/******************************************************************** * COPYRIGHT: * Copyright (c) 1997-2011, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ #include "unicode/ustring.h" #include "unicode/uchar.h" #include "unicode/uniset.h" #include "unicode/putil.h" #include "cstring.h" #include "hash.h" #include "patternprops.h" #include "normalizer2impl.h" #include "uparse.h" #include "ucdtest.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof(array[0])) static const char *ignorePropNames[]={ "FC_NFKC", "NFD_QC", "NFC_QC", "NFKD_QC", "NFKC_QC", "Expands_On_NFD", "Expands_On_NFC", "Expands_On_NFKD", "Expands_On_NFKC", "NFKC_CF" }; UnicodeTest::UnicodeTest() { UErrorCode errorCode=U_ZERO_ERROR; unknownPropertyNames=new U_NAMESPACE_QUALIFIER Hashtable(errorCode); if(U_FAILURE(errorCode)) { delete unknownPropertyNames; unknownPropertyNames=NULL; } // Ignore some property names altogether. for(int32_t i=0; i<LENGTHOF(ignorePropNames); ++i) { unknownPropertyNames->puti(UnicodeString(ignorePropNames[i], -1, US_INV), 1, errorCode); } } UnicodeTest::~UnicodeTest() { delete unknownPropertyNames; } void UnicodeTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ ) { if(exec) { logln("TestSuite UnicodeTest: "); } TESTCASE_AUTO_BEGIN; TESTCASE_AUTO(TestAdditionalProperties); TESTCASE_AUTO(TestBinaryValues); TESTCASE_AUTO(TestConsistency); TESTCASE_AUTO(TestPatternProperties); TESTCASE_AUTO_END; } //==================================================== // private data used by the tests //==================================================== // test DerivedCoreProperties.txt ------------------------------------------- // copied from genprops.c static int32_t getTokenIndex(const char *const tokens[], int32_t countTokens, const char *s) { const char *t, *z; int32_t i, j; s=u_skipWhitespace(s); for(i=0; i<countTokens; ++i) { t=tokens[i]; if(t!=NULL) { for(j=0;; ++j) { if(t[j]!=0) { if(s[j]!=t[j]) { break; } } else { z=u_skipWhitespace(s+j); if(*z==';' || *z==0) { return i; } else { break; } } } } } return -1; } static const char *const derivedPropsNames[]={ "Math", "Alphabetic", "Lowercase", "Uppercase", "ID_Start", "ID_Continue", "XID_Start", "XID_Continue", "Default_Ignorable_Code_Point", "Full_Composition_Exclusion", "Grapheme_Extend", "Grapheme_Link", /* Unicode 5 moves this property here from PropList.txt */ "Grapheme_Base", "Cased", "Case_Ignorable", "Changes_When_Lowercased", "Changes_When_Uppercased", "Changes_When_Titlecased", "Changes_When_Casefolded", "Changes_When_Casemapped", "Changes_When_NFKC_Casefolded" }; static const UProperty derivedPropsIndex[]={ UCHAR_MATH, UCHAR_ALPHABETIC, UCHAR_LOWERCASE, UCHAR_UPPERCASE, UCHAR_ID_START, UCHAR_ID_CONTINUE, UCHAR_XID_START, UCHAR_XID_CONTINUE, UCHAR_DEFAULT_IGNORABLE_CODE_POINT, UCHAR_FULL_COMPOSITION_EXCLUSION, UCHAR_GRAPHEME_EXTEND, UCHAR_GRAPHEME_LINK, UCHAR_GRAPHEME_BASE, UCHAR_CASED, UCHAR_CASE_IGNORABLE, UCHAR_CHANGES_WHEN_LOWERCASED, UCHAR_CHANGES_WHEN_UPPERCASED, UCHAR_CHANGES_WHEN_TITLECASED, UCHAR_CHANGES_WHEN_CASEFOLDED, UCHAR_CHANGES_WHEN_CASEMAPPED, UCHAR_CHANGES_WHEN_NFKC_CASEFOLDED }; static int32_t numErrors[LENGTHOF(derivedPropsIndex)]={ 