/* ******************************************************************************* * Copyright (C) 1997-2011, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* * * File SMPDTFMT.CPP * * Modification History: * * Date Name Description * 02/19/97 aliu Converted from java. * 03/31/97 aliu Modified extensively to work with 50 locales. * 04/01/97 aliu Added support for centuries. * 07/09/97 helena Made ParsePosition into a class. * 07/21/98 stephen Added initializeDefaultCentury. * Removed getZoneIndex (added in DateFormatSymbols) * Removed subParseLong * Removed chk * 02/22/99 stephen Removed character literals for EBCDIC safety * 10/14/99 aliu Updated 2-digit year parsing so that only "00" thru * "99" are recognized. {j28 4182066} * 11/15/99 weiv Added support for week of year/day of week format ******************************************************************************** */ #define ZID_KEY_MAX 128 #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "unicode/smpdtfmt.h" #include "unicode/dtfmtsym.h" #include "unicode/ures.h" #include "unicode/msgfmt.h" #include "unicode/calendar.h" #include "unicode/gregocal.h" #include "unicode/timezone.h" #include "unicode/decimfmt.h" #include "unicode/dcfmtsym.h" #include "unicode/uchar.h" #include "unicode/uniset.h" #include "unicode/ustring.h" #include "unicode/basictz.h" #include "unicode/simpletz.h" #include "unicode/rbtz.h" #include "unicode/vtzone.h" #include "olsontz.h" #include "patternprops.h" #include "fphdlimp.h" #include "gregoimp.h" #include "hebrwcal.h" #include "cstring.h" #include "uassert.h" #include "cmemory.h" #include "umutex.h" #include "tzfmt.h" #include <float.h> #include "smpdtfst.h" #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL) #include <stdio.h> #endif // ***************************************************************************** // class SimpleDateFormat // ***************************************************************************** U_NAMESPACE_BEGIN static const UChar PATTERN_CHAR_BASE = 0x40; /** * Last-resort string to use for "GMT" when constructing time zone strings. */ // For time zones that have no names, use strings GMT+minutes and // GMT-minutes. For instance, in France the time zone is GMT+60. // Also accepted are GMT+H:MM or GMT-H:MM. static const UChar gGmt[] = {0x0047, 0x004D, 0x0054, 0x0000}; // "GMT" static const UChar gGmtPlus[] = {0x0047, 0x004D, 0x0054, 0x002B, 0x0000}; // "GMT+" static const UChar gGmtMinus[] = {0x0047, 0x004D, 0x0054, 0x002D, 0x0000}; // "GMT-" static const UChar gDefGmtPat[] = {0x0047, 0x004D, 0x0054, 0x007B, 0x0030, 0x007D, 0x0000}; /* GMT{0} */ static const UChar gDefGmtNegHmsPat[] = {0x002D, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x003A, 0x0073, 0x0073, 0x0000}; /* -HH:mm:ss */ static const UChar gDefGmtNegHmPat[] = {0x002D, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x0000}; /* -HH:mm */ static const UChar gDefGmtPosHmsPat[] = {0x002B, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x003A, 0x0073, 0x0073, 0x0000}; /* +HH:mm:ss */ static const UChar gDefGmtPosHmPat[] = {0x002B, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x0000}; /* +HH:mm */ static const UChar gUt[] = {0x0055, 0x0054, 0x0000}; // "UT" static const UChar gUtc[] = {0x0055, 0x0054, 0x0043, 0x0000}; // "UT" typedef enum GmtPatSize { kGmtLen = 3, kGmtPatLen = 6, kNegHmsLen = 9, kNegHmLen = 6, kPosHmsLen = 9, kPosHmLen = 6, kUtLen = 2, kUtcLen = 3 } GmtPatSize; // Stuff needed for numbering system overrides typedef enum OvrStrType { kOvrStrDate = 0, kOvrStrTime = 1, kOvrStrBoth = 2 } OvrStrType; static const UDateFormatField kDateFields[] = { UDAT_YEAR_FIELD, UDAT_MONTH_FIELD, UDAT_DATE_FIELD, UDAT_DAY_OF_YEAR_FIELD, UDAT_DAY_OF_WEEK_IN_MONTH_FIELD, UDAT_WEEK_OF_YEAR_FIELD, UDAT_WEEK_OF_MONTH_FIELD, UDAT_YEAR_WOY_FIELD, UDAT_EXTENDED_YEAR_FIELD, UDAT_JULIAN_DAY_FIELD, UDAT_STANDALONE_DAY_FIELD, UDAT_STANDALONE_MONTH_FIELD, UDAT_QUARTER_FIELD, UDAT_STANDALONE_QUARTER_FIELD }; static const int8_t kDateFieldsCount = 13; static const UDateFormatField kTimeFields[] = { UDAT_HOUR_OF_DAY1_FIELD, UDAT_HOUR_OF_DAY0_FIELD, UDAT_MINUTE_FIELD, UDAT_SECOND_FIELD, UDAT_FRACTIONAL_SECOND_FIELD, UDAT_HOUR1_FIELD, UDAT_HOUR0_FIELD, UDAT_MILLISECONDS_IN_DAY_FIELD, UDAT_TIMEZONE_RFC_FIELD }; static const int8_t kTimeFieldsCount = 9; // This is a pattern-of-last-resort used when we can't load a usable pattern out // of a resource. static const UChar gDefaultPattern[] = { 0x79, 0x79, 0x79, 0x79, 0x4D, 0x4D, 0x64, 0x64, 0x20, 0x68, 0x68, 0x3A, 0x6D, 0x6D, 0x20, 0x61, 0 }; /* "yyyyMMdd hh:mm a" */ // This prefix is designed to NEVER MATCH real text, in order to // suppress the parsing of negative numbers. Adjust as needed (if // this becomes valid Unicode). static const UChar SUPPRESS_NEGATIVE_PREFIX[] = {0xAB00, 0}; /** * These are the tags we expect to see in normal resource bundle files associated * with a locale. */ static const char gDateTimePatternsTag[]="DateTimePatterns"; static const UChar gEtcUTC[] = {0x45, 0x74, 0x63, 0x2F, 0x55, 0x54, 0x43, 0x00}; // "Etc/UTC" static const UChar QUOTE = 0x27; // Single quote /* * The field range check bias for each UDateFormatField. * The bias is added to the minimum and maximum values * before they are compared to the parsed number. * For example, the calendar stores zero-based month numbers * but the parsed month numbers start at 1, so the bias is 1. * * A value of -1 means that the value is not checked. */ static const int32_t gFieldRangeBias[] = { -1, // 'G' - UDAT_ERA_FIELD -1, // 'y' - UDAT_YEAR_FIELD 1, // 'M' - UDAT_MONTH_FIELD 0, // 'd' - UDAT_DATE_FIELD -1, // 'k' - UDAT_HOUR_OF_DAY1_FIELD -1, // 'H' - UDAT_HOUR_OF_DAY0_FIELD 0, // 'm' - UDAT_MINUTE_FIELD 0, // 's' - UDAT_SEOND_FIELD -1, // 'S' - UDAT_FRACTIONAL_SECOND_FIELD (0-999?) -1, // 'E' - UDAT_DAY_OF_WEEK_FIELD (1-7?) -1, // 'D' - UDAT_DAY_OF_YEAR_FIELD (1 - 366?) -1, // 'F' - UDAT_DAY_OF_WEEK_IN_MONTH_FIELD (1-5?) -1, // 'w' - UDAT_WEEK_OF_YEAR_FIELD (1-52?) -1, // 'W' - UDAT_WEEK_OF_MONTH_FIELD (1-5?) -1, // 'a' - UDAT_AM_PM_FIELD -1, // 'h' - UDAT_HOUR1_FIELD -1, // 'K' - UDAT_HOUR0_FIELD -1, // 'z' - UDAT_TIMEZONE_FIELD -1, // 'Y' - UDAT_YEAR_WOY_FIELD -1, // 'e' - UDAT_DOW_LOCAL_FIELD -1, // 'u' - UDAT_EXTENDED_YEAR_FIELD -1, // 'g' - UDAT_JULIAN_DAY_FIELD -1, // 'A' - UDAT_MILLISECONDS_IN_DAY_FIELD -1, // 'Z' - UDAT_TIMEZONE_RFC_FIELD -1, // 'v' - UDAT_TIMEZONE_GENERIC_FIELD 0, // 'c' - UDAT_STANDALONE_DAY_FIELD 1, // 'L' - UDAT_STANDALONE_MONTH_FIELD -1, // 'Q' - UDAT_QUARTER_FIELD (1-4?) -1, // 'q' - UDAT_STANDALONE_QUARTER_FIELD -1 // 'V' - UDAT_TIMEZONE_SPECIAL_FIELD }; static UMTX LOCK; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SimpleDateFormat) //---------------------------------------------------------------------- SimpleDateFormat::~SimpleDateFormat() { delete fSymbols; if (fGMTFormatters) { for (int32_t i = 0; i < kNumGMTFormatters; i++) { if (fGMTFormatters[i]) { delete fGMTFormatters[i]; } } uprv_free(fGMTFormatters); } if (fNumberFormatters) { uprv_free(fNumberFormatters); } if (fTimeZoneFormat) { delete fTimeZoneFormat; } while (fOverrideList) { NSOverride *cur = fOverrideList; fOverrideList = cur->next; delete cur->nf; uprv_free(cur); } } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(UErrorCode& status) : fLocale(Locale::getDefault()), fSymbols(NULL), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { construct(kShort, (EStyle) (kShort + kDateOffset), fLocale, status); initializeDefaultCentury(); } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern, UErrorCode &status) : fPattern(pattern), fLocale(Locale::getDefault()), fSymbols(NULL), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { fDateOverride.setToBogus(); fTimeOverride.setToBogus(); initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status); initialize(fLocale, status); initializeDefaultCentury(); } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern, const UnicodeString& override, UErrorCode &status) : fPattern(pattern), fLocale(Locale::getDefault()), fSymbols(NULL), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { fDateOverride.setTo(override); fTimeOverride.setToBogus(); initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status); initialize(fLocale, status); initializeDefaultCentury(); processOverrideString(fLocale,override,kOvrStrBoth,status); } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern, const Locale& locale, UErrorCode& status) : fPattern(pattern), fLocale(locale), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { fDateOverride.setToBogus(); fTimeOverride.setToBogus(); initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status); initialize(fLocale, status); initializeDefaultCentury(); } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern, const UnicodeString& override, const Locale& locale, UErrorCode& status) : fPattern(pattern), fLocale(locale), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { fDateOverride.setTo(override); fTimeOverride.setToBogus(); initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status); initialize(fLocale, status); initializeDefaultCentury(); processOverrideString(locale,override,kOvrStrBoth,status); } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern, DateFormatSymbols* symbolsToAdopt, UErrorCode& status) : fPattern(pattern), fLocale(Locale::getDefault()), fSymbols(symbolsToAdopt), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { fDateOverride.setToBogus(); fTimeOverride.setToBogus(); initializeCalendar(NULL,fLocale,status); initialize(fLocale, status); initializeDefaultCentury(); } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern, const DateFormatSymbols& symbols, UErrorCode& status) : fPattern(pattern), fLocale(Locale::getDefault()), fSymbols(new DateFormatSymbols(symbols)), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { fDateOverride.setToBogus(); fTimeOverride.setToBogus(); initializeCalendar(NULL, fLocale, status); initialize(fLocale, status); initializeDefaultCentury(); } //---------------------------------------------------------------------- // Not for public consumption; used by DateFormat SimpleDateFormat::SimpleDateFormat(EStyle timeStyle, EStyle dateStyle, const Locale& locale, UErrorCode& status) : fLocale(locale), fSymbols(NULL), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { construct(timeStyle, dateStyle, fLocale, status); if(U_SUCCESS(status)) { initializeDefaultCentury(); } } //---------------------------------------------------------------------- /** * Not for public consumption; used by DateFormat. This constructor * never fails. If the resource data is not available, it uses the * the last resort symbols. */ SimpleDateFormat::SimpleDateFormat(const Locale& locale, UErrorCode& status) : fPattern(gDefaultPattern), fLocale(locale), fSymbols(NULL), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { if (U_FAILURE(status)) return; initializeSymbols(fLocale, initializeCalendar(NULL, fLocale, status),status); if (U_FAILURE(status)) { status = U_ZERO_ERROR; delete fSymbols; // This constructor doesn't fail; it uses last resort data fSymbols = new DateFormatSymbols(status); /* test for NULL */ if (fSymbols == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } fDateOverride.setToBogus(); fTimeOverride.setToBogus(); initialize(fLocale, status); if(U_SUCCESS(status)) { initializeDefaultCentury(); } } //---------------------------------------------------------------------- SimpleDateFormat::SimpleDateFormat(const SimpleDateFormat& other) : DateFormat(other), fSymbols(NULL), fTimeZoneFormat(NULL), fGMTFormatters(NULL), fNumberFormatters(NULL), fOverrideList(NULL) { *this = other; } //---------------------------------------------------------------------- SimpleDateFormat& SimpleDateFormat::operator=(const SimpleDateFormat& other) { if (this == &other) { return *this; } DateFormat::operator=(other); delete fSymbols; fSymbols = NULL; if (other.fSymbols) fSymbols = new DateFormatSymbols(*other.fSymbols); fDefaultCenturyStart = other.fDefaultCenturyStart; fDefaultCenturyStartYear = other.fDefaultCenturyStartYear; fHaveDefaultCentury = other.fHaveDefaultCentury; fPattern = other.fPattern; // TimeZoneFormat in ICU4C only depends on a locale for now if (fLocale != other.fLocale) { delete fTimeZoneFormat; } return *this; } //---------------------------------------------------------------------- Format* SimpleDateFormat::clone() const { return new SimpleDateFormat(*this); } //---------------------------------------------------------------------- UBool