//===-- DWARFDebugLine.cpp ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFDebugLine.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; using namespace dwarf; void DWARFDebugLine::Prologue::dump(raw_ostream &OS) const { OS << "Line table prologue:\n" << format(" total_length: 0x%8.8x\n", TotalLength) << format(" version: %u\n", Version) << format("prologue_length: 0x%8.8x\n", PrologueLength) << format("min_inst_length: %u\n", MinInstLength) << format("default_is_stmt: %u\n", DefaultIsStmt) << format(" line_base: %i\n", LineBase) << format(" line_range: %u\n", LineRange) << format(" opcode_base: %u\n", OpcodeBase); for (uint32_t i = 0; i < StandardOpcodeLengths.size(); ++i) OS << format("standard_opcode_lengths[%s] = %u\n", LNStandardString(i+1), StandardOpcodeLengths[i]); if (!IncludeDirectories.empty()) for (uint32_t i = 0; i < IncludeDirectories.size(); ++i) OS << format("include_directories[%3u] = '", i+1) << IncludeDirectories[i] << "'\n"; if (!FileNames.empty()) { OS << " Dir Mod Time File Len File Name\n" << " ---- ---------- ---------- -----------" "----------------\n"; for (uint32_t i = 0; i < FileNames.size(); ++i) { const FileNameEntry& fileEntry = FileNames[i]; OS << format("file_names[%3u] %4" PRIu64 " ", i+1, fileEntry.DirIdx) << format("0x%8.8" PRIx64 " 0x%8.8" PRIx64 " ", fileEntry.ModTime, fileEntry.Length) << fileEntry.Name << '\n'; } } } void DWARFDebugLine::Row::postAppend() { BasicBlock = false; PrologueEnd = false; EpilogueBegin = false; } void DWARFDebugLine::Row::reset(bool default_is_stmt) { Address = 0; Line = 1; Column = 0; File = 1; Isa = 0; IsStmt = default_is_stmt; BasicBlock = false; EndSequence = false; PrologueEnd = false; EpilogueBegin = false; } void DWARFDebugLine::Row::dump(raw_ostream &OS) const { OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column) << format(" %6u %3u ", File, Isa) << (IsStmt ? " is_stmt" : "") << (BasicBlock ? " basic_block" : "") << (PrologueEnd ? " prologue_end" : "") << (EpilogueBegin ? " epilogue_begin" : "") << (EndSequence ? " end_sequence" : "") << '\n'; } void DWARFDebugLine::LineTable::dump(raw_ostream &OS) const { Prologue.dump(OS); OS << '\n'; if (!Rows.empty()) { OS << "Address Line Column File ISA Flags\n" << "------------------ ------ ------ ------ --- -------------\n"; for (std::vector<Row>::const_iterator pos = Rows.begin(), end = Rows.end(); pos != end; ++pos) pos->dump(OS); } } DWARFDebugLine::State::~State() {} void DWARFDebugLine::State::appendRowToMatrix(uint32_t offset) { ++row; // Increase the row number. LineTable::appendRow(*this); Row::postAppend(); } DWARFDebugLine::DumpingState::~DumpingState() {} void DWARFDebugLine::DumpingState::finalize(uint32_t offset) { LineTable::dump(OS); } const DWARFDebugLine::LineTable * DWARFDebugLine::getLineTable(uint32_t offset) const { LineTableConstIter pos = LineTableMap.find(offset); if (pos != LineTableMap.end()) return &pos->second; return 0; } const DWARFDebugLine::LineTable * DWARFDebugLine::getOrParseLineTable(DataExtractor debug_line_data, uint32_t offset) { std::pair<LineTableIter, bool> pos = LineTableMap.insert(LineTableMapTy::value_type(offset, LineTable())); if (pos.second) { // Parse and cache the line table for at this offset. State state; if (!parseStatementTable(debug_line_data, &offset, state)) return 0; pos.first->second = state; } return &pos.first->second; } bool DWARFDebugLine::parsePrologue(DataExtractor debug_line_data, uint32_t *offset_ptr, Prologue *prologue) { const uint32_t prologue_offset = *offset_ptr; prologue->clear(); prologue->TotalLength = debug_line_data.getU32(offset_ptr); prologue->Version = debug_line_data.getU16(offset_ptr); if (prologue->Version != 2) return false; prologue->PrologueLength = debug_line_data.getU32(offset_ptr); const uint32_t end_prologue_offset = prologue->PrologueLength + *offset_ptr; prologue->MinInstLength = debug_line_data.getU8(offset_ptr); prologue->DefaultIsStmt = debug_line_data.getU8(offset_ptr); prologue->LineBase = debug_line_data.getU8(offset_ptr); prologue->LineRange = debug_line_data.getU8(offset_ptr); prologue->OpcodeBase = debug_line_data.getU8(offset_ptr); prologue->StandardOpcodeLengths.reserve(prologue->OpcodeBase-1); for (uint32_t i = 1; i < prologue->OpcodeBase; ++i) { uint8_t op_len = debug_line_data.getU8(offset_ptr); prologue->StandardOpcodeLengths.push_back(op_len); } while (*offset_ptr < end_prologue_offset) { const char *s = debug_line_data.getCStr(offset_ptr); if (s && s[0]) prologue->IncludeDirectories.push_back(s); else break; } while (*offset_ptr < end_prologue_offset) { const char *name = debug_line_data.getCStr(offset_ptr); if (name && name[0]) { FileNameEntry fileEntry; fileEntry.Name = name; fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr); fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr); fileEntry.Length = debug_line_data.getULEB128(offset_ptr); prologue->FileNames.push_back(fileEntry); } else { break; } } if (*offset_ptr != end_prologue_offset) { fprintf(stderr, "warning: parsing line table prologue at 0x%8.8x should" " have ended at 0x%8.8x but it ended ad 0x%8.8x\n", prologue_offset, end_prologue_offset, *offset_ptr); } return end_prologue_offset; } bool DWARFDebugLine::parseStatementTable(DataExtractor debug_line_data, uint32_t *offset_ptr, State &state) { const uint32_t debug_line_offset = *offset_ptr; Prologue *prologue = &state.Prologue; if (!parsePrologue(debug_line_data, offset_ptr, prologue)) { // Restore our offset and return false to indicate failure! *offset_ptr = debug_line_offset; return false; } const uint32_t end_offset = debug_line_offset + prologue->TotalLength + sizeof(prologue->TotalLength); state.reset(); while (*offset_ptr < end_offset) { uint8_t opcode = debug_line_data.getU8(offset_ptr); if (opcode == 0) { // Extended Opcodes always start with a zero opcode followed by // a uleb128 length so you can skip ones you don't know about uint32_t ext_offset = *offset_ptr; uint64_t len = debug_line_data.getULEB128(offset_ptr); uint32_t arg_size = len - (*offset_ptr - ext_offset); uint8_t sub_opcode = debug_line_data.getU8(offset_ptr); switch (sub_opcode) { case DW_LNE_end_sequence: // Set the end_sequence register of the state machine to true and // append a row to the matrix using the current values of the // state-machine registers. Then reset the registers to the initial // values specified above. Every statement program sequence must end // with a DW_LNE_end_sequence instruction which creates a row whose // address is that of the byte after the last target machine instruction // of the sequence. state.EndSequence = true; state.appendRowToMatrix(*offset_ptr); state.reset(); break; case DW_LNE_set_address: // Takes a single relocatable address as an operand. The size of the // operand is the size appropriate to hold an address on the target // machine. Set the address register to the value given by the // relocatable address. All of the other statement program opcodes // that affect the address register add a delta to it. This instruction // stores a relocatable value into it instead. state.Address = debug_line_data.getAddress(offset_ptr); break; case DW_LNE_define_file: // Takes 4 arguments. The first is a null terminated string containing // a source file name. The second is an unsigned LEB128 number // representing the directory index of the directory in which the file // was found. The third is an unsigned LEB128 number representing the // time of last modification of the file. The fourth is an unsigned // LEB128 number representing the length in bytes of the file. The time // and length fields may contain LEB128(0) if the information is not // available. // // The directory index represents an entry in the include_directories // section of the statement program prologue. The index is LEB128(0) // if the file was found in the current directory of the compilation, // LEB128(1) if it was found