/************************************************************************** Etherboot - BOOTP/TFTP Bootstrap Program Schneider & Koch G16 NIC driver for Etherboot heavily based on SK G16 driver from Linux 2.0.36 Changes to make it work with Etherboot by Georg Baum <Georg.Baum@gmx.de> ***************************************************************************/ /*- * Copyright (C) 1994 by PJD Weichmann & SWS Bern, Switzerland * * This software may be used and distributed according to the terms * of the GNU Public License, incorporated herein by reference. * * Module : sk_g16.c * * Version : $Revision: 1.4 $ * * Author : Patrick J.D. Weichmann * * Date Created : 94/05/26 * Last Updated : $Date: 2002/01/02 21:56:40 $ * * Description : Schneider & Koch G16 Ethernet Device Driver for * Linux Kernel >= 1.1.22 * Update History : * -*/ /* * The Schneider & Koch (SK) G16 Network device driver is based * on the 'ni6510' driver from Michael Hipp which can be found at * ftp://sunsite.unc.edu/pub/Linux/system/Network/drivers/nidrivers.tar.gz * * Sources: 1) ni6510.c by M. Hipp * 2) depca.c by D.C. Davies * 3) skeleton.c by D. Becker * 4) Am7990 Local Area Network Controller for Ethernet (LANCE), * AMD, Pub. #05698, June 1989 * * Many Thanks for helping me to get things working to: * * A. Cox (A.Cox@swansea.ac.uk) * M. Hipp (mhipp@student.uni-tuebingen.de) * R. Bolz (Schneider & Koch, Germany) * * See README.sk_g16 for details about limitations and bugs for the * current version. * * To Do: * - Support of SK_G8 and other SK Network Cards. * - Autoset memory mapped RAM. Check for free memory and then * configure RAM correctly. * - SK_close should really set card in to initial state. * - Test if IRQ 3 is not switched off. Use autoirq() functionality. * (as in /drivers/net/skeleton.c) * - Implement Multicast addressing. At minimum something like * in depca.c. * - Redo the statistics part. * - Try to find out if the board is in 8 Bit or 16 Bit slot. * If in 8 Bit mode don't use IRQ 11. * - (Try to make it slightly faster.) */ /* to get some global routines like printf */ #include "etherboot.h" /* to get the interface to the body of the program */ #include "nic.h" /* From linux/if_ether.h: */ #define ETH_ZLEN 60 /* Min. octets in frame sans FCS */ #include "sk_g16.h" /* * Schneider & Koch Card Definitions * ================================= */ #define SK_NAME "SK_G16" /* * SK_G16 Configuration * -------------------- */ /* * Abbreviations * ------------- * * RAM - used for the 16KB shared memory * Boot_ROM, ROM - are used for referencing the BootEPROM * * SK_ADDR is a symbolic constant used to configure * the behaviour of the driver and the SK_G16. * * SK_ADDR defines the address where the RAM will be mapped into the real * host memory. * valid addresses are from 0xa0000 to 0xfc000 in 16Kbyte steps. */ #define SK_ADDR 0xcc000 /* * In POS3 are bits A14-A19 of the address bus. These bits can be set * to choose the RAM address. That's why we only can choose the RAM address * in 16KB steps. */ #define POS_ADDR (rom_addr>>14) /* Do not change this line */ /* * SK_G16 I/O PORT's + IRQ's + Boot_ROM locations * ---------------------------------------------- */ /* * As nearly every card has also SK_G16 a specified I/O Port region and * only a few possible IRQ's. * In the Installation Guide from Schneider & Koch is listed a possible * Interrupt IRQ2. IRQ2 is always IRQ9 in boards with two cascaded interrupt * controllers. So we use in SK_IRQS IRQ9. */ /* Don't touch any of the following #defines. */ #define SK_IO_PORTS { 0x100, 0x180, 0x208, 0x220, 0x288, 