SimpleDateFormat::operator==(const Format& other) const { if (DateFormat::operator==(other)) { // DateFormat::operator== guarantees following cast is safe SimpleDateFormat* that = (SimpleDateFormat*)&other; return (fPattern == that->fPattern && fSymbols != NULL && // Check for pathological object that->fSymbols != NULL && // Check for pathological object *fSymbols == *that->fSymbols && fHaveDefaultCentury == that->fHaveDefaultCentury && fDefaultCenturyStart == that->fDefaultCenturyStart); } return FALSE; } //---------------------------------------------------------------------- void SimpleDateFormat::construct(EStyle timeStyle, EStyle dateStyle, const Locale& locale, UErrorCode& status) { // called by several constructors to load pattern data from the resources if (U_FAILURE(status)) return; // We will need the calendar to know what type of symbols to load. initializeCalendar(NULL, locale, status); if (U_FAILURE(status)) return; CalendarData calData(locale, fCalendar?fCalendar->getType():NULL, status); UResourceBundle *dateTimePatterns = calData.getByKey(gDateTimePatternsTag, status); UResourceBundle *currentBundle; if (U_FAILURE(status)) return; if (ures_getSize(dateTimePatterns) <= kDateTime) { status = U_INVALID_FORMAT_ERROR; return; } setLocaleIDs(ures_getLocaleByType(dateTimePatterns, ULOC_VALID_LOCALE, &status), ures_getLocaleByType(dateTimePatterns, ULOC_ACTUAL_LOCALE, &status)); // create a symbols object from the locale initializeSymbols(locale,fCalendar, status); if (U_FAILURE(status)) return; /* test for NULL */ if (fSymbols == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } const UChar *resStr,*ovrStr; int32_t resStrLen,ovrStrLen = 0; fDateOverride.setToBogus(); fTimeOverride.setToBogus(); // if the pattern should include both date and time information, use the date/time // pattern string as a guide to tell use how to glue together the appropriate date // and time pattern strings. The actual gluing-together is handled by a convenience // method on MessageFormat. if ((timeStyle != kNone) && (dateStyle != kNone)) { Formattable timeDateArray[2]; // use Formattable::adoptString() so that we can use fastCopyFrom() // instead of Formattable::setString()'s unaware, safe, deep string clone // see Jitterbug 2296 currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)timeStyle, NULL, &status); if (U_FAILURE(status)) { status = U_INVALID_FORMAT_ERROR; return; } switch (ures_getType(currentBundle)) { case URES_STRING: { resStr = ures_getString(currentBundle, &resStrLen, &status); break; } case URES_ARRAY: { resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status); ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status); fTimeOverride.setTo(TRUE, ovrStr, ovrStrLen); break; } default: { status = U_INVALID_FORMAT_ERROR; ures_close(currentBundle); return; } } ures_close(currentBundle); UnicodeString *tempus1 = new UnicodeString(TRUE, resStr, resStrLen); // NULL pointer check if (tempus1 == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } timeDateArray[0].adoptString(tempus1); currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)dateStyle, NULL, &status); if (U_FAILURE(status)) { status = U_INVALID_FORMAT_ERROR; return; } switch (ures_getType(currentBundle)) { case URES_STRING: { resStr = ures_getString(currentBundle, &resStrLen, &status); break; } case URES_ARRAY: { resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status); ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status); fDateOverride.setTo(TRUE, ovrStr, ovrStrLen); break; } default: { status = U_INVALID_FORMAT_ERROR; ures_close(currentBundle); return; } } ures_close(currentBundle); UnicodeString *tempus2 = new UnicodeString(TRUE, resStr, resStrLen); // Null pointer check if (tempus2 == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } timeDateArray[1].adoptString(tempus2); int32_t glueIndex = kDateTime; int32_t patternsSize = ures_getSize(dateTimePatterns); if (patternsSize >= (kDateTimeOffset + kShort + 1)) { // Get proper date time format glueIndex = (int32_t)(kDateTimeOffset + (dateStyle - kDateOffset)); } resStr = ures_getStringByIndex(dateTimePatterns, glueIndex, &resStrLen, &status); MessageFormat::format(UnicodeString(TRUE, resStr, resStrLen), timeDateArray, 2, fPattern, status); } // if the pattern includes just time data or just date date, load the appropriate // pattern string from the resources // setTo() - see DateFormatSymbols::assignArray comments else if (timeStyle != kNone) { currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)timeStyle, NULL, &status); if (U_FAILURE(status)) { status = U_INVALID_FORMAT_ERROR; return; } switch (ures_getType(currentBundle)) { case URES_STRING: { resStr = ures_getString(currentBundle, &resStrLen, &status); break; } case URES_ARRAY: { resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status); ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status); fDateOverride.setTo(TRUE, ovrStr, ovrStrLen); break; } default: { status = U_INVALID_FORMAT_ERROR; ures_close(currentBundle); return; } } fPattern.setTo(TRUE, resStr, resStrLen); ures_close(currentBundle); } else if (dateStyle != kNone) { currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)dateStyle, NULL, &status); if (U_FAILURE(status)) { status = U_INVALID_FORMAT_ERROR; return; } switch (ures_getType(currentBundle)) { case URES_STRING: { resStr = ures_getString(currentBundle, &resStrLen, &status); break; } case URES_ARRAY: { resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status); ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status); fDateOverride.setTo(TRUE, ovrStr, ovrStrLen); break; } default: { status = U_INVALID_FORMAT_ERROR; ures_close(currentBundle); return; } } fPattern.setTo(TRUE, resStr, resStrLen); ures_close(currentBundle); } // and if it includes _neither_, that's an error else status = U_INVALID_FORMAT_ERROR; // finally, finish initializing by creating a Calendar and a NumberFormat initialize(locale, status); } //---------------------------------------------------------------------- Calendar* SimpleDateFormat::initializeCalendar(TimeZone* adoptZone, const Locale& locale, UErrorCode& status) { if(!U_FAILURE(status)) { fCalendar = Calendar::createInstance(adoptZone?adoptZone:TimeZone::createDefault(), locale, status); } if (U_SUCCESS(status) && fCalendar == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } return fCalendar; } void SimpleDateFormat::initializeSymbols(const Locale& locale, Calendar* calendar, UErrorCode& status) { if(U_FAILURE(status)) { fSymbols = NULL; } else { // pass in calendar type - use NULL (default) if no calendar set (or err). fSymbols = new DateFormatSymbols(locale, calendar?calendar->getType() :NULL , status); // Null pointer check if (fSymbols == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } } } void SimpleDateFormat::initialize(const Locale& locale, UErrorCode& status) { if (U_FAILURE(status)) return; // We don't need to check that the row count is >= 1, since all 2d arrays have at // least one row fNumberFormat = NumberFormat::createInstance(locale, status); if (fNumberFormat != NULL && U_SUCCESS(status)) { // no matter what the locale's default number format looked like, we want // to modify it so that it doesn't use thousands separators, doesn't always // show the decimal point, and recognizes integers only when parsing fNumberFormat->setGroupingUsed(FALSE); DecimalFormat* decfmt = dynamic_cast<DecimalFormat*>(fNumberFormat); if (decfmt != NULL) { decfmt->setDecimalSeparatorAlwaysShown(FALSE); } fNumberFormat->setParseIntegerOnly(TRUE); fNumberFormat->setMinimumFractionDigits(0); // To prevent "Jan 1.00, 1997.00" //fNumberFormat->setLenient(TRUE); // Java uses a custom DateNumberFormat to format/parse initNumberFormatters(locale,status); } else if (U_SUCCESS(status)) { status = U_MISSING_RESOURCE_ERROR; } } /* Initialize the fields we use to disambiguate ambiguous years. Separate * so we can call it from readObject(). */ void SimpleDateFormat::initializeDefaultCentury() { if(fCalendar) { fHaveDefaultCentury = fCalendar->haveDefaultCentury(); if(fHaveDefaultCentury) { fDefaultCenturyStart = fCalendar->defaultCenturyStart(); fDefaultCenturyStartYear = fCalendar->defaultCenturyStartYear(); } else { fDefaultCenturyStart = DBL_MIN; fDefaultCenturyStartYear = -1; } } } /* Define one-century window into which to disambiguate dates using * two-digit years. Make public in JDK 1.2. */ void SimpleDateFormat::parseAmbiguousDatesAsAfter(UDate startDate, UErrorCode& status) { if(U_FAILURE(status)) { return; } if(!fCalendar) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } fCalendar->setTime(startDate, status); if(U_SUCCESS(status)) { fHaveDefaultCentury = TRUE; fDefaultCenturyStart = startDate; fDefaultCenturyStartYear = fCalendar->get(UCAL_YEAR, status); } } //---------------------------------------------------------------------- UnicodeString& SimpleDateFormat::format(Calendar& cal, UnicodeString& appendTo, FieldPosition& pos) const { UErrorCode status = U_ZERO_ERROR; FieldPositionOnlyHandler handler(pos); return _format(cal, appendTo, handler, status); } //---------------------------------------------------------------------- UnicodeString& SimpleDateFormat::format(Calendar& cal, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { FieldPositionIteratorHandler handler(posIter, status); return _format(cal, appendTo, handler, status); } //---------------------------------------------------------------------- UnicodeString& SimpleDateFormat::_format(Calendar& cal, UnicodeString& appendTo, FieldPositionHandler& handler, UErrorCode& status) const { Calendar *workCal = &cal; TimeZone *backupTZ = NULL; if (&cal != fCalendar && uprv_strcmp(cal.getType(), fCalendar->getType()) != 0) { // Different calendar type // We use the time and time zone from the input calendar, but // do not use the input calendar for field calculation. UDate t = cal.getTime(status); fCalendar->setTime(t, status); backupTZ = fCalendar->getTimeZone().clone(); fCalendar->setTimeZone(cal.getTimeZone()); workCal = fCalendar; } UBool inQuote = FALSE; UChar prevCh = 0; int32_t count = 0; // loop through the pattern string character by character for (int32_t i = 0; i < fPattern.length() && U_SUCCESS(status); ++i) { UChar ch = fPattern[i]; // Use subFormat() to format a repeated pattern character // when a different pattern or non-pattern character is seen if (ch != prevCh && count > 0) { subFormat(appendTo, prevCh, count, handler, *workCal, status); count = 0; } if (ch == QUOTE) { // Consecutive single quotes are a single quote literal, // either outside of quotes or between quotes if ((i+1) < fPattern.length() && fPattern[i+1] == QUOTE) { appendTo += (UChar)QUOTE; ++i; } else { inQuote = ! inQuote; } } else if ( ! inQuote && ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/) || (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))) { // ch is a date-time pattern character to be interpreted // by subFormat(); count the number of times it is repeated prevCh = ch; ++count; } else { // Append quoted characters and unquoted non-pattern characters appendTo += ch; } } // Format the last item in the pattern, if any if (count > 0) { subFormat(appendTo, prevCh, count, handler, *workCal, status); } if (backupTZ != NULL) { // Restore the original time zone fCalendar->adoptTimeZone(backupTZ); } return appendTo; } //---------------------------------------------------------------------- /* Map calendar field into calendar field level. * the larger the level, the smaller the field unit. * For example, UCAL_ERA level is 0, UCAL_YEAR level is 10, * UCAL_MONTH level is 20. * NOTE: if new fields adds in, the table needs to update. */ const int32_t SimpleDateFormat::fgCalendarFieldToLevel[] = { /*GyM*/ 0, 10, 20, /*wW*/ 20, 30, /*dDEF*/ 30, 20, 30, 30, /*ahHm*/ 40, 50, 50, 60, /*sS..