0 }; enum { MAX_ERRORS=50 }; U_CFUNC void U_CALLCONV derivedPropsLineFn(void *context, char *fields[][2], int32_t /* fieldCount */, UErrorCode *pErrorCode) { UnicodeTest *me=(UnicodeTest *)context; uint32_t start, end; int32_t i; u_parseCodePointRange(fields[0][0], &start, &end, pErrorCode); if(U_FAILURE(*pErrorCode)) { me->errln("UnicodeTest: syntax error in DerivedCoreProperties.txt or DerivedNormalizationProps.txt field 0 at %s\n", fields[0][0]); return; } /* parse derived binary property name, ignore unknown names */ i=getTokenIndex(derivedPropsNames, LENGTHOF(derivedPropsNames), fields[1][0]); if(i<0) { UnicodeString propName(fields[1][0], (int32_t)(fields[1][1]-fields[1][0])); propName.trim(); if(me->unknownPropertyNames->find(propName)==NULL) { UErrorCode errorCode=U_ZERO_ERROR; me->unknownPropertyNames->puti(propName, 1, errorCode); me->errln("UnicodeTest warning: unknown property name '%s' in DerivedCoreProperties.txt or DerivedNormalizationProps.txt\n", fields[1][0]); } return; } me->derivedProps[i].add(start, end); } void UnicodeTest::TestAdditionalProperties() { #if !UCONFIG_NO_NORMALIZATION // test DerivedCoreProperties.txt and DerivedNormalizationProps.txt if(LENGTHOF(derivedProps)<LENGTHOF(derivedPropsNames)) { errln("error: UnicodeTest::derivedProps[] too short, need at least %d UnicodeSets\n", LENGTHOF(derivedPropsNames)); return; } if(LENGTHOF(derivedPropsIndex)!=LENGTHOF(derivedPropsNames)) { errln("error in ucdtest.cpp: LENGTHOF(derivedPropsIndex)!=LENGTHOF(derivedPropsNames)\n"); return; } char newPath[256]; char backupPath[256]; char *fields[2][2]; UErrorCode errorCode=U_ZERO_ERROR; /* Look inside ICU_DATA first */ strcpy(newPath, pathToDataDirectory()); strcat(newPath, "unidata" U_FILE_SEP_STRING "DerivedCoreProperties.txt"); // As a fallback, try to guess where the source data was located // at the time ICU was built, and look there. # ifdef U_TOPSRCDIR strcpy(backupPath, U_TOPSRCDIR U_FILE_SEP_STRING "data"); # else strcpy(backupPath, loadTestData(errorCode)); strcat(backupPath, U_FILE_SEP_STRING ".." U_FILE_SEP_STRING ".." U_FILE_SEP_STRING ".." U_FILE_SEP_STRING ".." U_FILE_SEP_STRING "data"); # endif strcat(backupPath, U_FILE_SEP_STRING); strcat(backupPath, "unidata" U_FILE_SEP_STRING "DerivedCoreProperties.txt"); char *path=newPath; u_parseDelimitedFile(newPath, ';', fields, 2, derivedPropsLineFn, this, &errorCode); if(errorCode==U_FILE_ACCESS_ERROR) { errorCode=U_ZERO_ERROR; path=backupPath; u_parseDelimitedFile(backupPath, ';', fields, 2, derivedPropsLineFn, this, &errorCode); } if(U_FAILURE(errorCode)) { errln("error parsing DerivedCoreProperties.txt: %s\n", u_errorName(errorCode)); return; } char *basename=path+strlen(path)-strlen("DerivedCoreProperties.txt"); strcpy(basename, "DerivedNormalizationProps.txt"); u_parseDelimitedFile(path, ';', fields, 2, derivedPropsLineFn, this, &errorCode); if(U_FAILURE(errorCode)) { errln("error parsing DerivedNormalizationProps.txt: %s\n", u_errorName(errorCode)); return; } // now we have all derived core properties in the UnicodeSets // run them all through the API int32_t rangeCount, range; uint32_t i; UChar32 