0x320, 0x328, 0x390, 0 } /* * SK_G16 POS REGISTERS * -------------------- */ /* * SK_G16 has a Programmable Option Select (POS) Register. * The POS is composed of 8 separate registers (POS0-7) which * are I/O mapped on an address set by the W1 switch. * */ #define SK_POS_SIZE 8 /* 8 I/O Ports are used by SK_G16 */ #define SK_POS0 ioaddr /* Card-ID Low (R) */ #define SK_POS1 ioaddr+1 /* Card-ID High (R) */ #define SK_POS2 ioaddr+2 /* Card-Enable, Boot-ROM Disable (RW) */ #define SK_POS3 ioaddr+3 /* Base address of RAM */ #define SK_POS4 ioaddr+4 /* IRQ */ /* POS5 - POS7 are unused */ /* * SK_G16 MAC PREFIX * ----------------- */ /* * Scheider & Koch manufacturer code (00:00:a5). * This must be checked, that we are sure it is a SK card. */ #define SK_MAC0 0x00 #define SK_MAC1 0x00 #define SK_MAC2 0x5a /* * SK_G16 ID * --------- */ /* * If POS0,POS1 contain the following ID, then we know * at which I/O Port Address we are. */ #define SK_IDLOW 0xfd #define SK_IDHIGH 0x6a /* * LANCE POS Bit definitions * ------------------------- */ #define SK_ROM_RAM_ON (POS2_CARD) #define SK_ROM_RAM_OFF (POS2_EPROM) #define SK_ROM_ON (inb(SK_POS2) & POS2_CARD) #define SK_ROM_OFF (inb(SK_POS2) | POS2_EPROM) #define SK_RAM_ON (inb(SK_POS2) | POS2_CARD) #define SK_RAM_OFF (inb(SK_POS2) & POS2_EPROM) #define POS2_CARD 0x0001 /* 1 = SK_G16 on 0 = off */ #define POS2_EPROM 0x0002 /* 1 = Boot EPROM off 0 = on */ /* * SK_G16 Memory mapped Registers * ------------------------------ * */ #define SK_IOREG (board->ioreg) /* LANCE data registers. */ #define SK_PORT (board->port) /* Control, Status register */ #define SK_IOCOM (board->iocom) /* I/O Command */ /* * SK_G16 Status/Control Register bits * ----------------------------------- * * (C) Controlreg (S) Statusreg */ /* * Register transfer: 0 = no transfer * 1 = transferring data between LANCE and I/O reg */ #define SK_IORUN 0x20 /* * LANCE interrupt: 0 = LANCE interrupt occurred * 1 = no LANCE interrupt occurred */ #define SK_IRQ 0x10 #define SK_RESET 0x08 /* Reset SK_CARD: 0 = RESET 1 = normal */ #define SK_RW 0x02 /* 0 = write to 1 = read from */ #define SK_ADR 0x01 /* 0 = REG DataPort 1 = RAP Reg addr port */ #define SK_RREG SK_RW /* Transferdirection to read from lance */ #define SK_WREG 0 /* Transferdirection to write to lance */ #define SK_RAP SK_ADR /* Destination Register RAP */ #define SK_RDATA 0 /* Destination Register REG DataPort */ /* * SK_G16 I/O Command * ------------------ */ /* * Any bitcombination sets the internal I/O bit (transfer will start) * when written to I/O Command */ #define SK_DOIO 0x80 /* Do Transfer */ /* * LANCE RAP (Register Address Port). * --------------------------------- */ /* * The LANCE internal registers are selected through the RAP. * The Registers are: * * CSR0 - Status and Control flags * CSR1 - Low order bits of initialize block (bits 15:00) * CSR2 - High order bits of initialize block (bits 07:00, 15:08 are reserved) * CSR3 - Allows redefinition of the Bus Master Interface. * This register must be set to 0x0002, which means BSWAP = 0, * ACON = 1, BCON = 0; * */ #define CSR0 0x00 #define CSR1 0x01 #define CSR2 0x02 #define CSR3 0x03 /* * General Definitions * =================== */ /* * Set the number of Tx and Rx buffers, using Log_2(# buffers). * We have 16KB RAM which can be accessed by the LANCE. In the * memory are not only the buffers but also the ring descriptors and * the initialize block. * Don't change anything unless you really know what you do. */ #define LC_LOG_TX_BUFFERS 1 /* (2 == 2^^1) 2 Transmit buffers */ #define LC_LOG_RX_BUFFERS 2 /* (8 == 2^^3) 8 Receive buffers */ /* Descriptor ring sizes */ #define TMDNUM (1 << (LC_LOG_TX_BUFFERS)) /* 2 Transmit descriptor rings */ #define RMDNUM (1 << (LC_LOG_RX_BUFFERS)) /* 8 Receive Buffers */ /* Define Mask for setting RMD, TMD length in the LANCE init_block */ #define TMDNUMMASK (LC_LOG_TX_BUFFERS << 29) #define RMDNUMMASK (LC_LOG_RX_BUFFERS << 29) /* * Data Buffer size is set to maximum packet length. */ #define PKT_BUF_SZ 1518 /* * The number of low I/O ports used by the ethercard. */ #define ETHERCARD_TOTAL_SIZE SK_POS_SIZE /* * Portreserve is there to mark the Card I/O Port region as used. * Check_region is to check if the region at ioaddr with the size "size" * is free or not. * Snarf_region allocates the I/O Port region. */ #ifndef HAVE_PORTRESERVE #define check_region(ioaddr1, size) 0 #define request_region(ioaddr1, size,name) do ; while (0) #endif /* * SK_DEBUG * * Here you can choose what level of debugging wanted. * * If SK_DEBUG and SK_DEBUG2 are undefined, then only the * necessary messages will be printed. * * If SK_DEBUG is defined, there will be many debugging prints * which can help to find some mistakes in configuration or even * in the driver code. * * If SK_DEBUG2 is defined, many many messages will be printed * which normally you don't need. I used this to check the interrupt * routine. * * (If you define only SK_DEBUG2 then only the messages for * checking interrupts will be printed!) * * Normal way of live is: * * For the whole thing get going let both symbolic constants * undefined. If you face any problems and you know what's going * on (you know something about the card and you can interpret some * hex LANCE register output) then define SK_DEBUG * */ #undef SK_DEBUG /* debugging */ #undef SK_DEBUG2 /* debugging with more verbose report */ #ifdef SK_DEBUG #define PRINTF(x) printf x #else #define PRINTF(x) /**/ #endif #ifdef SK_DEBUG2 #define PRINTF2(x) printf x #else #define PRINTF2(x) /**/ #endif /* * SK_G16 RAM * * The components are memory mapped and can be set in a region from * 0x00000 through 0xfc000 in 16KB steps. * * The Network components are: dual ported RAM, Prom, I/O Reg, Status-, * Controlregister and I/O Command. * * dual ported RAM: This is the only memory region which the LANCE chip * has access to. From the Lance it is addressed from 0x0000 to * 0x3fbf. The host accesses it normally. * * PROM: The PROM obtains the ETHERNET-MAC-Address. It is realised as a * 8-Bit PROM, this means only the 16 even addresses are used of the * 32 Byte Address region. Access to a odd address results in invalid * data. * * LANCE I/O Reg: The I/O Reg is build of 4 single Registers, Low-Byte Write, * Hi-Byte Write, Low-Byte Read, Hi-Byte Read. * Transfer from or to the LANCE is always in 16Bit so Low and High * registers are always relevant. * * The Data from the Readregister is not the data in the Writeregister!! * * Port: Status- and Controlregister. * Two different registers which share the same address, Status is * read-only, Control is write-only. * * I/O Command: * Any bitcombination written in here starts the transmission between * Host and LANCE. */ typedef struct { unsigned char ram[0x3fc0]; /* 16KB dual ported ram */ unsigned char rom[0x0020]; /* 32Byte PROM containing 6Byte MAC */ unsigned char res1[0x0010]; /* reserved */ unsigned volatile short ioreg;/* LANCE I/O Register */ unsigned volatile char port; /* Statusregister and Controlregister */ unsigned char iocom; /* I/O Command Register */ } SK_RAM; /* struct */ /* * This is the structure for the dual ported ram. We * have exactly 16 