/* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Kaz Kojima Copyright (c) 2008 Red Hat, Inc. SuperH Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include <ffi.h> #include <ffi_common.h> #include <stdlib.h> #define NGREGARG 4 #if defined(__SH4__) #define NFREGARG 8 #endif #if defined(__HITACHI__) #define STRUCT_VALUE_ADDRESS_WITH_ARG 1 #else #define STRUCT_VALUE_ADDRESS_WITH_ARG 0 #endif /* If the structure has essentialy an unique element, return its type. */ static int simple_type (ffi_type *arg) { if (arg->type != FFI_TYPE_STRUCT) return arg->type; else if (arg->elements[1]) return FFI_TYPE_STRUCT; return simple_type (arg->elements[0]); } static int return_type (ffi_type *arg) { unsigned short type; if (arg->type != FFI_TYPE_STRUCT) return arg->type; type = simple_type (arg->elements[0]); if (! arg->elements[1]) { switch (type) { case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: case FFI_TYPE_SINT32: case FFI_TYPE_UINT32: return FFI_TYPE_INT; default: return type; } } /* gcc uses r0/r1 pair for some kind of structures. */ if (arg->size <= 2 * sizeof (int)) { int i = 0; ffi_type *e; while ((e = arg->elements[i++])) { type = simple_type (e); switch (type) { case FFI_TYPE_SINT32: case FFI_TYPE_UINT32: case FFI_TYPE_INT: case FFI_TYPE_FLOAT: return FFI_TYPE_UINT64; default: break; } } } return FFI_TYPE_STRUCT; } /* ffi_prep_args is called by the assembly routine once stack space has been allocated for the function's arguments */ void ffi_prep_args(char *stack, extended_cif *ecif) { register unsigned int i; register int tmp; register unsigned int avn; register void **p_argv; register char *argp; register ffi_type **p_arg; int greg, ireg; #if defined(__SH4__) int freg = 0; #endif tmp = 0; argp = stack; if (return_type (ecif->cif->rtype) == FFI_TYPE_STRUCT) { *(void **) argp = ecif->rvalue; argp += 4; ireg = STRUCT_VALUE_ADDRESS_WITH_ARG ? 1 : 0; } else ireg = 0; /* Set arguments for registers. */ greg = ireg; avn = ecif->cif->nargs; p_argv = ecif->avalue; for (i = 0, p_arg = ecif->cif->arg_types; i < avn; i++, p_arg++, p_argv++) { size_t z; z = (*p_arg)->size; if (z < sizeof(int)) { if (greg++ >= NGREGARG) continue; z = sizeof(int); switch ((*p_arg)->type) { case FFI_TYPE_SINT8: *(signed int *) argp = (signed int)*(SINT8 *)(* p_argv); break; case FFI_TYPE_UINT8: *(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv); break; case FFI_TYPE_SINT16: *(signed int *) argp = (signed int)*(SINT16 *)(* p_argv); break; case FFI_TYPE_UINT16: *(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv); break; case FFI_TYPE_STRUCT: *(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv); break; default: FFI_ASSERT(0); } argp += z; } else if (z == sizeof(int)) { #if defined(__SH4__) if ((*p_arg)->type == FFI_TYPE_FLOAT) { if (freg++ >= NFREGARG) continue; } else #endif { if (greg++ >= NGREGARG) continue; } *(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv); argp += z; } #if defined(__SH4__) else if ((*p_arg)->type == FFI_TYPE_DOUBLE) { if (freg + 1 >= NFREGARG) continue; freg = (freg + 1) & ~1; freg += 2; memcpy (argp, *p_argv, z); argp += z; } #endif else { int n = (z + sizeof (int) - 1) / sizeof (int); #if defined(__SH4__) if (greg + n - 1 >= NGREGARG) continue; #else if (greg >= NGREGARG) continue; #endif greg += n; memcpy (argp, *p_argv, z); argp += n * sizeof (int); } } /* Set arguments on stack. */ greg = ireg; #if defined(__SH4__) freg = 0; #endif p_argv = ecif->avalue; for (i = 0, p_arg = ecif->cif->arg_types; i < avn; i++, p_arg++, p_argv++) { size_t z; z = (*p_arg)->size; if (z < sizeof(int)) { if (greg++ < NGREGARG) continue; z = sizeof(int); switch ((*p_arg)->type) { case FFI_TYPE_SINT8: *(signed int *) argp = (signed int)*(SINT8 *)(* p_argv); break; case FFI_TYPE_UINT8: *(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv); break; case FFI_TYPE_SINT16: *(signed int *) argp = (signed int)*(SINT16 *)(* p_argv); break; case FFI_TYPE_UINT16: *(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv); break; case FFI_TYPE_STRUCT: *(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv); break; default: FFI_ASSERT(0); } argp += z; } else if (z == sizeof(int)) { #if defined(__SH4__) if ((*p_arg)->type == FFI_TYPE_FLOAT) { if (freg++ < NFREGARG) continue; } else #endif { if (greg++ < NGREGARG) continue; } *(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv); argp += z; } #if defined(__SH4__) else if ((*p_arg)->type == FFI_TYPE_DOUBLE) { if (freg + 1 < NFREGARG) { freg = (freg + 1) & ~1; freg += 2; continue; } memcpy (argp, *p_argv, z); argp += z; } #endif else { int n = (z + sizeof (int) - 1) / sizeof (int); if (greg + n - 1 < NGREGARG) { greg += n; continue; } #if (! defined(__SH4__)) else if (greg < NGREGARG) { greg = NGREGARG; continue; } #endif memcpy (argp, *p_argv, z); argp += n * sizeof (int); } } return; } /* Perform machine dependent cif processing */ ffi_status ffi_prep_cif_machdep(ffi_cif *cif) { int i, j; int size, type; int n, m; int greg; #if defined(__SH4__) int freg = 0; #endif cif->flags = 0; greg = ((return_type (cif->rtype) == FFI_TYPE_STRUCT) && STRUCT_VALUE_ADDRESS_WITH_ARG) ? 1 : 0; #if defined(__SH4__) for (i = j = 0; i < cif->nargs && j < 12; i++) { type = (cif->arg_types)[i]->type; switch (type) { case FFI_TYPE_FLOAT: if (freg >= NFREGARG) continue; freg++; cif->flags += ((cif->arg_types)[i]->type) << (2 * j); j++; break; case FFI_TYPE_DOUBLE: if ((freg + 1) >= NFREGARG) continue; freg = (freg + 1) & ~1; freg += 2; cif->flags += ((cif->arg_types)[i]->type) << (2 * j); j++; break; default: size = (cif->arg_types)[i]->size; n = (size + sizeof (int) - 1) / sizeof (int); if (greg + n - 1 >= NGREGARG) continue; greg += n; for (m = 0; m < n; m++) cif->flags += FFI_TYPE_INT << (2 * j++); break; } } #else for (i = j = 0; i < cif->nargs && j < 4; i++) { size = (cif->arg_types)[i]->size; n = (size + sizeof (int) - 1) / sizeof (int); if (greg >= NGREGARG) continue; else if (greg + n - 1 >= NGREGARG) n = NGREGARG - greg; greg += n; for (m = 0; m < n; m++) cif->flags += FFI_TYPE_INT << (2 * j++); } #endif /* Set the return type flag */ switch (cif->rtype->type) { case FFI_TYPE_STRUCT: cif->flags += (unsigned) (return_type (cif->rtype)) << 24; break; case FFI_TYPE_VOID: case FFI_TYPE_FLOAT: case FFI_TYPE_DOUBLE: case FFI_TYPE_SINT64: case FFI_TYPE_UINT64: cif->flags += (unsigned) cif->rtype->type << 24; break; default: cif->flags += FFI_TYPE_INT << 24; break; } return FFI_OK; } extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) { extended_cif ecif; UINT64 trvalue; ecif.cif = cif; ecif.avalue = avalue; /* If the return value is a struct and we don't have a return */ /* value address then we need to make one */ if (cif->rtype->type == FFI_TYPE_STRUCT && return_type (cif->rtype) != FFI_TYPE_STRUCT) ecif.rvalue = &trvalue; else if ((rvalue == NULL) && (cif->rtype->type == FFI_TYPE_STRUCT)) { ecif.rvalue = alloca(cif->rtype->size); } else ecif.rvalue = rvalue; switch (cif->abi) { case FFI_SYSV: ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); break; default: FFI_ASSERT(0); break; } if (rvalue && cif->rtype->type == FFI_TYPE_STRUCT && return_type (cif->rtype) != FFI_TYPE_STRUCT) memcpy (rvalue, &trvalue, cif->rtype->size); } extern void ffi_closure_SYSV (void); #if defined(__SH4__) extern void __ic_invalidate (void *line); #endif ffi_status ffi_prep_closure_loc (ffi_closure* closure, ffi_cif* cif, void (*fun)(ffi_cif*, void*, void**, void*), void *user_data, void *codeloc) { unsigned int *tramp; unsigned int insn; FFI_ASSERT (cif->abi == FFI_GCC_SYSV); tramp = (unsigned int *) &closure->tramp[0]; /* Set T bit if the function returns a struct pointed with R2. */ insn = (return_type (cif->rtype) == FFI_TYPE_STRUCT ? 