) { coords2 = Integer.toString(this.start2 + 1); } else { coords2 = (this.start2 + 1) + "," + this.length2; } StringBuilder text = new StringBuilder(); text.append("@@ -").append(coords1).append(" +").append(coords2) .append(" @@\n"); // Escape the body of the patch with %xx notation. for (Diff aDiff : this.diffs) { switch (aDiff.operation) { case INSERT: text.append('+'); break; case DELETE: text.append('-'); break; case EQUAL: text.append(' '); break; } try { text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' ')) .append("\n"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } } return unescapeForEncodeUriCompatability(text.toString()); } } /** * Unescape selected chars for compatability with JavaScript's encodeURI. * In speed critical applications this could be dropped since the * receiving application will certainly decode these fine. * Note that this function is case-sensitive. Thus "%3f" would not be * unescaped. But this is ok because it is only called with the output of * URLEncoder.encode which returns uppercase hex. * * Example: "%3F" -> "?", "%24" -> "$", etc. * * @param str The string to escape. * @return The escaped string. */ private static String unescapeForEncodeUriCompatability(String str) { return str.replace("%21", "!").replace("%7E", "~") .replace("%27", "'").replace("%28", "(").replace("%29", ")") .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?") .replace("%3A", ":").replace("%40", "@").replace("%26", "&") .replace("%3D", "=").replace("%2B", "+").replace("%24", "$") .replace("%2C", ",").replace("%23", "#"); } }