320 Bytes. In here there must be: * * - Initialize Block (starting at a word boundary) * - Receive and Transmit Descriptor Rings (quadword boundary) * - Data Buffers (arbitrary boundary) * * This is because LANCE has on SK_G16 only access to the dual ported * RAM and nowhere else. */ struct SK_ram { struct init_block ib; struct tmd tmde[TMDNUM]; struct rmd rmde[RMDNUM]; char tmdbuf[TMDNUM][PKT_BUF_SZ]; char rmdbuf[RMDNUM][PKT_BUF_SZ]; }; /* * Structure where all necessary information is for ring buffer * management and statistics. */ struct priv { struct SK_ram *ram; /* dual ported ram structure */ struct rmd *rmdhead; /* start of receive ring descriptors */ struct tmd *tmdhead; /* start of transmit ring descriptors */ int rmdnum; /* actual used ring descriptor */ int tmdnum; /* actual transmit descriptor for transmitting data */ int tmdlast; /* last sent descriptor used for error handling, etc */ void *rmdbufs[RMDNUM]; /* pointer to the receive buffers */ void *tmdbufs[TMDNUM]; /* pointer to the transmit buffers */ }; /* global variable declaration */ /* static variables */ static SK_RAM *board; /* pointer to our memory mapped board components */ static unsigned short ioaddr; /* base io address */ static struct priv p_data; /* Macros */ /* Function Prototypes */ /* * Device Driver functions * ----------------------- * See for short explanation of each function its definitions header. */ static int SK_probe1(struct nic *nic, short ioaddr1); static void SK_reset(struct nic *nic); static int SK_poll(struct nic *nic); static void SK_transmit( struct nic *nic, const char *d, /* Destination */ unsigned int t, /* Type */ unsigned int s, /* size */ const char *p); /* Packet */ static void SK_disable(struct nic *nic); struct nic *SK_probe(struct nic *nic, unsigned short *probe_addrs); /* * LANCE Functions * --------------- */ static int SK_lance_init(struct nic *nic, unsigned short mode); static void SK_reset_board(void); static void SK_set_RAP(int reg_number); static int SK_read_reg(int reg_number); static int SK_rread_reg(void); static void SK_write_reg(int reg_number, int value); /* * Debugging functions * ------------------- */ static void SK_print_pos(struct nic *nic, char *text); static void SK_print_ram(struct nic *nic); /************************************************************************** RESET - Reset adapter ***************************************************************************/ static void SK_reset(struct nic *nic) { /* put the card in its initial state */ SK_lance_init(nic, MODE_NORMAL); } /************************************************************************** POLL - Wait for a frame ***************************************************************************/ static int SK_poll(struct nic *nic) { /* return true if there's an ethernet packet ready to read */ struct priv *p; /* SK_G16 private structure */ struct rmd *rmdp; int csr0, rmdstat, packet_there; PRINTF2(("## %s: At beginning of SK_poll(). CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); p = nic->priv_data; csr0 = SK_read_reg(CSR0); /* store register for checking */ /* * Acknowledge all of the current interrupt sources, disable * Interrupts (INEA = 0) */ SK_write_reg(CSR0, csr0 & CSR0_CLRALL); if (csr0 & CSR0_ERR) /* LANCE Error */ { printf("%s: error: %#hX", SK_NAME, csr0); if (csr0 & CSR0_MISS) /* No place to store packet ? */ { printf(", Packet dropped."); } putchar('\n'); } rmdp = p->rmdhead + p->rmdnum; packet_there = 0; /* As long as we own the next entry, check status and send * it up to higher layer */ while (!