0x0018 /* sett */ : 0x0008 /* clrt */); #ifdef __LITTLE_ENDIAN__ tramp[0] = 0xd301d102; tramp[1] = 0x0000412b | (insn << 16); #else tramp[0] = 0xd102d301; tramp[1] = 0x412b0000 | insn; #endif *(void **) &tramp[2] = (void *)codeloc; /* ctx */ *(void **) &tramp[3] = (void *)ffi_closure_SYSV; /* funaddr */ closure->cif = cif; closure->fun = fun; closure->user_data = user_data; #if defined(__SH4__) /* Flush the icache. */ __ic_invalidate(codeloc); #endif return FFI_OK; } /* Basically the trampoline invokes ffi_closure_SYSV, and on * entry, r3 holds the address of the closure. * After storing the registers that could possibly contain * parameters to be passed into the stack frame and setting * up space for a return value, ffi_closure_SYSV invokes the * following helper function to do most of the work. */ #ifdef __LITTLE_ENDIAN__ #define OFS_INT8 0 #define OFS_INT16 0 #else #define OFS_INT8 3 #define OFS_INT16 2 #endif int ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue, unsigned long *pgr, unsigned long *pfr, unsigned long *pst) { void **avalue; ffi_type **p_arg; int i, avn; int ireg, greg = 0; #if defined(__SH4__) int freg = 0; #endif ffi_cif *cif; cif = closure->cif; avalue = alloca(cif->nargs * sizeof(void *)); /* Copy the caller's structure return value address so that the closure returns the data directly to the caller. */ if (cif->rtype->type == FFI_TYPE_STRUCT && STRUCT_VALUE_ADDRESS_WITH_ARG) { rvalue = (void *) *pgr++; ireg = 1; } else ireg = 0; cif = closure->cif; greg = ireg; avn = cif->nargs; /* Grab the addresses of the arguments from the stack frame. */ for (i = 0, p_arg = cif->arg_types; i < avn; i++, p_arg++) { size_t z; z = (*p_arg)->size; if (z < sizeof(int)) { if (greg++ >= NGREGARG) continue; z = sizeof(int); switch ((*p_arg)->type) { case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: avalue[i] = (((char *)pgr) + OFS_INT8); break; case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: avalue[i] = (((char *)pgr) + OFS_INT16); break; case FFI_TYPE_STRUCT: avalue[i] = pgr; break; default: FFI_ASSERT(0); } pgr++; } else if (z == sizeof(int)) { #if defined(__SH4__) if ((*p_arg)->type == FFI_TYPE_FLOAT) { if (freg++ >= NFREGARG) continue; avalue[i] = pfr; pfr++; } else #endif { if (greg++ >= NGREGARG) continue; avalue[i] = pgr; pgr++; } } #if defined(__SH4__) else if ((*p_arg)->type == FFI_TYPE_DOUBLE) { if (freg + 1 >= NFREGARG) continue; if (freg & 1) pfr++; freg = (freg + 1) & ~1; freg += 2; avalue[i] = pfr; pfr += 2; } #endif else { int n = (z + sizeof (int) - 1) / sizeof (int); #if defined(__SH4__) if (greg + n - 1 >= NGREGARG) continue; #else if (greg >= NGREGARG) continue; #endif greg += n; avalue[i] = pgr; pgr += n; } } greg = ireg; #if defined(__SH4__) freg = 0; #endif for (i = 0, p_arg = cif->arg_types; i < avn; i++, p_arg++) { size_t z; z = (*p_arg)->size; if (z < sizeof(int)) { if (greg++ < NGREGARG) continue; z = sizeof(int); switch ((*p_arg)->type) { case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: avalue[i] = (((char *)pst) + OFS_INT8); break; case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: avalue[i] = (((char *)pst) + OFS_INT16); break; case FFI_TYPE_STRUCT: avalue[i] = pst; break; default: FFI_ASSERT(0); } pst++; } else if (z == sizeof(int)) { #if defined(__SH4__) if ((*p_arg)->type == FFI_TYPE_FLOAT) { if (freg++ < NFREGARG) continue; } else #endif { if (greg++ < NGREGARG) continue; } avalue[i] = pst; pst++; } #if defined(__SH4__) else if ((*p_arg)->type == FFI_TYPE_DOUBLE) { if (freg + 1 < NFREGARG) { freg = (freg + 1) & ~1; freg += 2; continue; } avalue[i] = pst; pst += 2; } #endif else { int n = (z + sizeof (int) - 1) / sizeof (int); if (greg + n - 1 < NGREGARG) { greg += n; continue; } #if (! defined(__SH4__)) else if (greg < NGREGARG) { greg += n; pst += greg - NGREGARG; continue; } #endif avalue[i] = pst; pst += n; } } (closure->fun) (cif, rvalue, avalue, closure->user_data); /* Tell ffi_closure_SYSV how to perform return type promotions. */ return return_type (cif->rtype); }