*/ 70, 80, /*z?Y*/ 0, 0, 10, /*eug*/ 30, 10, 0, /*A*/ 40 }; /* Map calendar field LETTER into calendar field level. * the larger the level, the smaller the field unit. * NOTE: if new fields adds in, the table needs to update. */ const int32_t SimpleDateFormat::fgPatternCharToLevel[] = { // A B C D E F G H I J K L M N O -1, 40, -1, -1, 20, 30, 30, 0, 50, -1, -1, 50, 20, 20, -1, -1, // P Q R S T U V W X Y Z -1, 20, -1, 80, -1, -1, 0, 30, -1, 10, 0, -1, -1, -1, -1, -1, // a b c d e f g h i j k l m n o -1, 40, -1, 30, 30, 30, -1, 0, 50, -1, -1, 50, -1, 60, -1, -1, // p q r s t u v w x y z -1, 20, -1, 70, -1, 10, 0, 20, -1, 10, 0, -1, -1, -1, -1, -1 }; // Map index into pattern character string to Calendar field number. const UCalendarDateFields SimpleDateFormat::fgPatternIndexToCalendarField[] = { /*GyM*/ UCAL_ERA, UCAL_YEAR, UCAL_MONTH, /*dkH*/ UCAL_DATE, UCAL_HOUR_OF_DAY, UCAL_HOUR_OF_DAY, /*msS*/ UCAL_MINUTE, UCAL_SECOND, UCAL_MILLISECOND, /*EDF*/ UCAL_DAY_OF_WEEK, UCAL_DAY_OF_YEAR, UCAL_DAY_OF_WEEK_IN_MONTH, /*wWa*/ UCAL_WEEK_OF_YEAR, UCAL_WEEK_OF_MONTH, UCAL_AM_PM, /*hKz*/ UCAL_HOUR, UCAL_HOUR, UCAL_ZONE_OFFSET, /*Yeu*/ UCAL_YEAR_WOY, UCAL_DOW_LOCAL, UCAL_EXTENDED_YEAR, /*gAZ*/ UCAL_JULIAN_DAY, UCAL_MILLISECONDS_IN_DAY, UCAL_ZONE_OFFSET, /*v*/ UCAL_ZONE_OFFSET, /*c*/ UCAL_DOW_LOCAL, /*L*/ UCAL_MONTH, /*Q*/ UCAL_MONTH, /*q*/ UCAL_MONTH, /*V*/ UCAL_ZONE_OFFSET, }; // Map index into pattern character string to DateFormat field number const UDateFormatField SimpleDateFormat::fgPatternIndexToDateFormatField[] = { /*GyM*/ UDAT_ERA_FIELD, UDAT_YEAR_FIELD, UDAT_MONTH_FIELD, /*dkH*/ UDAT_DATE_FIELD, UDAT_HOUR_OF_DAY1_FIELD, UDAT_HOUR_OF_DAY0_FIELD, /*msS*/ UDAT_MINUTE_FIELD, UDAT_SECOND_FIELD, UDAT_FRACTIONAL_SECOND_FIELD, /*EDF*/ UDAT_DAY_OF_WEEK_FIELD, UDAT_DAY_OF_YEAR_FIELD, UDAT_DAY_OF_WEEK_IN_MONTH_FIELD, /*wWa*/ UDAT_WEEK_OF_YEAR_FIELD, UDAT_WEEK_OF_MONTH_FIELD, UDAT_AM_PM_FIELD, /*hKz*/ UDAT_HOUR1_FIELD, UDAT_HOUR0_FIELD, UDAT_TIMEZONE_FIELD, /*Yeu*/ UDAT_YEAR_WOY_FIELD, UDAT_DOW_LOCAL_FIELD, UDAT_EXTENDED_YEAR_FIELD, /*gAZ*/ UDAT_JULIAN_DAY_FIELD, UDAT_MILLISECONDS_IN_DAY_FIELD, UDAT_TIMEZONE_RFC_FIELD, /*v*/ UDAT_TIMEZONE_GENERIC_FIELD, /*c*/ UDAT_STANDALONE_DAY_FIELD, /*L*/ UDAT_STANDALONE_MONTH_FIELD, /*Q*/ UDAT_QUARTER_FIELD, /*q*/ UDAT_STANDALONE_QUARTER_FIELD, /*V*/ UDAT_TIMEZONE_SPECIAL_FIELD, }; //---------------------------------------------------------------------- /** * Append symbols[value] to dst. Make sure the array index is not out * of bounds. */ static inline void _appendSymbol(UnicodeString& dst, int32_t value, const UnicodeString* symbols, int32_t symbolsCount) { U_ASSERT(0 <= value && value < symbolsCount); if (0 <= value && value < symbolsCount) { dst += symbols[value]; } } //--------------------------------------------------------------------- void SimpleDateFormat::appendGMT(NumberFormat *currentNumberFormat,UnicodeString &appendTo, Calendar& cal, UErrorCode& status) const{ int32_t offset = cal.get(UCAL_ZONE_OFFSET, status) + cal.get(UCAL_DST_OFFSET, status); if (U_FAILURE(status)) { return; } if (offset == 0) { // use GMT zero format appendTo += fSymbols->fGmtZero; } else { if (isDefaultGMTFormat()) { formatGMTDefault(currentNumberFormat,appendTo, offset); } else { ((SimpleDateFormat*)this)->initGMTFormatters(status); if (U_SUCCESS(status)) { int32_t type; if (offset < 0) { offset = -offset; type = (offset % U_MILLIS_PER_MINUTE) == 0 ? kGMTNegativeHM : kGMTNegativeHMS; } else { type = (offset % U_MILLIS_PER_MINUTE) == 0 ? kGMTPositiveHM : kGMTPositiveHMS; } Formattable param(offset, Formattable::kIsDate); FieldPosition fpos(0); fGMTFormatters[type]->format(¶m, 1, appendTo, fpos, status); } } } } int32_t SimpleDateFormat::parseGMT(const UnicodeString &text, ParsePosition &pos) const { if (!isDefaultGMTFormat()) { int32_t start = pos.getIndex(); // Quick check UBool prefixMatch = FALSE; int32_t prefixLen = fSymbols->fGmtFormat.indexOf((UChar)0x007B /* '{' */); if (prefixLen > 0 && text.compare(start, prefixLen, fSymbols->fGmtFormat, 0, prefixLen) == 0) { prefixMatch = TRUE; } if (prefixMatch) { // Prefix matched UErrorCode status = U_ZERO_ERROR; ((SimpleDateFormat*)this)->initGMTFormatters(status); if (U_SUCCESS(status)) { Formattable parsed; int32_t parsedCount; // Try negative Hms fGMTFormatters[kGMTNegativeHMS]->parseObject(text, parsed, pos); if (pos.getErrorIndex() == -1 && (pos.getIndex() - start) >= fGMTFormatHmsMinLen[kGMTNegativeHMSMinLenIdx]) { parsed.getArray(parsedCount); if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) { return (int32_t)(-1 * (int64_t)parsed[0].getDate()); } } // Reset ParsePosition pos.setIndex(start); pos.setErrorIndex(-1); // Try positive Hms fGMTFormatters[kGMTPositiveHMS]->parseObject(text, parsed, pos); if (pos.getErrorIndex() == -1 && (pos.getIndex() - start) >= fGMTFormatHmsMinLen[kGMTPositiveHMSMinLenIdx]) { parsed.getArray(parsedCount); if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) { return (int32_t)((int64_t)parsed[0].getDate()); } } // Reset ParsePosition pos.setIndex(start); pos.setErrorIndex(-1); // Try negative Hm fGMTFormatters[kGMTNegativeHM]->parseObject(text, parsed, pos); if (pos.getErrorIndex() == -1 && pos.getIndex() > start) { parsed.getArray(parsedCount); if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) { return (int32_t)(-1 * (int64_t)parsed[0].getDate()); } } // Reset ParsePosition pos.setIndex(start); pos.setErrorIndex(-1); // Try positive Hm fGMTFormatters[kGMTPositiveHM]->parseObject(text, parsed, pos); if (pos.getErrorIndex() == -1 && pos.getIndex() > start) { parsed.getArray(parsedCount); if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) { return (int32_t)((int64_t)parsed[0].getDate()); } } // Reset ParsePosition pos.setIndex(start); pos.setErrorIndex(-1); } // fall through to the default GMT parsing method } } return parseGMTDefault(text, pos); } void SimpleDateFormat::formatGMTDefault(NumberFormat *currentNumberFormat,UnicodeString &appendTo, int32_t offset) const { if (offset < 0) { appendTo.append(gGmtMinus, 4); offset = -offset; // suppress the '-' sign for text display. }else{ appendTo.append(gGmtPlus, 4); } offset /= U_MILLIS_PER_SECOND; // now in seconds int32_t sec = offset % 60; offset /= 60; int32_t min = offset % 60; int32_t hour = offset / 60; zeroPaddingNumber(currentNumberFormat,appendTo, hour, 2, 2); appendTo += (UChar)0x003A /*':'*/; zeroPaddingNumber(currentNumberFormat,appendTo, min, 2, 2); if (sec != 0) { appendTo += (UChar)0x003A /*':'*/; zeroPaddingNumber(currentNumberFormat,appendTo, sec, 2, 2); } } int32_t SimpleDateFormat::parseGMTDefault(const UnicodeString &text, ParsePosition &pos) const { int32_t start = pos.getIndex(); NumberFormat *currentNumberFormat = getNumberFormatByIndex(UDAT_TIMEZONE_RFC_FIELD); if (start + kUtLen + 1 >= text.length()) { pos.setErrorIndex(start); return 0; } int32_t cur = start; // "GMT" if (text.compare(start, kGmtLen, gGmt) == 0) { cur += kGmtLen; } else if (text.compare(start, kUtLen, gUt) == 0) { cur += kUtLen; } else { pos.setErrorIndex(start); return 0; } // Sign UBool negative = FALSE; if (text.charAt(cur) == (UChar)0x002D /* minus */) { negative = TRUE; } else if (text.charAt(cur) != (UChar)0x002B /* plus */) { pos.setErrorIndex(cur); return 0; } cur++; // Numbers int32_t numLen; pos.setIndex(cur); Formattable number; parseInt(text, number, 6, pos, FALSE,currentNumberFormat); numLen = pos.getIndex() - cur; if (numLen <= 0) { pos.setIndex(start); pos.setErrorIndex(cur); return 0; } int32_t numVal = number.getLong(); int32_t hour = 0; int32_t min = 0; int32_t sec = 0; if (numLen <= 2) { // H[H][:mm[:ss]] hour = numVal; cur += numLen; if (cur + 2 < text.length() && text.charAt(cur) == (UChar)0x003A /* colon */) { cur++; pos.setIndex(cur); parseInt(text, number, 2, pos, FALSE,currentNumberFormat); numLen = pos.getIndex() - cur; if (numLen == 2) { // got minute field min = number.getLong(); cur += numLen; if (cur + 2 < text.length() && text.charAt(cur) == (UChar)0x003A /* colon */) { cur++; pos.setIndex(cur); parseInt(text, number, 2, pos, FALSE,currentNumberFormat); numLen = pos.getIndex() - cur; if (numLen == 2) { // got second field sec = number.getLong(); } else { // reset position pos.setIndex(cur - 1); pos.setErrorIndex(-1); } } } else { // reset postion pos.setIndex(cur - 1); pos.setErrorIndex(-1); } } } else if (numLen == 3 || numLen == 4) { // Hmm or HHmm hour = numVal / 100; min = numVal % 100; } else if (numLen == 5 || numLen == 6) { // Hmmss or HHmmss hour = numVal / 10000; min = (numVal % 10000) / 100; sec = numVal % 100; } else { // HHmmss followed by bogus numbers pos.setIndex(cur + 6); int32_t shift = numLen - 6; while (shift > 0) { numVal /= 10; shift--; } hour = numVal / 10000; min = (numVal % 10000) / 100; sec = numVal % 100; } int32_t offset = ((hour*60 + min)*60 + sec)*1000; if (negative) { offset = -offset; } return offset; } UBool SimpleDateFormat::isDefaultGMTFormat() const { // GMT pattern if (fSymbols->fGmtFormat.length() == 0) { // No GMT pattern is set return TRUE; } else if (fSymbols->fGmtFormat.compare(gDefGmtPat, kGmtPatLen) != 0) { return FALSE; } // Hour patterns if (fSymbols->fGmtHourFormats == NULL || fSymbols->fGmtHourFormatsCount != DateFormatSymbols::GMT_HOUR_COUNT) { // No Hour pattern is set return TRUE; } else if ((fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HMS].compare(gDefGmtNegHmsPat, kNegHmsLen) != 0) || (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HM].compare(gDefGmtNegHmPat, kNegHmLen) != 0) || (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HMS].compare(gDefGmtPosHmsPat, kPosHmsLen) != 0) || (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HM].compare(gDefGmtPosHmPat, kPosHmLen) != 0)) { return FALSE; } return TRUE; } void SimpleDateFormat::formatRFC822TZ(UnicodeString &appendTo, int32_t offset) const { UChar sign = 0x002B /* '+' */; if (offset < 0) { offset = -offset; sign = 0x002D /* '-' */; } appendTo.append(sign); int32_t offsetH = offset / U_MILLIS_PER_HOUR; offset = offset % U_MILLIS_PER_HOUR; int32_t offsetM = offset / U_MILLIS_PER_MINUTE; offset = offset % U_MILLIS_PER_MINUTE; int32_t offsetS = offset / U_MILLIS_PER_SECOND; int32_t num = 0, denom = 0; if (offsetS == 0) { offset = offsetH*100 + offsetM; // HHmm num = offset % 10000; denom = 1000; } else { offset = offsetH*10000 + offsetM*100 + offsetS; // HHmmss num = offset % 1000000; denom = 100000; } while (denom >= 1) { UChar digit = (UChar)0x0030 + (num / denom); appendTo.append(digit); num = num % denom; denom /= 10; } } void SimpleDateFormat::initGMTFormatters(UErrorCode &status) { if (U_FAILURE(status)) { return; } umtx_lock(&LOCK); if (fGMTFormatters == NULL) { fGMTFormatters = (MessageFormat**)uprv_malloc(kNumGMTFormatters * sizeof(MessageFormat*)); if (fGMTFormatters) { for (int32_t i = 0; i < kNumGMTFormatters; i++) { const UnicodeString *hourPattern = NULL; //initialized it to avoid warning switch (i) { case kGMTNegativeHMS: hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HMS]); break; case kGMTNegativeHM: hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HM]); break; case kGMTPositiveHMS: hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HMS]); break; case kGMTPositiveHM: hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HM]); break; } fGMTFormatters[i] = new MessageFormat(fSymbols->fGmtFormat, status); GregorianCalendar *gcal = new GregorianCalendar(TimeZone::createTimeZone(UnicodeString(gEtcUTC)), status); if (U_FAILURE(status)) { break; } SimpleDateFormat *sdf = (SimpleDateFormat*)this->clone(); sdf->adoptCalendar(gcal); sdf->applyPattern(*hourPattern); // This prevents an hours format pattern like "-HH:mm:ss" from matching // in a string like "GMT-07:00 10:08:11 PM" sdf->setLenient(FALSE); fGMTFormatters[i]->adoptFormat(0, sdf); // For parsing, we only allow Hms patterns to be equal or longer // than its length with fixed minutes/seconds digits. // See #6880 if (i == kGMTNegativeHMS || i == kGMTPositiveHMS) { UnicodeString tmp; Formattable tmpParam(60*60*1000, Formattable::kIsDate); FieldPosition fpos(0); fGMTFormatters[i]->format(&tmpParam, 1, tmp, fpos, status); if (U_FAILURE(status)) { break; } if (i == kGMTNegativeHMS) { fGMTFormatHmsMinLen[kGMTNegativeHMSMinLenIdx] = tmp.length(); } else { fGMTFormatHmsMinLen[kGMTPositiveHMSMinLenIdx] = tmp.length(); } } } } else { status = U_MEMORY_ALLOCATION_ERROR; } } umtx_unlock(&LOCK); } void SimpleDateFormat::initNumberFormatters(const Locale &locale,UErrorCode &status) { if (U_FAILURE(status)) { return; } if ( fDateOverride.isBogus() && fTimeOverride.isBogus() ) { return; } umtx_lock(&LOCK); if (fNumberFormatters == NULL) { fNumberFormatters = (NumberFormat**)uprv_malloc(UDAT_FIELD_COUNT * sizeof(NumberFormat*)); if (fNumberFormatters) { for (int32_t i = 0; i < UDAT_FIELD_COUNT; i++) { fNumberFormatters[i] = fNumberFormat; } } else { status = U_MEMORY_ALLOCATION_ERROR; } } umtx_unlock(&LOCK); processOverrideString(locale,fDateOverride,kOvrStrDate,status); processOverrideString(locale,fTimeOverride,kOvrStrTime,status); } void SimpleDateFormat::processOverrideString(const Locale &locale, const UnicodeString &str, int8_t type, UErrorCode &status) { if (str.isBogus()) { return; } int32_t start = 0; int32_t len; UnicodeString nsName; UnicodeString ovrField; UBool moreToProcess = TRUE; while (moreToProcess) { int32_t delimiterPosition = str.indexOf((UChar)ULOC_KEYWORD_ITEM_SEPARATOR_UNICODE,start); if (delimiterPosition == -1) { moreToProcess = FALSE; len = str.length() - start; } else { len = delimiterPosition - start; } UnicodeString currentString(str,start,len); int32_t equalSignPosition = currentString.indexOf((UChar)ULOC_KEYWORD_ASSIGN_UNICODE,0); if (equalSignPosition == -1) { // Simple override string such as "hebrew" nsName.setTo(currentString); ovrField.setToBogus(); } else { // Field specific override string such as "y=hebrew" nsName.setTo(currentString,equalSignPosition+1); ovrField.setTo(currentString,0,1); // We just need the first character. } int32_t nsNameHash = nsName.hashCode(); // See if the numbering system is in the override list, if not, then add it. NSOverride *cur = fOverrideList; NumberFormat *nf = NULL; UBool found = FALSE; while ( cur && !found ) { if ( cur->hash == nsNameHash ) { nf = cur->nf; found = TRUE; } cur = cur->next; } if (!found) { cur = (NSOverride *)uprv_malloc(sizeof(NSOverride)); if (cur) { char kw[ULOC_KEYWORD_AND_VALUES_CAPACITY]; uprv_strcpy(kw,"numbers="); nsName.extract(0,len,kw+8,ULOC_KEYWORD_AND_VALUES_CAPACITY-8,US_INV); Locale ovrLoc(locale.getLanguage(),locale.getCountry(),locale.getVariant(),kw); nf = NumberFormat::createInstance(ovrLoc,status); // no matter what the locale's default number format looked like, we want // to modify it so that it doesn't use thousands separators, doesn't always // show the decimal point, and recognizes integers only when parsing if (U_SUCCESS(status)) { nf->setGroupingUsed(FALSE); DecimalFormat* decfmt = dynamic_cast<DecimalFormat*>(nf); if (decfmt != NULL) { decfmt->setDecimalSeparatorAlwaysShown(FALSE); } nf->setParseIntegerOnly(TRUE); nf->setMinimumFractionDigits(0); // To prevent "Jan 1.00, 1997.00" cur->nf = nf; cur->hash = nsNameHash; cur->next = fOverrideList; fOverrideList = cur; } else { // clean up before returning if (cur != NULL) { uprv_free(cur); } return; } } else { status = U_MEMORY_ALLOCATION_ERROR; return; } } // Now that we have an appropriate number formatter, fill in the appropriate spaces in the // number formatters table. if (ovrField.isBogus()) { switch (type) { case kOvrStrDate: case kOvrStrBoth: { for ( int8_t i=0 ; i<kDateFieldsCount; i++ ) { fNumberFormatters[kDateFields[i]] = nf; } if (type==kOvrStrDate) { break; } } case kOvrStrTime : { for ( int8_t i=0 ; i<kTimeFieldsCount; i++ ) { fNumberFormatters[kTimeFields[i]] = nf; } break; } } } else { UChar ch = ovrField.charAt(0); UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch); UDateFormatField patternCharIndex; // if the pattern character is unrecognized, signal an error and bail out if (patternCharPtr == NULL) { status = U_INVALID_FORMAT_ERROR; return; } patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars()); // Set the number formatter in the table fNumberFormatters[patternCharIndex] = nf; } start = delimiterPosition + 1; } } //--------------------------------------------------------------------- void SimpleDateFormat::subFormat(UnicodeString &appendTo, UChar ch, int32_t count, FieldPositionHandler& handler, Calendar& cal, UErrorCode& status) const { if (U_FAILURE(status)) { return; } // this function gets called by format() to produce the appropriate substitution // text for an individual pattern symbol (e.g., "HH" or "yyyy") UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch); UDateFormatField patternCharIndex; const int32_t maxIntCount = 10; int32_t beginOffset = appendTo.length(); NumberFormat *currentNumberFormat; UBool isHebrewCalendar = !strcmp(cal.getType(),"hebrew"); // if the pattern character is unrecognized, signal an error and dump out if (patternCharPtr == NULL) { status = U_INVALID_FORMAT_ERROR; return; } patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars()); UCalendarDateFields field = fgPatternIndexToCalendarField[patternCharIndex]; int32_t value = cal.get(field, status); if (U_FAILURE(status)) { return; } currentNumberFormat = getNumberFormatByIndex(patternCharIndex); switch (patternCharIndex) { // for any "G" symbol, write out the appropriate era string // "GGGG" is wide era name, "GGGGG" is narrow era name, anything else is abbreviated name case UDAT_ERA_FIELD: if (count == 5) _appendSymbol(appendTo, value, fSymbols->fNarrowEras, fSymbols->fNarrowErasCount); else if (count == 4) _appendSymbol(appendTo, value, fSymbols->fEraNames, fSymbols->fEraNamesCount); else _appendSymbol(appendTo, value, fSymbols->fEras, fSymbols->fErasCount); break; // OLD: for "yyyy", write out the whole year; for "yy", write out the last 2 digits // NEW: UTS#35: //Year y yy yyy yyyy yyyyy //AD 1 1 01 001 0001 00001 //AD 12 12 12 012 0012 00012 //AD 123 123 23 123 0123 00123 //AD 1234 1234 34 1234 1234 01234 //AD 12345 12345 45 12345 12345 12345 case UDAT_YEAR_FIELD: case UDAT_YEAR_WOY_FIELD: if(count == 2) zeroPaddingNumber(currentNumberFormat, appendTo, value, 2, 2); else zeroPaddingNumber(currentNumberFormat, appendTo, value, count, maxIntCount); break; // for "MMMM", write out the whole month name, for "MMM", write out the month // abbreviation, for "M" or "MM", write out the month as a number with the // appropriate number of digits // for "MMMMM", use the narrow form case UDAT_MONTH_FIELD: if ( isHebrewCalendar ) { HebrewCalendar *hc = (HebrewCalendar*)&cal; if (hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value == 6 && count >= 3 ) value = 13; // Show alternate form for Adar II in leap years in Hebrew calendar. if (!hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value >= 6 && count < 3 ) value--; // Adjust the month number down 1 in Hebrew non-leap years, i.e. Adar is 6, not 7. } if (count == 5) _appendSymbol(appendTo, value, fSymbols->fNarrowMonths, fSymbols->fNarrowMonthsCount); else if (count == 4) _appendSymbol(appendTo, value, fSymbols->fMonths, fSymbols->fMonthsCount); else if (count == 3) _appendSymbol(appendTo, value, fSymbols->fShortMonths, fSymbols->fShortMonthsCount); else zeroPaddingNumber(currentNumberFormat,appendTo, value + 1, count, maxIntCount); break; // for "LLLL", write out the whole month name, for "LLL", write out the month // abbreviation, for "L" or "LL", write out the month as a number with the // appropriate number of digits // for "LLLLL", use the narrow form case UDAT_STANDALONE_MONTH_FIELD: if (count == 5) _appendSymbol(appendTo, value, fSymbols->fStandaloneNarrowMonths, fSymbols->fStandaloneNarrowMonthsCount); else if (count == 4) _appendSymbol(appendTo, value, fSymbols->fStandaloneMonths, fSymbols->fStandaloneMonthsCount); else if (count == 3) _appendSymbol(appendTo, value, fSymbols->fStandaloneShortMonths, fSymbols->fStandaloneShortMonthsCount); else zeroPaddingNumber(currentNumberFormat,appendTo, value + 1, count, maxIntCount); break; // for "k" and "kk", write out the hour, adjusting midnight to appear as "24" case UDAT_HOUR_OF_DAY1_FIELD: if (value == 0) zeroPaddingNumber(currentNumberFormat,appendTo, cal.getMaximum(UCAL_HOUR_OF_DAY) + 1, count, maxIntCount); else zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount); break; case UDAT_FRACTIONAL_SECOND_FIELD: // Fractional seconds left-justify { currentNumberFormat->setMinimumIntegerDigits((count > 3) ? 3 : count); currentNumberFormat->setMaximumIntegerDigits(maxIntCount); if (count == 1) { value /= 100; } else if (count == 2) { value /= 10; } FieldPosition p(0); currentNumberFormat->format(value, appendTo, p); if (count > 3) { currentNumberFormat->setMinimumIntegerDigits(count - 3); currentNumberFormat->format((int32_t)0, appendTo, p); } } break; // for "ee" or "e", use local numeric day-of-the-week // for "EEEEE" or "eeeee", write out the narrow day-of-the-week name // for "EEEE" or "eeee", write out the wide day-of-the-week name // for "EEE" or "EE" or "E" or "eee", write out the abbreviated day-of-the-week name case UDAT_DOW_LOCAL_FIELD: if ( count < 3 ) { zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount); break; } // fall through to EEEEE-EEE handling, but for that we don't want local day-of-week, // we want standard day-of-week, so first fix value to work for EEEEE-EEE. value = cal.get(UCAL_DAY_OF_WEEK, status); if (U_FAILURE(status)) { return; } // fall through, do not break here case UDAT_DAY_OF_WEEK_FIELD: if (count == 5) _appendSymbol(appendTo, value, fSymbols->fNarrowWeekdays, fSymbols->fNarrowWeekdaysCount); else if (count == 4) _appendSymbol(appendTo, value, fSymbols->fWeekdays, fSymbols->fWeekdaysCount); else _appendSymbol(appendTo, value, fSymbols->fShortWeekdays, fSymbols->fShortWeekdaysCount); break; // for "ccc", write out the abbreviated day-of-the-week name // for "cccc", write out the wide day-of-the-week name // for "ccccc", use the narrow day-of-the-week name case UDAT_STANDALONE_DAY_FIELD: if ( count < 3 ) { zeroPaddingNumber(currentNumberFormat,appendTo, value, 1, maxIntCount); break; } // fall through to alpha DOW handling, but for that we don't want local day-of-week, // we want standard day-of-week, so first fix value. value = cal.get(UCAL_DAY_OF_WEEK, status); if (U_FAILURE(status)) { return; } if (count == 5) _appendSymbol(appendTo, value, fSymbols->fStandaloneNarrowWeekdays, fSymbols->fStandaloneNarrowWeekdaysCount); else if (count == 4) _appendSymbol(appendTo, value, fSymbols->fStandaloneWeekdays, fSymbols->fStandaloneWeekdaysCount); else // count == 3 _appendSymbol(appendTo, value, fSymbols->fStandaloneShortWeekdays, fSymbols->fStandaloneShortWeekdaysCount); break; // for and "a" symbol, write out the whole AM/PM string case UDAT_AM_PM_FIELD: _appendSymbol(appendTo, value, fSymbols->fAmPms, fSymbols->fAmPmsCount); break; // for "h" and "hh", write out the hour, adjusting noon and midnight to show up // as "12" case UDAT_HOUR1_FIELD: if (value == 0) zeroPaddingNumber(currentNumberFormat,appendTo, cal.getLeastMaximum(UCAL_HOUR) + 1, count, maxIntCount); else zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount); break; // for the "z" symbols, we have to check our time zone data first. If we have a // localized name for the time zone, then "zzzz" / "zzz" indicate whether // daylight time is in effect (long/short) and "zz" / "z" do not (long/short). // If we don't have a localized time zone name, // then the time zone shows up as "GMT+hh:mm" or "GMT-hh:mm" (where "hh:mm" is the // offset from GMT) regardless of how many z's were in the pattern symbol case UDAT_TIMEZONE_FIELD: case UDAT_TIMEZONE_GENERIC_FIELD: case UDAT_TIMEZONE_SPECIAL_FIELD: { UnicodeString zoneString; const TimeZone& tz = cal.getTimeZone(); UDate date = cal.getTime(status); if (U_SUCCESS(status)) { if (patternCharIndex == UDAT_TIMEZONE_FIELD) { if (count < 4) { // "z", "zz", "zzz" tzFormat()->format(UTZFMT_STYLE_SPECIFIC_SHORT_COMMONLY_USED, tz, date, zoneString); } else { // "zzzz" tzFormat()->format(UTZFMT_STYLE_SPECIFIC_LONG, tz, date, zoneString); } } else if (patternCharIndex == UDAT_TIMEZONE_GENERIC_FIELD) { if (count == 1) { // "v" tzFormat()->format(UTZFMT_STYLE_GENERIC_SHORT, tz, date, zoneString); } else if (count == 4) { // "vvvv" tzFormat()->format(UTZFMT_STYLE_GENERIC_LONG, tz, date, zoneString); } } else { // patternCharIndex == UDAT_TIMEZONE_SPECIAL_FIELD if (count == 1) { // "V" tzFormat()->format(UTZFMT_STYLE_SPECIFIC_SHORT, tz, date, zoneString); } else if (count == 4) { // "VVVV" tzFormat()->format(UTZFMT_STYLE_LOCATION, tz, date, zoneString); } } } if (zoneString.isEmpty()) { appendGMT(currentNumberFormat,appendTo, cal, status); } else { appendTo += zoneString; } } break; case UDAT_TIMEZONE_RFC_FIELD: // 'Z' - TIMEZONE_RFC if (count < 4) { // RFC822 format, must use ASCII digits value = (cal.get(UCAL_ZONE_OFFSET, status) + cal.get(UCAL_DST_OFFSET, status)); formatRFC822TZ(appendTo, value); } else { // long form, localized GMT pattern appendGMT(currentNumberFormat,appendTo, cal, status); } break; case UDAT_QUARTER_FIELD: if (count >= 4) _appendSymbol(appendTo, value/3, fSymbols->fQuarters, fSymbols->fQuartersCount); else if (count == 3) _appendSymbol(appendTo, value/3, fSymbols->fShortQuarters, fSymbols->fShortQuartersCount); else zeroPaddingNumber(currentNumberFormat,appendTo, (value/3) + 1, count, maxIntCount); break; case UDAT_STANDALONE_QUARTER_FIELD: if (count >= 4) _appendSymbol(appendTo, value/3, fSymbols->fStandaloneQuarters, fSymbols->fStandaloneQuartersCount); else if (count == 3) _appendSymbol(appendTo, value/3, fSymbols->fStandaloneShortQuarters, fSymbols->fStandaloneShortQuartersCount); else zeroPaddingNumber(currentNumberFormat,appendTo, (value/3) + 1, count, maxIntCount); break; // all of the other pattern symbols can be formatted as simple numbers with // appropriate zero padding default: zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount); break; } handler.addAttribute(fgPatternIndexToDateFormatField[patternCharIndex], beginOffset, appendTo.length()); } //---------------------------------------------------------------------- NumberFormat * SimpleDateFormat::getNumberFormatByIndex(UDateFormatField index) const { if (fNumberFormatters != NULL) { return fNumberFormatters[index]; } else { return fNumberFormat; } } //---------------------------------------------------------------------- void SimpleDateFormat::zeroPaddingNumber(NumberFormat *currentNumberFormat,UnicodeString &appendTo, int32_t value, int32_t minDigits, int32_t maxDigits) const { if (currentNumberFormat!