( (rmdstat = rmdp->u.s.status) & RX_OWN)) { /* * Start and end of packet must be set, because we use * the ethernet maximum packet length (1518) as buffer size. * * Because our buffers are at maximum OFLO and BUFF errors are * not to be concerned (see Data sheet) */ if ((rmdstat & (RX_STP | RX_ENP)) != (RX_STP | RX_ENP)) { /* Start of a frame > 1518 Bytes ? */ if (rmdstat & RX_STP) { printf("%s: packet too long\n", SK_NAME); } /* * All other packets will be ignored until a new frame with * start (RX_STP) set follows. * * What we do is just give descriptor free for new incoming * packets. */ rmdp->u.s.status = RX_OWN; /* Relinquish ownership to LANCE */ } else if (rmdstat & RX_ERR) /* Receive Error ? */ { printf("%s: RX error: %#hX\n", SK_NAME, (int) rmdstat); rmdp->u.s.status = RX_OWN; /* Relinquish ownership to LANCE */ } else /* We have a packet which can be queued for the upper layers */ { int len = (rmdp->mlen & 0x0fff); /* extract message length from receive buffer */ /* * Copy data out of our receive descriptor into nic->packet. * * (rmdp->u.buffer & 0x00ffffff) -> get address of buffer and * ignore status fields) */ memcpy(nic->packet, (unsigned char *) (rmdp->u.buffer & 0x00ffffff), nic->packetlen = len); packet_there = 1; /* * Packet is queued and marked for processing so we * free our descriptor */ rmdp->u.s.status = RX_OWN; p->rmdnum++; p->rmdnum %= RMDNUM; rmdp = p->rmdhead + p->rmdnum; } } SK_write_reg(CSR0, CSR0_INEA); /* Enable Interrupts */ return (packet_there); } /************************************************************************** TRANSMIT - Transmit a frame ***************************************************************************/ static void SK_transmit( struct nic *nic, const char *d, /* Destination */ unsigned int t, /* Type */ unsigned int s, /* size */ const char *pack) /* Packet */ { /* send the packet to destination */ struct priv *p; /* SK_G16 private structure */ struct tmd *tmdp; short len; int csr0, i, tmdstat; PRINTF2(("## %s: At beginning of SK_transmit(). CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); p = nic->priv_data; tmdp = p->tmdhead + p->tmdnum; /* Which descriptor for transmitting */ /* Copy data into dual ported ram */ memcpy(&p->ram->tmdbuf[p->tmdnum][0], d, ETH_ALEN); /* dst */ memcpy(&p->ram->tmdbuf[p->tmdnum][ETH_ALEN], nic->node_addr, ETH_ALEN); /* src */ p->ram->tmdbuf[p->tmdnum][ETH_ALEN + ETH_ALEN] = t >> 8; /* type */ p->ram->tmdbuf[p->tmdnum][ETH_ALEN + ETH_ALEN + 1] = t; /* type */ memcpy(&p->ram->tmdbuf[p->tmdnum][ETH_HLEN], pack, s); s += ETH_HLEN; while (s < ETH_ZLEN) /* pad to min length */ p->ram->tmdbuf[p->tmdnum][s++] = 0; p->ram->tmde[p->tmdnum].status2 = 0x0; /* Evaluate Packet length */ len = ETH_ZLEN < s ? s : ETH_ZLEN; /* Fill in Transmit Message Descriptor */ tmdp->blen = -len; /* set length to transmit */ /* * Packet start and end is always set because we use the maximum * packet length as buffer length. * Relinquish ownership to LANCE */ tmdp->u.s.status = TX_OWN | TX_STP | TX_ENP; /* Start Demand Transmission */ SK_write_reg(CSR0, CSR0_TDMD | CSR0_INEA); csr0 = SK_read_reg(CSR0); /* store register for checking */ /* * Acknowledge all of the current interrupt sources, disable * Interrupts (INEA = 0) */ SK_write_reg(CSR0, csr0 & CSR0_CLRALL); if (csr0 & CSR0_ERR) /* LANCE Error */ { printf("%s: error: %#hX", SK_NAME, csr0); if (csr0 & CSR0_MISS) /* No place to store packet ? */ { printf(", Packet dropped."); } putchar('\n'); } /* Set next buffer */ p->tmdlast++; p->tmdlast &= TMDNUM-1; tmdstat = tmdp->u.s.status & 0xff00; /* filter out status bits 15:08 */ /* * We