in the first directory in the // include_directories section, and so on. The directory index is // ignored for file names that represent full path names. // // The files are numbered, starting at 1, in the order in which they // appear; the names in the prologue come before names defined by // the DW_LNE_define_file instruction. These numbers are used in the // the file register of the state machine. { FileNameEntry fileEntry; fileEntry.Name = debug_line_data.getCStr(offset_ptr); fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr); fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr); fileEntry.Length = debug_line_data.getULEB128(offset_ptr); prologue->FileNames.push_back(fileEntry); } break; default: // Length doesn't include the zero opcode byte or the length itself, but // it does include the sub_opcode, so we have to adjust for that below (*offset_ptr) += arg_size; break; } } else if (opcode < prologue->OpcodeBase) { switch (opcode) { // Standard Opcodes case DW_LNS_copy: // Takes no arguments. Append a row to the matrix using the // current values of the state-machine registers. Then set // the basic_block register to false. state.appendRowToMatrix(*offset_ptr); break; case DW_LNS_advance_pc: // Takes a single unsigned LEB128 operand, multiplies it by the // min_inst_length field of the prologue, and adds the // result to the address register of the state machine. state.Address += debug_line_data.getULEB128(offset_ptr) * prologue->MinInstLength; break; case DW_LNS_advance_line: // Takes a single signed LEB128 operand and adds that value to // the line register of the state machine. state.Line += debug_line_data.getSLEB128(offset_ptr); break; case DW_LNS_set_file: // Takes a single unsigned LEB128 operand and stores it in the file // register of the state machine. state.File = debug_line_data.getULEB128(offset_ptr); break; case DW_LNS_set_column: // Takes a single unsigned LEB128 operand and stores it in the // column register of the state machine. state.Column = debug_line_data.getULEB128(offset_ptr); break; case DW_LNS_negate_stmt: // Takes no arguments. Set the is_stmt register of the state // machine to the logical negation of its current value. state.IsStmt = !state.IsStmt; break; case DW_LNS_set_basic_block: // Takes no arguments. Set the basic_block register of the // state machine to true state.BasicBlock = true; break; case DW_LNS_const_add_pc: // Takes no arguments. Add to the address register of the state // machine the address increment value corresponding to special // opcode 255. The motivation for DW_LNS_const_add_pc is this: // when the statement program needs to advance the address by a // small amount, it can use a single special opcode, which occupies // a single byte. When it needs to advance the address by up to // twice the range of the last special opcode, it can use // DW_LNS_const_add_pc followed by a special opcode, for a total // of two bytes. Only if it needs to advance the address by more // than twice that range will it need to use both DW_LNS_advance_pc // and a special opcode, requiring three or more bytes. { uint8_t adjust_opcode = 255 - prologue->OpcodeBase; uint64_t addr_offset = (adjust_opcode / prologue->LineRange) * prologue->MinInstLength; state.Address += addr_offset; } break; case DW_LNS_fixed_advance_pc: // Takes a single uhalf operand. Add to the address register of // the state machine the value of the (unencoded) operand. This // is the only extended opcode that takes an argument that is not // a variable length number. The motivation for DW_LNS_fixed_advance_pc // is this: existing assemblers cannot emit DW_LNS_advance_pc or // special opcodes because they cannot encode LEB128 numbers or // judge when the computation of a special opcode overflows and // requires the use of DW_LNS_advance_pc. Such assemblers, however, // can use DW_LNS_fixed_advance_pc instead, sacrificing compression. state.Address += debug_line_data.getU16(offset_ptr); break; case DW_LNS_set_prologue_end: // Takes no arguments. Set the prologue_end register of the // state machine to true state.PrologueEnd = true; break; case DW_LNS_set_epilogue_begin: // Takes no arguments. Set the basic_block register of the // state machine to true state.EpilogueBegin = true; break; case DW_LNS_set_isa: // Takes a single unsigned LEB128 operand and stores it in the // column register of the state machine. state.Isa = debug_line_data.getULEB128(offset_ptr); break; default: // Handle any unknown standard opcodes here. We know the lengths // of such opcodes because they are specified in the prologue // as a multiple of LEB128 operands for each opcode. { assert(opcode - 1U < prologue->StandardOpcodeLengths.size()); uint8_t opcode_length = prologue->StandardOpcodeLengths[opcode - 1]; for (uint8_t i=0; i<opcode_length; ++i) debug_line_data.getULEB128(offset_ptr); } break; } } else { // Special Opcodes // A special opcode value is chosen based on the amount that needs // to be added to the line and address registers. The maximum line // increment for a special opcode is the value of the line_base // field in the header, plus the value of the line_range field, // minus 1 (line base + line range - 1). If the desired line // increment is greater than the maximum line increment, a standard // opcode must be used instead of a special opcode. The "address // advance" is calculated by dividing the desired address increment // by the minimum_instruction_length field from the header. The // special opcode is then calculated using the following formula: // // opcode = (desired line increment - line_base) + // (line_range * address advance) + opcode_base // // If the resulting opcode is greater than 255, a standard opcode // must be used instead. // // To decode a special opcode, subtract the opcode_base from the // opcode itself to give the adjusted opcode. The amount to // increment the address register is the result of the adjusted // opcode divided by the line_range multiplied by the // minimum_instruction_length field from the header. That is: // // address increment = (adjusted opcode / line_range) * // minimum_instruction_length // // The amount to increment the line register is the line_base plus // the result of the adjusted opcode modulo the line_range. That is: // // line increment = line_base + (adjusted opcode % line_range) uint8_t adjust_opcode = opcode - prologue->OpcodeBase; uint64_t addr_offset = (adjust_opcode / prologue->LineRange) * prologue->MinInstLength; int32_t line_offset = prologue->LineBase + (adjust_opcode % prologue->LineRange); state.Line += line_offset; state.Address += addr_offset; state.appendRowToMatrix(*offset_ptr); } } state.finalize(*offset_ptr); return end_offset; } static bool findMatchingAddress(const DWARFDebugLine::Row& row1, const DWARFDebugLine::Row& row2) { return row1.Address < row2.Address; } uint32_t DWARFDebugLine::LineTable::lookupAddress(uint64_t address, uint64_t cu_high_pc) const { uint32_t index = UINT32_MAX; if (!Rows.empty()) { // Use the lower_bound algorithm to perform a binary search since we know // that our line table data is ordered by address. DWARFDebugLine::Row row; row.Address = address; typedef std::vector<Row>::const_iterator iterator; iterator begin_pos = Rows.begin(); iterator end_pos = Rows.end(); iterator pos = std::lower_bound(begin_pos, end_pos, row, findMatchingAddress); if (pos == end_pos) { if (address < cu_high_pc) return Rows.size()-1; } else { // Rely on fact that we are using a std::vector and we can do // pointer arithmetic to find the row index (which will be one less // that what we found since it will find the first position after // the current address) since std::vector iterators are just // pointers to the container type. index = pos - begin_pos; if (pos->Address > address) { if (index > 0) --index; else index = UINT32_MAX; } } } return index; // Failed to find address. }