start, end; // test all TRUE properties for(i=0; i<LENGTHOF(derivedPropsNames); ++i) { rangeCount=derivedProps[i].getRangeCount(); for(range=0; range<rangeCount && numErrors[i]<MAX_ERRORS; ++range) { start=derivedProps[i].getRangeStart(range); end=derivedProps[i].getRangeEnd(range); for(; start<=end; ++start) { if(!u_hasBinaryProperty(start, derivedPropsIndex[i])) { dataerrln("UnicodeTest error: u_hasBinaryProperty(U+%04lx, %s)==FALSE is wrong", start, derivedPropsNames[i]); if(++numErrors[i]>=MAX_ERRORS) { dataerrln("Too many errors, moving to the next test"); break; } } } } } // invert all properties for(i=0; i<LENGTHOF(derivedPropsNames); ++i) { derivedProps[i].complement(); } // test all FALSE properties for(i=0; i<LENGTHOF(derivedPropsNames); ++i) { rangeCount=derivedProps[i].getRangeCount(); for(range=0; range<rangeCount && numErrors[i]<MAX_ERRORS; ++range) { start=derivedProps[i].getRangeStart(range); end=derivedProps[i].getRangeEnd(range); for(; start<=end; ++start) { if(u_hasBinaryProperty(start, derivedPropsIndex[i])) { errln("UnicodeTest error: u_hasBinaryProperty(U+%04lx, %s)==TRUE is wrong\n", start, derivedPropsNames[i]); if(++numErrors[i]>=MAX_ERRORS) { errln("Too many errors, moving to the next test"); break; } } } } } #endif /* !UCONFIG_NO_NORMALIZATION */ } void UnicodeTest::TestBinaryValues() { /* * Unicode 5.1 explicitly defines binary property value aliases. * Verify that they are all recognized. */ UErrorCode errorCode=U_ZERO_ERROR; UnicodeSet alpha(UNICODE_STRING_SIMPLE("[:Alphabetic:]"), errorCode); if(U_FAILURE(errorCode)) { dataerrln("UnicodeSet([:Alphabetic:]) failed - %s", u_errorName(errorCode)); return; } static const char *const falseValues[]={ "N", "No", "F", "False" }; static const char *const trueValues[]={ "Y", "Yes", "T", "True" }; int32_t i; for(i=0; i<LENGTHOF(falseValues); ++i) { UnicodeString pattern=UNICODE_STRING_SIMPLE("[:Alphabetic=:]"); pattern.insert(pattern.length()-2, UnicodeString(falseValues[i], -1, US_INV)); errorCode=U_ZERO_ERROR; UnicodeSet set(pattern, errorCode); if(U_FAILURE(errorCode)) { errln("UnicodeSet([:Alphabetic=%s:]) failed - %s\n", falseValues[i], u_errorName(errorCode)); continue; } set.complement(); if(set!=alpha) { errln("UnicodeSet([:Alphabetic=%s:]).complement()!=UnicodeSet([:Alphabetic:])\n", falseValues[i]); } } for(i=0; i<LENGTHOF(trueValues); ++i) { UnicodeString pattern=UNICODE_STRING_SIMPLE("[:Alphabetic=:]"); pattern.insert(pattern.length()-2, UnicodeString(trueValues[i], -1, US_INV)); errorCode=U_ZERO_ERROR; UnicodeSet set(pattern, errorCode); if(U_FAILURE(errorCode)) { errln("UnicodeSet([:Alphabetic=%s:]) failed - %s\n", trueValues[i], u_errorName(errorCode)); continue; } if(set!=alpha) { errln("UnicodeSet([:Alphabetic=%s:])!