check status of transmitted packet. * see LANCE data-sheet for error explanation */ if (tmdstat & TX_ERR) /* Error occurred */ { printf("%s: TX error: %#hX %#hX\n", SK_NAME, (int) tmdstat, (int) tmdp->status2); if (tmdp->status2 & TX_TDR) /* TDR problems? */ { printf("%s: tdr-problems \n", SK_NAME); } if (tmdp->status2 & TX_UFLO) /* Underflow error ? */ { /* * If UFLO error occurs it will turn transmitter of. * So we must reinit LANCE */ SK_lance_init(nic, MODE_NORMAL); } tmdp->status2 = 0; /* Clear error flags */ } SK_write_reg(CSR0, CSR0_INEA); /* Enable Interrupts */ /* Set pointer to next transmit buffer */ p->tmdnum++; p->tmdnum &= TMDNUM-1; } /************************************************************************** DISABLE - Turn off ethernet interface ***************************************************************************/ static void SK_disable(struct nic *nic) { PRINTF(("## %s: At beginning of SK_disable(). CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); PRINTF(("%s: Shutting %s down CSR0 %#hX\n", SK_NAME, SK_NAME, (int) SK_read_reg(CSR0))); SK_write_reg(CSR0, CSR0_STOP); /* STOP the LANCE */ } /************************************************************************** PROBE - Look for an adapter, this routine's visible to the outside ***************************************************************************/ struct nic *SK_probe(struct nic *nic, unsigned short *probe_addrs) { unsigned short *p; static unsigned short io_addrs[] = SK_IO_PORTS; /* if probe_addrs is 0, then routine can use a hardwired default */ putchar('\n'); nic->priv_data = &p_data; if (probe_addrs == 0) probe_addrs = io_addrs; for (p = probe_addrs; (ioaddr = *p) != 0; ++p) { long offset1, offset0 = inb(ioaddr); if ((offset0 == SK_IDLOW) && ((offset1 = inb(ioaddr + 1)) == SK_IDHIGH)) if (SK_probe1(nic, ioaddr) >= 0) break; } /* if board found */ if (ioaddr != 0) { /* point to NIC specific routines */ nic->reset = SK_reset; nic->poll = SK_poll; nic->transmit = SK_transmit; nic->disable = SK_disable; return nic; } /* else */ { return 0; } } int SK_probe1(struct nic *nic, short ioaddr1) { int i,j; /* Counters */ int sk_addr_flag = 0; /* SK ADDR correct? 1 - no, 0 - yes */ unsigned int rom_addr; /* used to store RAM address used for POS_ADDR */ struct priv *p; /* SK_G16 private structure */ if (SK_ADDR & 0x3fff || SK_ADDR < 0xa0000) { /* * Now here we could use a routine which searches for a free * place in the ram and set SK_ADDR if found. TODO. */ printf("%s: SK_ADDR %#hX is not valid. Check configuration.\n", SK_NAME, SK_ADDR); return -1; } rom_addr = SK_ADDR; outb(SK_ROM_RAM_OFF, SK_POS2); /* Boot_ROM + RAM off */ outb(POS_ADDR, SK_POS3); /* Set RAM address */ outb(SK_ROM_RAM_ON, SK_POS2); /* RAM on, BOOT_ROM on */ #ifdef SK_DEBUG SK_print_pos(nic, "POS registers after ROM, RAM config"); #endif board = (SK_RAM *) rom_addr; PRINTF(("adr[0]: %hX, adr[1]: %hX, adr[2]: %hX\n", board->rom[0], board->rom[2], board->rom[4])); /* Read in station address */ for (i = 0, j = 0; i < ETH_ALEN; i++, j+=2) { *(nic->node_addr+i) = board->rom[j]; } /* Check for manufacturer code */ #ifdef SK_DEBUG if (!(*(nic->node_addr+0) == SK_MAC0 && *(nic->node_addr+1) == SK_MAC1 && *(nic->node_addr+2) == SK_MAC2) ) { PRINTF(("## %s: We did not find SK_G16 at RAM location.\n", SK_NAME)); return -1; /* NO SK_G16 found */ } #endif p = nic->priv_data; /* Initialize private structure */ p->ram = (struct SK_ram *) rom_addr; /* Set dual ported RAM addr */ p->tmdhead = &(p->ram)->tmde[0]; /* Set TMD head */ p->rmdhead = &(p->ram)->rmde[0]; /* Set RMD head */ printf("Schneider & Koch G16 at %#hX, mem at %#hX, HW addr: %!