=NULL) { FieldPosition pos(0); currentNumberFormat->setMinimumIntegerDigits(minDigits); currentNumberFormat->setMaximumIntegerDigits(maxDigits); currentNumberFormat->format(value, appendTo, pos); // 3rd arg is there to speed up processing } } //---------------------------------------------------------------------- /** * Format characters that indicate numeric fields. The character * at index 0 is treated specially. */ static const UChar NUMERIC_FORMAT_CHARS[] = {0x4D, 0x59, 0x79, 0x75, 0x64, 0x65, 0x68, 0x48, 0x6D, 0x73, 0x53, 0x44, 0x46, 0x77, 0x57, 0x6B, 0x4B, 0x00}; /* "MYyudehHmsSDFwWkK" */ /** * Return true if the given format character, occuring count * times, represents a numeric field. */ UBool SimpleDateFormat::isNumeric(UChar formatChar, int32_t count) { UnicodeString s(NUMERIC_FORMAT_CHARS); int32_t i = s.indexOf(formatChar); return (i > 0 || (i == 0 && count < 3)); } void SimpleDateFormat::parse(const UnicodeString& text, Calendar& cal, ParsePosition& parsePos) const { UErrorCode status = U_ZERO_ERROR; int32_t pos = parsePos.getIndex(); int32_t start = pos; UBool ambiguousYear[] = { FALSE }; int32_t saveHebrewMonth = -1; int32_t count = 0; UBool lenient = isLenient(); // hack, reset tztype, cast away const ((SimpleDateFormat*)this)->tztype = TZTYPE_UNK; // For parsing abutting numeric fields. 'abutPat' is the // offset into 'pattern' of the first of 2 or more abutting // numeric fields. 'abutStart' is the offset into 'text' // where parsing the fields begins. 'abutPass' starts off as 0 // and increments each time we try to parse the fields. int32_t abutPat = -1; // If >=0, we are in a run of abutting numeric fields int32_t abutStart = 0; int32_t abutPass = 0; UBool inQuote = FALSE; const UnicodeString numericFormatChars(NUMERIC_FORMAT_CHARS); TimeZone *backupTZ = NULL; Calendar *workCal = &cal; if (&cal != fCalendar && uprv_strcmp(cal.getType(), fCalendar->getType()) != 0) { // Different calendar type // We use the time/zone from the input calendar, but // do not use the input calendar for field calculation. fCalendar->setTime(cal.getTime(status),status); if (U_FAILURE(status)) { goto ExitParse; } backupTZ = fCalendar->getTimeZone().clone(); fCalendar->setTimeZone(cal.getTimeZone()); workCal = fCalendar; } for (int32_t i=0; i<fPattern.length(); ++i) { UChar ch = fPattern.charAt(i); // Handle alphabetic field characters. if (!inQuote && ((ch >= 0x41 && ch <= 0x5A) || (ch >= 0x61 && ch <= 0x7A))) { // [A-Za-z] int32_t fieldPat = i; // Count the length of this field specifier count = 1; while ((i+1)<fPattern.length() && fPattern.charAt(i+1) == ch) { ++count; ++i; } if (isNumeric(ch, count)) { if (abutPat < 0) { // Determine if there is an abutting numeric field. For // most fields we can just look at the next characters, // but the 'm' field is either numeric or text, // depending on the count, so we have to look ahead for // that field. if ((i+1)<fPattern.length()) { UBool abutting; UChar nextCh = fPattern.charAt(i+1); int32_t k = numericFormatChars.indexOf(nextCh); if (k == 0) { int32_t j = i+2; while (j<fPattern.length() && fPattern.charAt(j) == nextCh) { ++j; } abutting = (j-i) < 4; // nextCount < 3 } else { abutting = k > 0; } // Record the start of a set of abutting numeric // fields. if (abutting) { abutPat = fieldPat; abutStart = pos; abutPass = 0; } } } } else { abutPat = -1; // End of any abutting fields } // Handle fields within a run of abutting numeric fields. Take // the pattern "HHmmss" as an example. We will try to parse // 2/2/2 characters of the input text, then if that fails, // 1/2/2. We only adjust the width of the leftmost field; the // others remain fixed. This allows "123456" => 12:34:56, but // "12345" => 1:23:45. Likewise, for the pattern "yyyyMMdd" we // try 4/2/2, 3/2/2, 2/2/2, and finally 1/2/2. if (abutPat >= 0) { // If we are at the start of a run of abutting fields, then // shorten this field in each pass. If we can't shorten // this field any more, then the parse of this set of // abutting numeric fields has failed. if (fieldPat == abutPat) { count -= abutPass++; if (count == 0) { status = U_PARSE_ERROR; goto ExitParse; } } pos = subParse(text, pos, ch, count, TRUE, FALSE, ambiguousYear, saveHebrewMonth, *workCal, i); // If the parse fails anywhere in the run, back up to the // start of the run and retry. if (pos < 0) { i = abutPat - 1; pos = abutStart; continue; } } // Handle non-numeric fields and non-abutting numeric // fields. else { int32_t s = subParse(text, pos, ch, count, FALSE, TRUE, ambiguousYear, saveHebrewMonth, *workCal, i); if (s == -pos-1) { // era not present, in special cases allow this to continue s++; if (i+1 < fPattern.length()) { // move to next pattern character UChar ch = fPattern.charAt(i+1); // check for whitespace if (PatternProps::isWhiteSpace(ch)) { i++; // Advance over run in pattern while ((i+1)<fPattern.length() && PatternProps::isWhiteSpace(fPattern.charAt(i+1))) { ++i; } } } } else if (s <= 0) { status = U_PARSE_ERROR; goto ExitParse; } pos = s; } } // Handle literal pattern characters. These are any // quoted characters and non-alphabetic unquoted // characters. else { abutPat = -1; // End of any abutting fields if (! matchLiterals(fPattern, i, text, pos, lenient)) { status = U_PARSE_ERROR; goto ExitParse; } } } // At this point the fields of Calendar have been set. Calendar // will fill in default values for missing fields when the time // is computed. parsePos.setIndex(pos); // This part is a problem: When we call parsedDate.after, we compute the time. // Take the date April 3 2004 at 2:30 am. When this is first set up, the year // will be wrong if we're parsing a 2-digit year pattern. It will be 1904. // April 3 1904 is a Sunday (unlike 2004) so it is the DST onset day. 2:30 am // is therefore an "impossible" time, since the time goes from 1:59 to 3:00 am // on that day. It is therefore parsed out to fields as 3:30 am. Then we // add 100 years, and get April 3 2004 at 3:30 am. Note that April 3 2004 is // a Saturday, so it can have a 2:30 am -- and it should. [LIU] /* UDate parsedDate = calendar.getTime(); if( ambiguousYear[0] && !parsedDate.after(fDefaultCenturyStart) ) { calendar.add(Calendar.YEAR, 100); parsedDate = calendar.getTime(); } */ // Because of the above condition, save off the fields in case we need to readjust. // The procedure we use here is not particularly efficient, but there is no other // way to do this given the API restrictions present in Calendar. We minimize // inefficiency by only performing this computation when it might apply, that is, // when the two-digit year is equal to the start year, and thus might fall at the // front or the back of the default century. This only works because we adjust // the year correctly to start with in other cases -- see subParse(). if (ambiguousYear[0] || tztype != TZTYPE_UNK) // If this is true then the two-digit year == the default start year { // We need a copy of the fields, and we need to avoid triggering a call to // complete(), which will recalculate the fields. Since we can't access // the fields[] array in Calendar, we clone the entire object. This will // stop working if Calendar.clone() is ever rewritten to call complete(). Calendar *copy; if (ambiguousYear[0]) { copy = cal.clone(); // Check for failed cloning. if (copy == NULL) { status = U_MEMORY_ALLOCATION_ERROR; goto ExitParse; } UDate parsedDate = copy->getTime(status); // {sfb} check internalGetDefaultCenturyStart if (fHaveDefaultCentury && (parsedDate < fDefaultCenturyStart)) { // We can't use add here because that does a complete() first. cal.set(UCAL_YEAR, fDefaultCenturyStartYear + 100); } delete copy; } if (tztype != TZTYPE_UNK) { copy = cal.clone(); // Check for failed cloning. if (copy == NULL) { status = U_MEMORY_ALLOCATION_ERROR; goto ExitParse; } const TimeZone & tz = cal.getTimeZone(); BasicTimeZone *btz = NULL; if (dynamic_cast<const OlsonTimeZone *>(&tz) != NULL || dynamic_cast<const SimpleTimeZone *>(&tz) != NULL || dynamic_cast<const RuleBasedTimeZone *>(&tz) != NULL || dynamic_cast<const VTimeZone *>(&tz) != NULL) { btz = (BasicTimeZone*)&tz; } // Get local millis copy->set(UCAL_ZONE_OFFSET, 0); copy->set(UCAL_DST_OFFSET, 0); UDate localMillis = copy->getTime(status); // Make sure parsed time zone type (Standard or Daylight) // matches the rule used by the parsed time zone. int32_t raw, dst; if (btz != NULL) { if (tztype == TZTYPE_STD) { btz->getOffsetFromLocal(localMillis, BasicTimeZone::kStandard, BasicTimeZone::kStandard, raw, dst, status); } else { btz->getOffsetFromLocal(localMillis, BasicTimeZone::kDaylight, BasicTimeZone::kDaylight, raw, dst, status); } } else { // No good way to resolve ambiguous time at transition, // but following code work in most case. tz.getOffset(localMillis, TRUE, raw, dst, status); } // Now, compare the results with parsed type, either standard or daylight saving time int32_t resolvedSavings = dst; if (tztype == TZTYPE_STD) { if (dst != 0) { // Override DST_OFFSET = 0 in the result calendar resolvedSavings = 0; } } else { // tztype == TZTYPE_DST if (dst == 0) { if (btz != NULL) { UDate time = localMillis + raw; // We use the nearest daylight saving time rule. TimeZoneTransition beforeTrs, afterTrs; UDate beforeT = time, afterT = time; int32_t beforeSav = 0, afterSav = 0; UBool beforeTrsAvail, afterTrsAvail; // Search for DST rule before or on the time while (TRUE) { beforeTrsAvail = btz->getPreviousTransition(beforeT, TRUE, beforeTrs); if (!beforeTrsAvail) { break; } beforeT = beforeTrs.getTime() - 1; beforeSav = beforeTrs.getFrom()->getDSTSavings(); if (beforeSav != 0) { break; } } // Search for DST rule after the time while (TRUE) { afterTrsAvail = btz->getNextTransition(afterT, FALSE, afterTrs); if (!afterTrsAvail) { break; } afterT = afterTrs.getTime(); afterSav = afterTrs.getTo()->getDSTSavings(); if (afterSav != 0) { break; } } if (beforeTrsAvail && afterTrsAvail) { if (time - beforeT > afterT - time) { resolvedSavings = afterSav; } else { resolvedSavings = beforeSav; } } else if (beforeTrsAvail && beforeSav != 0) { resolvedSavings = beforeSav; } else if (afterTrsAvail && afterSav != 0) { resolvedSavings = afterSav; } else { resolvedSavings = btz->getDSTSavings(); } } else { resolvedSavings = tz.getDSTSavings(); } if (resolvedSavings == 0) { // final fallback resolvedSavings = U_MILLIS_PER_HOUR; } } } cal.set(UCAL_ZONE_OFFSET, raw); cal.set(UCAL_DST_OFFSET, resolvedSavings); delete copy; } } ExitParse: // Set the parsed result if local calendar is used // instead of the input calendar if (U_SUCCESS(status) && workCal != &cal) { cal.setTimeZone(workCal->getTimeZone()); cal.setTime(workCal->getTime(status), status); } // Restore the original time zone if required if (backupTZ != NULL) { fCalendar->adoptTimeZone(backupTZ); } // If any Calendar calls failed, we pretend that we // couldn't parse the string, when in reality this isn't quite accurate-- // we did parse it; the Calendar calls just failed. if (U_FAILURE(status)) { parsePos.setErrorIndex(pos); parsePos.setIndex(start); } } UDate SimpleDateFormat::parse( const UnicodeString& text, ParsePosition& pos) const { // redefined here because the other parse() function hides this function's // cunterpart on DateFormat return DateFormat::parse(text, pos); } UDate SimpleDateFormat::parse(const UnicodeString& text, UErrorCode& status) const { // redefined here because the other parse() function hides this function's // counterpart on DateFormat return