=UnicodeSet([:Alphabetic:])\n", trueValues[i]); } } } void UnicodeTest::TestConsistency() { #if !UCONFIG_NO_NORMALIZATION /* * Test for an example that getCanonStartSet() delivers * all characters that compose from the input one, * even in multiple steps. * For example, the set for "I" (0049) should contain both * I-diaeresis (00CF) and I-diaeresis-acute (1E2E). * In general, the set for the middle such character should be a subset * of the set for the first. */ IcuTestErrorCode errorCode(*this, "TestConsistency"); const Normalizer2 *nfd=Normalizer2::getInstance(NULL, "nfc", UNORM2_DECOMPOSE, errorCode); const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode); if(!nfcImpl->ensureCanonIterData(errorCode) || errorCode.isFailure()) { dataerrln("Normalizer2::getInstance(NFD) or Normalizer2Factory::getNFCImpl() failed - %s\n", errorCode.errorName()); errorCode.reset(); return; } UnicodeSet set1, set2; if (nfcImpl->getCanonStartSet(0x49, set1)) { /* enumerate all characters that are plausible to be latin letters */ for(UChar start=0xa0; start<0x2000; ++start) { UnicodeString decomp=nfd->normalize(UnicodeString(start), errorCode); if(decomp.length()>1 && decomp[0]==0x49) { set2.add(start); } } if (set1!=set2) { errln("[canon start set of 0049] != [all c with canon decomp with 0049]"); } // This was available in cucdtst.c but the test had to move to intltest // because the new internal normalization functions are in C++. //compareUSets(set1, set2, // "[canon start set of 0049]", "[all c with canon decomp with 0049]", // TRUE); } else { errln("NFC.getCanonStartSet() returned FALSE"); } #endif } /** * Test various implementations of Pattern_Syntax & Pattern_White_Space. */ void UnicodeTest::TestPatternProperties() { IcuTestErrorCode errorCode(*this, "TestPatternProperties()"); UnicodeSet syn_pp; UnicodeSet syn_prop(UNICODE_STRING_SIMPLE("[:Pattern_Syntax:]"), errorCode); UnicodeSet syn_list( "[!-/\\:-@\\[-\\^`\\{-~" "\\u00A1-\\u00A7\\u00A9\\u00AB\\u00AC\\u00AE\\u00B0\\u00B1\\u00B6\\u00BB\\u00BF\\u00D7\\u00F7" "\\u2010-\\u2027\\u2030-\\u203E\\u2041-\\u2053\\u2055-\\u205E\\u2190-\\u245F\\u2500-\\u2775" "\\u2794-\\u2BFF\\u2E00-\\u2E7F\\u3001-\\u3003\\u3008-\\u3020\\u3030\\uFD3E\\uFD3F\\uFE45\\uFE46]", errorCode); UnicodeSet ws_pp; UnicodeSet ws_prop(UNICODE_STRING_SIMPLE("[:Pattern_White_Space:]"), errorCode); UnicodeSet ws_list(UNICODE_STRING_SIMPLE("[\\u0009-\\u000D\\ \\u0085\\u200E\\u200F\\u2028\\u2029]"), errorCode); UnicodeSet syn_ws_pp; UnicodeSet syn_ws_prop(syn_prop); syn_ws_prop.addAll(ws_prop); for(UChar32 c=0; c<=0xffff; ++c) { if(PatternProps::isSyntax(c)) { syn_pp.add(c); } if(PatternProps::isWhiteSpace(c)) { ws_pp.add(c); } if(PatternProps::isSyntaxOrWhiteSpace(c)) { syn_ws_pp.add(c); } } compareUSets(syn_pp, syn_prop, "PatternProps.isSyntax()", "[:Pattern_Syntax:]", TRUE); compareUSets(syn_pp, syn_list, "PatternProps.isSyntax()", "[Pattern_Syntax ranges]", TRUE); compareUSets(ws_pp, ws_prop, "PatternProps.isWhiteSpace()", "[:Pattern_White_Space:]", TRUE); compareUSets(ws_pp, ws_list, "PatternProps.isWhiteSpace()", "[Pattern_White_Space ranges]", TRUE); compareUSets(syn_ws_pp, syn_ws_prop, "PatternProps.isSyntaxOrWhiteSpace()", "[[:Pattern_Syntax:][:Pattern_White_Space:]]", TRUE); } // So far only minimal port of Java & cucdtst.c compareUSets(). UBool UnicodeTest::compareUSets(const UnicodeSet &a, const UnicodeSet &b, const char *a_name, const char *b_name, UBool diffIsError) { UBool same= a==b; if(!same && diffIsError) { errln("Sets are different: %s vs. %s\n", a_name, b_name); } return same; }