\n", (unsigned int) ioaddr, (unsigned int) p->ram, nic->node_addr); /* Initialize buffer pointers */ for (i = 0; i < TMDNUM; i++) { p->tmdbufs[i] = p->ram->tmdbuf[i]; } for (i = 0; i < RMDNUM; i++) { p->rmdbufs[i] = p->ram->rmdbuf[i]; } i = 0; if (!(i = SK_lance_init(nic, MODE_NORMAL))) /* LANCE init OK? */ { #ifdef SK_DEBUG /* * This debug block tries to stop LANCE, * reinit LANCE with transmitter and receiver disabled, * then stop again and reinit with NORMAL_MODE */ printf("## %s: After lance init. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0)); SK_write_reg(CSR0, CSR0_STOP); printf("## %s: LANCE stopped. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0)); SK_lance_init(nic, MODE_DTX | MODE_DRX); printf("## %s: Reinit with DTX + DRX off. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0)); SK_write_reg(CSR0, CSR0_STOP); printf("## %s: LANCE stopped. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0)); SK_lance_init(nic, MODE_NORMAL); printf("## %s: LANCE back to normal mode. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0)); SK_print_pos(nic, "POS regs before returning OK"); #endif /* SK_DEBUG */ } else /* LANCE init failed */ { PRINTF(("## %s: LANCE init failed: CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); return -1; } #ifdef SK_DEBUG SK_print_pos(nic, "End of SK_probe1"); SK_print_ram(nic); #endif return 0; /* Initialization done */ } /* End of SK_probe1() */ static int SK_lance_init(struct nic *nic, unsigned short mode) { int i; struct priv *p = (struct priv *) nic->priv_data; struct tmd *tmdp; struct rmd *rmdp; PRINTF(("## %s: At beginning of LANCE init. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); /* Reset LANCE */ SK_reset_board(); /* Initialize TMD's with start values */ p->tmdnum = 0; /* First descriptor for transmitting */ p->tmdlast = 0; /* First descriptor for reading stats */ for (i = 0; i < TMDNUM; i++) /* Init all TMD's */ { tmdp = p->tmdhead + i; tmdp->u.buffer = (unsigned long) p->tmdbufs[i]; /* assign buffer */ /* Mark TMD as start and end of packet */ tmdp->u.s.status = TX_STP | TX_ENP; } /* Initialize RMD's with start values */ p->rmdnum = 0; /* First RMD which will be used */ for (i = 0; i < RMDNUM; i++) /* Init all RMD's */ { rmdp = p->rmdhead + i; rmdp->u.buffer = (unsigned long) p->rmdbufs[i]; /* assign buffer */ /* * LANCE must be owner at beginning so that he can fill in * receiving packets, set status and release RMD */ rmdp->u.s.status = RX_OWN; rmdp->blen = -PKT_BUF_SZ; /* Buffer Size in a two's complement */ rmdp->mlen = 0; /* init message length */ } /* Fill LANCE Initialize Block */ (p->ram)->ib.mode = mode; /* Set operation mode */ for (i = 0; i < ETH_ALEN; i++) /* Set physical address */ { (p->ram)->ib.paddr[i] = *(nic->node_addr+i); } for (i = 0; i < 8; i++) /* Set multicast, logical address */ { (p->ram)->ib.laddr[i] = 0; /* We do not use logical addressing */ } /* Set ring descriptor pointers and set number of descriptors */ (p->ram)->ib.rdrp = (int) p->rmdhead | RMDNUMMASK; (p->ram)->ib.tdrp = (int) p->tmdhead | TMDNUMMASK; /* Prepare LANCE Control and Status Registers */ SK_write_reg(CSR3, CSR3_ACON); /* Ale Control !!!THIS MUST BE SET!!!! */ /* * LANCE addresses the RAM from 0x0000 to 0x3fbf and has no access to * PC Memory locations. * * In structure SK_ram is defined that the first thing in ram * is the initialization block. So his address is for LANCE always * 0x0000 * * CSR1 contains low order bits 15:0 of initialization block address * CSR2 is built of: * 7:0 High order bits 23:16 of initialization block address * 15:8 reserved, must be 0 */ /* Set initialization block address (must be on word boundary) */ SK_write_reg(CSR1, 0); /* Set low order bits 15:0 */ SK_write_reg(CSR2, 0); /* Set high order bits 23:16 */ PRINTF(("## %s: After setting CSR1-3. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); /* Initialize LANCE */ /* * INIT = Initialize, when set, causes the LANCE to begin the * initialization procedure and access the Init Block. */ SK_write_reg(CSR0, CSR0_INIT); /* Wait until LANCE finished initialization */ SK_set_RAP(CSR0); /* Register Address Pointer to CSR0 */ for (i = 0; (i < 100) && !(SK_rread_reg() & CSR0_IDON); i++) ; /* Wait until init done or go ahead if problems (i>=100) */ if (i >= 100) /* Something is wrong ! */ { printf("%s: can't init am7990, status: %#hX " "init_block: %#hX\n", SK_NAME, (int) SK_read_reg(CSR0), (unsigned int) &(p->ram)->ib); #ifdef SK_DEBUG SK_print_pos(nic, "LANCE INIT failed"); #endif return -1; /* LANCE init failed */ } PRINTF(("## %s: init done after %d ticks\n", SK_NAME, i)); /* Clear Initialize done, enable Interrupts, start LANCE */ SK_write_reg(CSR0, CSR0_IDON | CSR0_INEA | CSR0_STRT); PRINTF(("## %s: LANCE started. CSR0: %#hX\n", SK_NAME, SK_read_reg(CSR0))); return 0; /* LANCE is up and running */ } /* End of SK_lance_init() */ /* LANCE access functions * * ! CSR1-3 can only be accessed when in CSR0 the STOP bit is set ! */ static void SK_reset_board(void) { int i; PRINTF(("## %s: At beginning of SK_reset_board.\n", SK_NAME)); SK_PORT = 0x00; /* Reset active */ for (i = 0; i < 10 ; i++) /* Delay min 5ms */ ; SK_PORT = SK_RESET; /* Set back to normal operation */ } /* End of SK_reset_board() */ static void SK_set_RAP(int reg_number) { SK_IOREG = reg_number; SK_PORT = SK_RESET | SK_RAP | SK_WREG; SK_IOCOM = SK_DOIO; while (SK_PORT & SK_IORUN) ; } /* End of SK_set_RAP() */ static int SK_read_reg(int reg_number) { SK_set_RAP(reg_number); SK_PORT = SK_RESET | SK_RDATA | SK_RREG; SK_IOCOM = SK_DOIO; while (SK_PORT & SK_IORUN) ; return (SK_IOREG); } /* End of SK_read_reg() */ static int SK_rread_reg(void) { SK_PORT = SK_RESET | SK_RDATA | SK_RREG; SK_IOCOM = SK_DOIO; while (SK_PORT & SK_IORUN) ; return (SK_IOREG); } /* End of SK_rread_reg() */ static void SK_write_reg(int reg_number, int value) { SK_set_RAP(reg_number); SK_IOREG = value; SK_PORT = SK_RESET | SK_RDATA | SK_WREG; SK_IOCOM = SK_DOIO; while (SK_PORT & SK_IORUN) ; } /* End of SK_write_reg */ /* * Debugging functions * ------------------- */ #ifdef SK_DEBUG static void SK_print_pos(struct nic *nic, char *text) { unsigned char pos0 = inb(SK_POS0), pos1 = inb(SK_POS1), pos2 = inb(SK_POS2), pos3 = inb(SK_POS3), pos4 = inb(SK_POS4); printf("## %s: %s.\n" "## pos0=%#hX pos1=%#hX pos2=%#hX pos3=%#hX pos4=%#hX\n", SK_NAME, text, pos0, pos1, pos2, (pos3<<14), pos4); } /* End of SK_print_pos() */ static void SK_print_ram(struct nic *nic) { int i; struct priv *p = (struct priv *) nic->priv_data; printf("## %s: RAM Details.\n" "## RAM at %#hX tmdhead: %#hX rmdhead: %#hX initblock: %#hX\n", SK_NAME, (unsigned int) p->ram, (unsigned int) p->tmdhead, (unsigned int) p->rmdhead, (unsigned int) &(p->ram)->ib); printf("## "); for(i = 0; i < TMDNUM; i++) { if (!(i % 3)) /* Every third line do a newline */ { printf("\n## "); } printf("tmdbufs%d: %#hX ", (i+1), (int) p->tmdbufs[i]); } printf("## "); for(i = 0; i < RMDNUM; i++) { if (!(i % 3)) /* Every third line do a newline */ { printf("\n## "); } printf("rmdbufs%d: %#hX ", (i+1), (int) p->rmdbufs[i]); } putchar('\n'); } /* End of SK_print_ram() */ #endif