DateFormat::parse(text, status); } //---------------------------------------------------------------------- int32_t SimpleDateFormat::matchQuarterString(const UnicodeString& text, int32_t start, UCalendarDateFields field, const UnicodeString* data, int32_t dataCount, Calendar& cal) const { int32_t i = 0; int32_t count = dataCount; // There may be multiple strings in the data[] array which begin with // the same prefix (e.g., Cerven and Cervenec (June and July) in Czech). // We keep track of the longest match, and return that. Note that this // unfortunately requires us to test all array elements. int32_t bestMatchLength = 0, bestMatch = -1; // {sfb} kludge to support case-insensitive comparison // {markus 2002oct11} do not just use caseCompareBetween because we do not know // the length of the match after case folding // {alan 20040607} don't case change the whole string, since the length // can change // TODO we need a case-insensitive startsWith function UnicodeString lcase, lcaseText; text.extract(start, INT32_MAX, lcaseText); lcaseText.foldCase(); for (; i < count; ++i) { // Always compare if we have no match yet; otherwise only compare // against potentially better matches (longer strings). lcase.fastCopyFrom(data[i]).foldCase(); int32_t length = lcase.length(); if (length > bestMatchLength && lcaseText.compareBetween(0, length, lcase, 0, length) == 0) { bestMatch = i; bestMatchLength = length; } } if (bestMatch >= 0) { cal.set(field, bestMatch * 3); // Once we have a match, we have to determine the length of the // original source string. This will usually be == the length of // the case folded string, but it may differ (e.g. sharp s). lcase.fastCopyFrom(data[bestMatch]).foldCase(); // Most of the time, the length will be the same as the length // of the string from the locale data. Sometimes it will be // different, in which case we will have to figure it out by // adding a character at a time, until we have a match. We do // this all in one loop, where we try 'len' first (at index // i==0). int32_t len = data[bestMatch].length(); // 99+% of the time int32_t n = text.length() - start; for (i=0; i<=n; ++i) { int32_t j=i; if (i == 0) { j = len; } else if (i == len) { continue; // already tried this when i was 0 } text.extract(start, j, lcaseText); lcaseText.foldCase(); if (lcase == lcaseText) { return start + j; } } } return -start; } //---------------------------------------------------------------------- UBool SimpleDateFormat::matchLiterals(const UnicodeString &pattern, int32_t &patternOffset, const UnicodeString &text, int32_t &textOffset, UBool lenient) { UBool inQuote = FALSE; UnicodeString literal; int32_t i = patternOffset; // scan pattern looking for contiguous literal characters for ( ; i < pattern.length(); i += 1) { UChar ch = pattern.charAt(i); if (!inQuote && ((ch >= 0x41 && ch <= 0x5A) || (ch >= 0x61 && ch <= 0x7A))) { // unquoted [A-Za-z] break; } if (ch == QUOTE) { // Match a quote literal ('') inside OR outside of quotes if ((i + 1) < pattern.length() && pattern.charAt(i + 1) == QUOTE) { i += 1; } else { inQuote = !inQuote; continue; } } literal += ch; } // at this point, literal contains the literal text // and i is the index of the next non-literal pattern character. int32_t p; int32_t t = textOffset; if (lenient) { // trim leading, trailing whitespace from // the literal text literal.trim(); // ignore any leading whitespace in the text while (t < text.length() && u_isWhitespace(text.charAt(t))) { t += 1; } } for (p = 0; p < literal.length() && t < text.length(); p += 1, t += 1) { UBool needWhitespace = FALSE; while (p < literal.length() && PatternProps::isWhiteSpace(literal.charAt(p))) { needWhitespace = TRUE; p += 1; } if (needWhitespace) { int32_t tStart = t; while (t < text.length()) { UChar tch = text.charAt(t); if (!u_isUWhiteSpace(tch) && !PatternProps::isWhiteSpace(tch)) { break; } t += 1; } // TODO: should we require internal spaces // in lenient mode? (There won't be any // leading or trailing spaces) if (!lenient && t == tStart) { // didn't find matching whitespace: // an error in strict mode return FALSE; } // In strict mode, this run of whitespace // may have been at the end. if (p >= literal.length()) { break; } } if (t >= text.length() || literal.charAt(p) != text.charAt(t)) { // Ran out of text, or found a non-matching character: // OK in lenient mode, an error in strict mode. if (lenient) { break; } return FALSE; } } // At this point if we're in strict mode we have a complete match. // If we're in lenient mode we may have a partial match, or no // match at all. if (p <= 0) { // no match. Pretend it matched a run of whitespace // and ignorables in the text. const UnicodeSet *ignorables = NULL; UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), pattern.charAt(i)); if (patternCharPtr != NULL) { UDateFormatField patternCharIndex = (UDateFormatField) (patternCharPtr - DateFormatSymbols::getPatternUChars()); ignorables = SimpleDateFormatStaticSets::getIgnorables(patternCharIndex); } for (t = textOffset; t < text.length(); t += 1) { UChar ch = text.charAt(t); if (ignorables == NULL || !ignorables->contains(ch)) { break; } } } // if we get here, we've got a complete match. patternOffset = i - 1; textOffset = t; return TRUE; } //---------------------------------------------------------------------- int32_t SimpleDateFormat::matchString(const UnicodeString& text, int32_t start, UCalendarDateFields field, const UnicodeString* data, int32_t dataCount, Calendar& cal) const { int32_t i = 0; int32_t count = dataCount; if (field == UCAL_DAY_OF_WEEK) i = 1; // There may be multiple strings in the data[] array which begin with // the same prefix (e.g., Cerven and Cervenec (June and July) in Czech). // We keep track of the longest match, and return that. Note that this // unfortunately requires us to test all array elements. int32_t bestMatchLength = 0, bestMatch = -1; // {sfb} kludge to support case-insensitive comparison // {markus 2002oct11} do not just use caseCompareBetween because we do not know // the length of the match after case folding // {alan 20040607} don't case change the whole string, since the length // can change // TODO we need a case-insensitive startsWith function UnicodeString lcase, lcaseText; text.extract(start, INT32_MAX, lcaseText); lcaseText.foldCase(); for (; i < count; ++i) { // Always compare if we have no match yet; otherwise only compare // against potentially better matches (longer strings). lcase.fastCopyFrom(data[i]).foldCase(); int32_t length = lcase.length(); if (length > bestMatchLength && lcaseText.compareBetween(0, length, lcase, 0, length) == 0) { bestMatch = i; bestMatchLength = length; } } if (bestMatch >= 0) { // Adjustment for Hebrew Calendar month Adar II if (!strcmp(cal.getType(),"hebrew") && field==UCAL_MONTH && bestMatch==13) { cal.set(field,6); } else { cal.set(field, bestMatch); } // Once we have a match, we have to determine the length of the // original source string. This will usually be == the length of // the case folded string, but it may differ (e.g. sharp s). lcase.fastCopyFrom(data[bestMatch]).foldCase(); // Most of the time, the length will be the same as the length // of the string from the locale data. Sometimes it will be // different, in which case we will have to figure it out by // adding a character at a time, until we have a match. We do // this all in one loop, where we try 'len' first (at index // i==0). int32_t len = data[bestMatch].length(); // 99+% of the time int32_t n = text.length() - start; for (i=0; i<=n; ++i) { int32_t j=i; if (i == 0) { j = len; } else if (i == len) { continue; // already tried this when i was 0 } text.extract(start, j, lcaseText); lcaseText.foldCase(); if (lcase == lcaseText) { return start + j; } } } return -start; } //---------------------------------------------------------------------- void SimpleDateFormat::set2DigitYearStart(UDate d, UErrorCode& status) { parseAmbiguousDatesAsAfter(d, status); } /** * Private member function that converts the parsed date strings into * timeFields. Returns -start (for ParsePosition) if failed. * @param text the time text to be parsed. * @param start where to start parsing. * @param ch the pattern character for the date field text to be parsed. * @param count the count of a pattern character. * @return the new start position if matching succeeded; a negative number * indicating matching failure, otherwise. */ int32_t SimpleDateFormat::subParse(const UnicodeString& text, int32_t& start, UChar ch, int32_t count, UBool obeyCount, UBool allowNegative, UBool ambiguousYear[], int32_t& saveHebrewMonth, Calendar& cal, int32_t patLoc) const { Formattable number; int32_t value = 0; int32_t i; int32_t ps = 0; ParsePosition pos(0); UDateFormatField patternCharIndex; NumberFormat *currentNumberFormat; UnicodeString temp; UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch); UBool lenient = isLenient(); UBool gotNumber = FALSE; #if defined (U_DEBUG_CAL) //fprintf(stderr, "%s:%d - [%c] st=%d \n", __FILE__, __LINE__, (char) ch, start); #endif if (patternCharPtr == NULL) { return -start; } patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars()); currentNumberFormat = getNumberFormatByIndex(patternCharIndex); UCalendarDateFields field = fgPatternIndexToCalendarField[patternCharIndex]; // If there are any spaces here, skip over them. If we hit the end // of the string, then fail. for (;;) { if (start >= text.length()) { return -start; } UChar32 c = text.char32At(start); if (!u_isUWhiteSpace(c) /*||*/ && !PatternProps::isWhiteSpace(c)) { break; } start += UTF_CHAR_LENGTH(c); } pos.setIndex(start); // We handle a few special cases here where we need to parse // a number value. We handle further, more generic cases below. We need // to handle some of them here because some fields require extra processing on // the parsed value. if (patternCharIndex == UDAT_HOUR_OF_DAY1_FIELD || // k patternCharIndex == UDAT_HOUR_OF_DAY0_FIELD || // H patternCharIndex == UDAT_HOUR1_FIELD || // h patternCharIndex == UDAT_HOUR0_FIELD || // K (patternCharIndex == UDAT_DOW_LOCAL_FIELD && count <= 2) || // e (patternCharIndex == UDAT_STANDALONE_DAY_FIELD && count <= 2) || // c (patternCharIndex == UDAT_MONTH_FIELD && count <= 2) || // M (patternCharIndex == UDAT_STANDALONE_MONTH_FIELD && count <= 2) || // L (patternCharIndex == UDAT_QUARTER_FIELD && count <= 2) || // Q (patternCharIndex == UDAT_STANDALONE_QUARTER_FIELD && count <= 2) || // q patternCharIndex == UDAT_YEAR_FIELD || // y patternCharIndex == UDAT_YEAR_WOY_FIELD || // Y patternCharIndex == UDAT_FRACTIONAL_SECOND_FIELD) // S { int32_t parseStart = pos.getIndex(); // It would be good to unify this with the obeyCount logic below, // but that's going to be difficult. const UnicodeString* src; if (obeyCount) { if ((start+count) > text.length()) { return -start; } text.extractBetween(0, start + count, temp); src = &temp; } else { src = &text; } parseInt(*src, number, pos, allowNegative,currentNumberFormat); int32_t txtLoc = pos.getIndex(); if (txtLoc > parseStart) { value = number.getLong(); gotNumber = TRUE; // suffix processing if (value < 0 ) { txtLoc = checkIntSuffix(text, txtLoc, patLoc+1, TRUE); if (txtLoc != pos.getIndex()) { value *= -1; } } else { txtLoc = checkIntSuffix(text, txtLoc, patLoc+1, FALSE); } if (!lenient) { // Check the range of the value int32_t bias = gFieldRangeBias[patternCharIndex]; if (bias >= 0 && (value > cal.getMaximum(field) + bias || value < cal.getMinimum(field) + bias)) { return -start; } } pos.setIndex(txtLoc); } } // Make sure that we got a number if // we want one, and didn't get one // if we don't want one. switch (patternCharIndex) { case UDAT_HOUR_OF_DAY1_FIELD: case UDAT_HOUR_OF_DAY0_FIELD: case UDAT_HOUR1_FIELD: case UDAT_HOUR0_FIELD: // special range check for hours: if (value < 0 || value > 24) { return -start; } // fall through to gotNumber check case UDAT_YEAR_FIELD: case UDAT_YEAR_WOY_FIELD: case UDAT_FRACTIONAL_SECOND_FIELD: // these must be a number if (! gotNumber) { return -start; } break; default: // we check the rest of the fields below. break; } switch (patternCharIndex) { case UDAT_ERA_FIELD: if (count == 5) { ps = matchString(text, start, UCAL_ERA, fSymbols->fNarrowEras, fSymbols->fNarrowErasCount, cal); } else if (count == 4) { ps = matchString(text, start, UCAL_ERA, fSymbols->fEraNames, fSymbols->fEraNamesCount, cal); } else { ps = matchString(text, start, UCAL_ERA, fSymbols->fEras, fSymbols->fErasCount, cal); } // check return position, if it equals -start, then matchString error // special case the return code so we don't necessarily fail out until we // verify no year information also if (ps == -start) ps--; return ps; case UDAT_YEAR_FIELD: // If there are 3 or more YEAR pattern characters, this indicates // that the year value is to be treated literally, without any // two-digit year adjustments (e.g., from "01" to 2001). Otherwise // we made adjustments to place the 2-digit year in the proper // century, for parsed strings from "00" to "99". Any other string // is treated literally: "2250", "-1", "1", "002". if ((pos.getIndex() - start) == 2 && u_isdigit(text.charAt(start)) && u_isdigit(text.charAt(start+1))) { // Assume for example that the defaultCenturyStart is 6/18/1903. // This means that two-digit years will be forced into the range // 6/18/1903 to 6/17/2003. As a result, years 00, 01, and 02 // correspond to 2000, 2001, and 2002. Years 04, 05, etc. correspond // to 1904, 1905, etc. If the year is 03, then it is 2003 if the // other fields specify a date before 6/18, or 1903 if they specify a // date afterwards. As a result, 03 is an ambiguous year. All other // two-digit years are unambiguous. if(fHaveDefaultCentury) { // check if this formatter even has a pivot year int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100; ambiguousYear[0] = (value == ambiguousTwoDigitYear); value += (fDefaultCenturyStartYear/100)*100 + (value < ambiguousTwoDigitYear ? 