/* ******************************************************************************* * Copyright (C) 2010, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * file name: denseranges.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2010sep25 * created by: Markus W. Scherer * * Helper code for finding a small number of dense ranges. */ #include "unicode/utypes.h" #include "denseranges.h" // Definitions in the anonymous namespace are invisible outside this file. namespace { /** * Collect up to 15 range gaps and sort them by ascending gap size. */ class LargestGaps { public: LargestGaps(int32_t max) : maxLength(max<=kCapacity ? max : kCapacity), length(0) {} void add(int32_t gapStart, int64_t gapLength) { int32_t i=length; while(i>0 && gapLength>gapLengths[i-1]) { --i; } if(i<maxLength) { // The new gap is now one of the maxLength largest. // Insert the new gap, moving up smaller ones of the previous // length largest. int32_t j= length<maxLength ? length++ : maxLength-1; while(j>i) { gapStarts[j]=gapStarts[j-1]; gapLengths[j]=gapLengths[j-1]; --j; } gapStarts[i]=gapStart; gapLengths[i]=gapLength; } } void truncate(int32_t newLength) { if(newLength<length) { length=newLength; } } int32_t count() const { return length; } int32_t gapStart(int32_t i) const { return gapStarts[i]; } int64_t gapLength(int32_t i) const { return gapLengths[i]; } int32_t firstAfter(int32_t value) const { if(length==0) { return -1; } int32_t minValue=0; int32_t minIndex=-1; for(int32_t i=0; i<length; ++i) { if(value<gapStarts[i] && (minIndex<0 || gapStarts[i]<minValue)) { minValue=gapStarts[i]; minIndex=i; } } return minIndex; } private: static const int32_t kCapacity=15; int32_t maxLength; int32_t length; int32_t gapStarts[kCapacity]; int64_t gapLengths[kCapacity]; }; } // namespace /** * Does it make sense to write 1..capacity ranges? * Returns 0 if not, otherwise the number of ranges. * @param values Sorted array of signed-integer values. * @param length Number of values. * @param density Minimum average range density, in 256th. (0x100=100%=perfectly dense.) * Should be 0x80..0x100, must be 1..0x100. * @param ranges Output ranges array. * @param capacity Maximum number of ranges. * @return Minimum number of ranges (at most capacity) that have the desired density, * or 0 if that density cannot be achieved. */ U_CAPI int32_t U_EXPORT2 uprv_makeDenseRanges(const int32_t values[], int32_t length, int32_t density, int32_t ranges[][2], int32_t capacity) { if(length<=2) { return 0; } int32_t minValue=values[0]; int32_t maxValue=values[length-1]; // Assume minValue<=maxValue. // Use int64_t variables for intermediate-value precision and to avoid // signed-int32_t overflow of maxValue-minValue. int64_t maxLength=(int64_t)maxValue-(int64_t)minValue+1; if(length>=(density*maxLength)/0x100) { // Use one range. ranges[0][0]=minValue; ranges[0][1]=maxValue; return 1; } if(length<=4) { return 0; } // See if we can split [minValue, maxValue] into 2..capacity ranges, // divided by the 1..(capacity-1) largest gaps. LargestGaps gaps(capacity-1); int32_t i; int32_t expectedValue=minValue; for(i=1; i<length; ++i) { ++expectedValue; int32_t actualValue=values[i]; if(expectedValue!=actualValue) { gaps.add(expectedValue, (int64_t)actualValue-(int64_t)expectedValue); expectedValue=actualValue; } } // We know gaps.count()>=1 because we have fewer values (length) than // the length of the [minValue..maxValue] range (maxLength). // (Otherwise we would have returned with the one range above.) int32_t num; for(i=0, num=2;; ++i, ++num) { if(i>=gaps.count()) { // The values are too sparse for capacity or fewer ranges // of the requested density. return 0; } maxLength-=gaps.gapLength(i); if(length>num*2 && length>=(density*maxLength)/0x100) { break; } } // Use the num ranges with the num-1 largest gaps. gaps.truncate(num-1); ranges[0][0]=minValue; for(i=0; i<=num-2; ++i) { int32_t gapIndex=gaps.firstAfter(minValue); int32_t gapStart=gaps.gapStart(gapIndex); ranges[i][1]=gapStart-1; ranges[i+1][0]=minValue=(int32_t)(gapStart+gaps.gapLength(gapIndex)); } ranges[num-1][1]=maxValue; return num; }