100 : 0); } } cal.set(UCAL_YEAR, value); // Delayed checking for adjustment of Hebrew month numbers in non-leap years. if (saveHebrewMonth >= 0) { HebrewCalendar *hc = (HebrewCalendar*)&cal; if (!hc->isLeapYear(value) && saveHebrewMonth >= 6) { cal.set(UCAL_MONTH,saveHebrewMonth); } else { cal.set(UCAL_MONTH,saveHebrewMonth-1); } saveHebrewMonth = -1; } return pos.getIndex(); case UDAT_YEAR_WOY_FIELD: // Comment is the same as for UDAT_Year_FIELDs - look above if ((pos.getIndex() - start) == 2 && u_isdigit(text.charAt(start)) && u_isdigit(text.charAt(start+1)) && fHaveDefaultCentury ) { int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100; ambiguousYear[0] = (value == ambiguousTwoDigitYear); value += (fDefaultCenturyStartYear/100)*100 + (value < ambiguousTwoDigitYear ? 100 : 0); } cal.set(UCAL_YEAR_WOY, value); return pos.getIndex(); case UDAT_MONTH_FIELD: if (gotNumber) // i.e., M or MM. { // When parsing month numbers from the Hebrew Calendar, we might need to adjust the month depending on whether // or not it was a leap year. We may or may not yet know what year it is, so might have to delay checking until // the year is parsed. if (!strcmp(cal.getType(),"hebrew")) { HebrewCalendar *hc = (HebrewCalendar*)&cal; if (cal.isSet(UCAL_YEAR)) { UErrorCode status = U_ZERO_ERROR; if (!hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value >= 6) { cal.set(UCAL_MONTH, value); } else { cal.set(UCAL_MONTH, value - 1); } } else { saveHebrewMonth = value; } } else { // Don't want to parse the month if it is a string // while pattern uses numeric style: M or MM. // [We computed 'value' above.] cal.set(UCAL_MONTH, value - 1); } return pos.getIndex(); } else { // count >= 3 // i.e., MMM or MMMM // Want to be able to parse both short and long forms. // Try count == 4 first: int32_t newStart = 0; if ((newStart = matchString(text, start, UCAL_MONTH, // try MMMM fSymbols->fMonths, fSymbols->fMonthsCount, cal)) > 0) return newStart; else if ((newStart = matchString(text, start, UCAL_MONTH, // try MMM fSymbols->fShortMonths, fSymbols->fShortMonthsCount, cal)) > 0) return newStart; else if (!lenient) // currently we do not try to parse MMMMM: #8860 return newStart; // else we allowing parsing as number, below } break; case UDAT_STANDALONE_MONTH_FIELD: if (gotNumber) // i.e., L or LL. { // Don't want to parse the month if it is a string // while pattern uses numeric style: M or MM. // [We computed 'value' above.] cal.set(UCAL_MONTH, value - 1); return pos.getIndex(); } else { // count >= 3 // i.e., LLL or LLLL // Want to be able to parse both short and long forms. // Try count == 4 first: int32_t newStart = 0; if ((newStart = matchString(text, start, UCAL_MONTH, fSymbols->fStandaloneMonths, fSymbols->fStandaloneMonthsCount, cal)) > 0) return newStart; else if ((newStart = matchString(text, start, UCAL_MONTH, fSymbols->fStandaloneShortMonths, fSymbols->fStandaloneShortMonthsCount, cal)) > 0) return newStart; else if (!lenient) // currently we do not try to parse LLLLL: #8860 return newStart; // else we allowing parsing as number, below } break; case UDAT_HOUR_OF_DAY1_FIELD: // [We computed 'value' above.] if (value == cal.getMaximum(UCAL_HOUR_OF_DAY) + 1) value = 0; // fall through to set field case UDAT_HOUR_OF_DAY0_FIELD: cal.set(UCAL_HOUR_OF_DAY, value); return pos.getIndex(); case UDAT_FRACTIONAL_SECOND_FIELD: // Fractional seconds left-justify i = pos.getIndex() - start; if (i < 3) { while (i < 3) { value *= 10; i++; } } else { int32_t a = 1; while (i > 3) { a *= 10; i--; } value = (value + (a>>1)) / a; } cal.set(UCAL_MILLISECOND, value); return pos.getIndex(); case UDAT_DOW_LOCAL_FIELD: if (gotNumber) // i.e., e or ee { // [We computed 'value' above.] cal.set(UCAL_DOW_LOCAL, value); return pos.getIndex(); } // else for eee-eeeee fall through to handling of EEE-EEEEE // fall through, do not break here case UDAT_DAY_OF_WEEK_FIELD: { // Want to be able to parse both short and long forms. // Try count == 4 (EEEE) first: int32_t newStart = 0; if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK, fSymbols->fWeekdays, fSymbols->fWeekdaysCount, cal)) > 0) return newStart; // EEEE failed, now try EEE else if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK, fSymbols->fShortWeekdays, fSymbols->fShortWeekdaysCount, cal)) > 0) return newStart; // EEE failed, now try EEEEE else if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK, fSymbols->fNarrowWeekdays, fSymbols->fNarrowWeekdaysCount, cal)) > 0) return newStart; else if (!lenient || patternCharIndex == UDAT_DAY_OF_WEEK_FIELD) return newStart; // else we allowing parsing as number, below } break; case UDAT_STANDALONE_DAY_FIELD: { if (gotNumber) // c or cc { // [We computed 'value' above.] cal.set(UCAL_DOW_LOCAL, value); return pos.getIndex(); } // Want to be able to parse both short and long forms. // Try count == 4 (cccc) first: int32_t newStart = 0; if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK, fSymbols->fStandaloneWeekdays, fSymbols->fStandaloneWeekdaysCount, cal)) > 0) return newStart; else if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK, fSymbols->fStandaloneShortWeekdays, fSymbols->fStandaloneShortWeekdaysCount, cal)) > 0) return newStart; else if (!lenient) return newStart; // else we allowing parsing as number, below } break; case UDAT_AM_PM_FIELD: return matchString(text, start, UCAL_AM_PM, fSymbols->fAmPms, fSymbols->fAmPmsCount, cal); case UDAT_HOUR1_FIELD: // [We computed 'value' above.] if (value == cal.getLeastMaximum(UCAL_HOUR)+1) value = 0; // fall through to set field case UDAT_HOUR0_FIELD: cal.set(UCAL_HOUR, value); return pos.getIndex(); case UDAT_QUARTER_FIELD: if (gotNumber) // i.e., Q or QQ. { // Don't want to parse the month if it is a string // while pattern uses numeric style: Q or QQ. // [We computed 'value' above.] cal.set(UCAL_MONTH, (value - 1) * 3); return pos.getIndex(); } else { // count >= 3 // i.e., QQQ or QQQQ // Want to be able to parse both short and long forms. // Try count == 4 first: int32_t newStart = 0; if ((newStart = matchQuarterString(text, start, UCAL_MONTH, fSymbols->fQuarters, fSymbols->fQuartersCount, cal)) > 0) return newStart; else if ((newStart = matchQuarterString(text, start, UCAL_MONTH, fSymbols->fShortQuarters, fSymbols->fShortQuartersCount, cal)) > 0) return newStart; else if (!lenient) return newStart; // else we allowing parsing as number, below } break; case UDAT_STANDALONE_QUARTER_FIELD: if (gotNumber) // i.e., q or qq. { // Don't want to parse the month if it is a string // while pattern uses numeric style: q or q. // [We computed 'value' above.] cal.set(UCAL_MONTH, (value - 1) * 3); return pos.getIndex(); } else { // count >= 3 // i.e., qqq or qqqq // Want to be able to parse both short and long forms. // Try count == 4 first: int32_t newStart = 0; if ((newStart = matchQuarterString(text, start, UCAL_MONTH, fSymbols->fStandaloneQuarters, fSymbols->fStandaloneQuartersCount, cal)) > 0) return newStart; else if ((newStart = matchQuarterString(text, start, UCAL_MONTH, fSymbols->fStandaloneShortQuarters, fSymbols->fStandaloneShortQuartersCount, cal)) > 0) return newStart; else if (!lenient) return newStart; // else we allowing parsing as number, below } break; case UDAT_TIMEZONE_FIELD: case UDAT_TIMEZONE_RFC_FIELD: case UDAT_TIMEZONE_GENERIC_FIELD: case UDAT_TIMEZONE_SPECIAL_FIELD: { int32_t offset = 0; UBool parsed = FALSE; // Step 1 // Check if this is a long GMT offset string (either localized or default) offset = parseGMT(text, pos); if (pos.getIndex() - start > 0) { parsed = TRUE; } if (!parsed) { // Step 2 // Check if this is an RFC822 time zone offset. // ICU supports the standard RFC822 format [+|-]HHmm // and its extended form [+|-]HHmmSS. do { int32_t sign = 0; UChar signChar = text.charAt(start); if (signChar == (UChar)0x002B /* '+' */) { sign = 1; } else if (signChar == (UChar)0x002D /* '-' */) { sign = -1; } else { // Not an RFC822 offset string break; } // Parse digits int32_t orgPos = start + 1; pos.setIndex(orgPos); parseInt(text, number, 6, pos, FALSE,currentNumberFormat); int32_t numLen = pos.getIndex() - orgPos; if (numLen <= 0) { break; } // Followings are possible format (excluding sign char) // HHmmSS // HmmSS // HHmm // Hmm // HH // H int32_t val = number.getLong(); int32_t hour = 0, min = 0, sec = 0; switch(numLen) { case 1: // H case 2: // HH hour = val; break; case 3: // Hmm case 4: // HHmm hour = val / 100; min = val % 100; break; case 5: // Hmmss case 6: // HHmmss hour = val / 10000; min = (val % 10000) / 100; sec = val % 100; break; } if (hour > 23 || min > 59 || sec > 59) { // Invalid value range break; } offset = (((hour * 60) + min) * 60 + sec) * 1000 * sign; parsed = TRUE; } while (FALSE); if (!parsed) { // Failed to parse. Reset the position. pos.setIndex(start); } } if (parsed) { // offset was successfully parsed as either a long GMT string or RFC822 zone offset // string. Create normalized zone ID for the offset. UnicodeString tzID(gGmt); formatRFC822TZ(tzID, offset); //TimeZone *customTZ = TimeZone::createTimeZone(tzID); TimeZone *customTZ = new SimpleTimeZone(offset, tzID); // faster than TimeZone::createTimeZone cal.adoptTimeZone(customTZ); return pos.getIndex(); } // Step 3 // Is this standalone Localized GMT zero or GMT/UT/UTC? int32_t gmtLen = 0; if (text.compare(start, fSymbols->fGmtZero.length(), fSymbols->fGmtZero) == 0) { gmtLen = fSymbols->fGmtZero.length(); } else if (text.compare(start, kGmtLen, gGmt) == 0) { gmtLen = kGmtLen; } else if (text.compare(start, kUtcLen, gUtc) == 0) { gmtLen = kUtcLen; } else if (text.compare(start, kUtLen, gUt) == 0) { gmtLen = kUtLen; } // If we parse the string to the end, we can exit here. // If any characters follow, we still need to proceed to the // next step. Otherwise, all time zone names starting with GMT/UT/UTC // (for example, "UTT") will fail. if (gmtLen > 0 && ((text.length() - start) == gmtLen)) { TimeZone *tz = TimeZone::createTimeZone(UNICODE_STRING("Etc/GMT", 7)); cal.adoptTimeZone(tz); return start + gmtLen; } // Step 4 // At this point, check for named time zones by looking through // the locale data. if (patternCharIndex != UDAT_TIMEZONE_RFC_FIELD) { UTimeZoneTimeType parsedTimeType = UTZFMT_TIME_TYPE_UNKNOWN; ParsePosition tmpPos(start); UnicodeString parsedID; switch (patternCharIndex) { case UDAT_TIMEZONE_FIELD: if (count < 4) { tzFormat()->parse(UTZFMT_STYLE_SPECIFIC_SHORT_COMMONLY_USED, text, tmpPos, parsedID, &parsedTimeType); } else { tzFormat()->parse(UTZFMT_STYLE_SPECIFIC_LONG, text, tmpPos, parsedID, &parsedTimeType); } break; case UDAT_TIMEZONE_GENERIC_FIELD: if (count < 4) { tzFormat()->parse(UTZFMT_STYLE_GENERIC_SHORT, text, tmpPos, parsedID, &parsedTimeType); } else { tzFormat()->parse(UTZFMT_STYLE_GENERIC_LONG, text, tmpPos, parsedID, &parsedTimeType); } break; case UDAT_TIMEZONE_SPECIAL_FIELD: if (count < 4) { tzFormat()->parse(UTZFMT_STYLE_SPECIFIC_SHORT, text, tmpPos, parsedID, &parsedTimeType); } else { tzFormat()->parse(UTZFMT_STYLE_LOCATION, text, tmpPos, parsedID, &parsedTimeType); } break; default: break; } if (tmpPos.getErrorIndex() < 0) { if (parsedTimeType == UTZFMT_TIME_TYPE_STANDARD) { ((SimpleDateFormat*)this)->tztype = TZTYPE_STD; } else if (parsedTimeType == UTZFMT_TIME_TYPE_DAYLIGHT) { ((SimpleDateFormat*)this)->tztype = TZTYPE_DST; } UnicodeString current; cal.getTimeZone().getID(current); if (parsedID != current) { TimeZone *tz = TimeZone::createTimeZone(parsedID); cal.adoptTimeZone(tz); } return tmpPos.getIndex(); } } // Step 5 // If we saw standalone GMT zero pattern, then use GMT. if (gmtLen > 0) { TimeZone *tz = TimeZone::createTimeZone(UNICODE_STRING("Etc/GMT", 7)); cal.adoptTimeZone(tz); return start + gmtLen; } // complete failure return -start; } default: // Handle "generic" fields // this is now handled below, outside the switch block break; } // Handle "generic" fields: // switch default case now handled here (outside switch block) to allow // parsing of some string fields as digits for lenient case int32_t parseStart = pos.getIndex(); const UnicodeString* src; if (obeyCount) { if ((start+count) > text.length()) { return -start; } text.extractBetween(0, start + count, temp); src = &temp; } else { src = &text; } parseInt(*src, number, pos, allowNegative,currentNumberFormat); if (pos.getIndex() != parseStart) { int32_t value = number.getLong(); // Don't need suffix processing here (as in number processing at the beginning of the function); // the new fields being handled as numeric values (month, weekdays, quarters) should not have suffixes. if (!lenient) { // Check the range of the value int32_t bias = gFieldRangeBias[patternCharIndex]; if (bias >= 0 && (value > cal.getMaximum(field) + bias || value < cal.getMinimum(field) + bias)) { return -start; } } // For the following, need to repeat some of the "if (gotNumber)" code above: // UDAT_[STANDALONE_]MONTH_FIELD, UDAT_DOW_LOCAL_FIELD, UDAT_STANDALONE_DAY_FIELD, // UDAT_[STANDALONE_]QUARTER_FIELD switch (patternCharIndex) { case UDAT_MONTH_FIELD: // See notes under UDAT_MONTH_FIELD case above if (!strcmp(cal.getType(),"hebrew")) { HebrewCalendar *hc = (HebrewCalendar*)&cal; if (cal.isSet(UCAL_YEAR)) { UErrorCode status = U_ZERO_ERROR; if (!hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value >= 6) { cal.set(UCAL_MONTH, value); } else { cal.set(UCAL_MONTH, value - 1); } } else { saveHebrewMonth = value; } } else { cal.set(UCAL_MONTH, value - 1); } break; case UDAT_STANDALONE_MONTH_FIELD: cal.set(UCAL_MONTH, value - 1); break; case UDAT_DOW_LOCAL_FIELD: case UDAT_STANDALONE_DAY_FIELD: cal.set(UCAL_DOW_LOCAL, value); break; case UDAT_QUARTER_FIELD: case UDAT_STANDALONE_QUARTER_FIELD: cal.set(UCAL_MONTH, (value - 1) * 3); break; default: cal.set(field, value); break; } return pos.getIndex(); } return -start; } /** * Parse an integer using fNumberFormat. This method is semantically * const, but actually may modify fNumberFormat. */ void SimpleDateFormat::parseInt(const UnicodeString& text, Formattable& number, ParsePosition& pos, UBool allowNegative, NumberFormat *fmt) const { parseInt(text, number, -1, pos, allowNegative,fmt); } /** * Parse an integer using fNumberFormat up to maxDigits. */ void SimpleDateFormat::parseInt(const UnicodeString& text, Formattable& number, int32_t maxDigits, ParsePosition& pos, UBool allowNegative, NumberFormat *fmt) const { UnicodeString oldPrefix; DecimalFormat* df = NULL; if (!allowNegative && (df = dynamic_cast<DecimalFormat*>(fmt)) != NULL) { df->getNegativePrefix(oldPrefix); df->setNegativePrefix(UnicodeString(TRUE, SUPPRESS_NEGATIVE_PREFIX, -1)); } int32_t oldPos = pos.getIndex(); fmt->parse(text, number, pos); if (df != NULL) { df->setNegativePrefix(oldPrefix); } if (maxDigits > 0) { // adjust the result to fit into // the maxDigits and move the position back int32_t nDigits = pos.getIndex() - oldPos; if (nDigits > maxDigits) { int32_t val = number.getLong(); nDigits -= maxDigits; while (nDigits > 0) { val /= 10; nDigits--; } pos.setIndex(oldPos + maxDigits); number.setLong(val); } } } //---------------------------------------------------------------------- void SimpleDateFormat::translatePattern(const UnicodeString& originalPattern, UnicodeString& translatedPattern, const UnicodeString& from, const UnicodeString& to, UErrorCode& status) { // run through the pattern and convert any pattern symbols from the version // in "from" to the corresponding character ion "to". This code takes // quoted strings into account (it doesn't try to translate them), and it signals // an error if a particular "pattern character" doesn't appear in "from". // Depending on the values of "from" and "to" this can convert from generic // to localized patterns or localized to generic. if (U_FAILURE(status)) return; translatedPattern.remove(); UBool inQuote = FALSE; for (int32_t i = 0; i < originalPattern.length(); ++i) { UChar c = originalPattern[i]; if (inQuote) { if (c == QUOTE) inQuote = FALSE; } else { if (c == QUOTE) inQuote = TRUE; else if ((c >= 0x0061 /*'a'*/ && c <= 0x007A) /*'z'*/ || (c >= 0x0041 /*'A'*/ && c <= 0x005A /*'Z'*/)) { int32_t ci = from.indexOf(c); if (ci == -1) { status = U_INVALID_FORMAT_ERROR; return; } c = to[ci]; } } translatedPattern += c; } if (inQuote) { status = U_INVALID_FORMAT_ERROR; return; } } //---------------------------------------------------------------------- UnicodeString& SimpleDateFormat::toPattern(UnicodeString& result) const { result = fPattern; return result; } //---------------------------------------------------------------------- UnicodeString& SimpleDateFormat::toLocalizedPattern(UnicodeString& result, UErrorCode& status) const { translatePattern(fPattern, result, UnicodeString(DateFormatSymbols::getPatternUChars()), fSymbols->fLocalPatternChars, status); return result; } //---------------------------------------------------------------------- void SimpleDateFormat::applyPattern(const UnicodeString& pattern) { fPattern = pattern; } //---------------------------------------------------------------------- void SimpleDateFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode &status) { translatePattern(pattern, fPattern, fSymbols->fLocalPatternChars, UnicodeString(DateFormatSymbols::getPatternUChars()), status); } //---------------------------------------------------------------------- const DateFormatSymbols* SimpleDateFormat::getDateFormatSymbols() const { return fSymbols; } //---------------------------------------------------------------------- void SimpleDateFormat::adoptDateFormatSymbols(DateFormatSymbols* newFormatSymbols) { delete fSymbols; fSymbols = newFormatSymbols; } //---------------------------------------------------------------------- void SimpleDateFormat::setDateFormatSymbols(const DateFormatSymbols& newFormatSymbols) { delete fSymbols; fSymbols = new DateFormatSymbols(newFormatSymbols); } //---------------------------------------------------------------------- void SimpleDateFormat::adoptCalendar(Calendar* calendarToAdopt) { UErrorCode status = U_ZERO_ERROR; DateFormat::adoptCalendar(calendarToAdopt); delete fSymbols; fSymbols=NULL; initializeSymbols(fLocale, fCalendar, status); // we need new symbols initializeDefaultCentury(); // we need a new century (possibly) } //---------------------------------------------------------------------- UBool SimpleDateFormat::isFieldUnitIgnored(UCalendarDateFields field) const { return isFieldUnitIgnored(fPattern, field); } UBool SimpleDateFormat::isFieldUnitIgnored(const UnicodeString& pattern, UCalendarDateFields field) { int32_t fieldLevel = fgCalendarFieldToLevel[field]; int32_t level; UChar ch; UBool inQuote = FALSE; UChar prevCh = 0; int32_t count = 0; for (int32_t i = 0; i < pattern.length(); ++i) { ch = pattern[i]; if (ch != prevCh && count > 0) { level = fgPatternCharToLevel[prevCh - PATTERN_CHAR_BASE]; // the larger the level, the smaller the field unit. if ( fieldLevel <= level ) { return FALSE; } count = 0; } if (ch == QUOTE) { if ((i+1) < pattern.length() && pattern[i+1] == QUOTE) { ++i; } else { inQuote = ! inQuote; } } else if ( ! inQuote && ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/) || (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))) { prevCh = ch; ++count; } } if ( count > 0 ) { // last item level = fgPatternCharToLevel[prevCh - PATTERN_CHAR_BASE]; if ( fieldLevel <= level ) { return FALSE; } } return TRUE; } //---------------------------------------------------------------------- const Locale& SimpleDateFormat::getSmpFmtLocale(void) const { return fLocale; } //---------------------------------------------------------------------- int32_t SimpleDateFormat::checkIntSuffix(const UnicodeString& text, int32_t start, int32_t patLoc, UBool isNegative) const { // local variables UnicodeString suf; int32_t patternMatch; int32_t textPreMatch; int32_t textPostMatch; // check that we are still in range if ( (start > text.length()) || (start < 0) || (patLoc < 0) || (patLoc > fPattern.length())) { // out of range, don't advance location in text return start; } // get the suffix DecimalFormat* decfmt = dynamic_cast<DecimalFormat*>(fNumberFormat); if (decfmt != NULL) { if (isNegative) { suf = decfmt->getNegativeSuffix(suf); } else { suf = decfmt->getPositiveSuffix(suf); } } // check for suffix if (suf.length() <= 0) { return start; } // check suffix will be encountered in the pattern patternMatch = compareSimpleAffix(suf,fPattern,patLoc); // check if a suffix will be encountered in the text textPreMatch = compareSimpleAffix(suf,text,start); // check if a suffix was encountered in the text textPostMatch = compareSimpleAffix(suf,text,start-suf.length()); // check for suffix match if ((textPreMatch >= 0) && (patternMatch >= 0) && (textPreMatch == patternMatch)) { return start; } else if ((textPostMatch >= 0) && (patternMatch >= 0) && (textPostMatch == patternMatch)) { return start - suf.length(); } // should not get here return start; } //---------------------------------------------------------------------- int32_t SimpleDateFormat::compareSimpleAffix(const UnicodeString& affix, const UnicodeString& input, int32_t pos) const { int32_t start = pos; for (int32_t i=0; i<affix.length(); ) { UChar32 c = affix.char32At(i); int32_t len = U16_LENGTH(c); if (PatternProps::isWhiteSpace(c)) { // We may have a pattern like: \u200F \u0020 // and input text like: \u200F \u0020 // Note that U+200F and U+0020 are Pattern_White_Space but only // U+0020 is UWhiteSpace. So we have to first do a direct // match of the run of Pattern_White_Space in the pattern, // then match any extra characters. UBool literalMatch = FALSE; while (pos < input.length() && input.char32At(pos) == c) { literalMatch = TRUE; i += len; pos += len; if (i == affix.length()) { break; } c = affix.char32At(i); len = U16_LENGTH(c); if (!PatternProps::isWhiteSpace(c)) { break; } } // Advance over run in pattern i = skipPatternWhiteSpace(affix, i); // Advance over run in input text // Must see at least one white space char in input, // unless we've already matched some characters literally. int32_t s = pos; pos = skipUWhiteSpace(input, pos); if (pos == s && !literalMatch) { return -1; } // If we skip UWhiteSpace in the input text, we need to skip it in the pattern. // Otherwise, the previous lines may have skipped over text (such as U+00A0) that // is also in the affix. i = skipUWhiteSpace(affix, i); } else { if (pos < input.length() && input.char32At(pos) == c) { i += len; pos += len; } else { return -1; } } } return pos - start; } //---------------------------------------------------------------------- int32_t SimpleDateFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) const { const UChar* s = text.getBuffer(); return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s); } //---------------------------------------------------------------------- int32_t SimpleDateFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) const { while (pos < text.length()) { UChar32 c = text.char32At(pos); if (!u_isUWhiteSpace(c)) { break; } pos += U16_LENGTH(c); } return pos; } //---------------------------------------------------------------------- // Lazy TimeZoneFormat instantiation, semantically const. TimeZoneFormat * SimpleDateFormat::tzFormat() const { if (fTimeZoneFormat == NULL) { umtx_lock(&LOCK); { if (fTimeZoneFormat == NULL) { UErrorCode status = U_ZERO_ERROR; TimeZoneFormat *tzfmt = TimeZoneFormat::createInstance(fLocale, status); U_ASSERT(U_SUCCESS(status)); const_cast<SimpleDateFormat *>(this)->fTimeZoneFormat = tzfmt; } } umtx_unlock(&LOCK); } return fTimeZoneFormat; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof