//===- llvm/Support/Win32/Path.cpp - Win32 Path Implementation ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides the Win32 specific implementation of the Path class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic Win32 code that //=== is guaranteed to work on *all* Win32 variants. //===----------------------------------------------------------------------===// #include "Windows.h" #include <malloc.h> #include <cstdio> // We need to undo a macro defined in Windows.h, otherwise we won't compile: #undef CopyFile #undef GetCurrentDirectory // Windows happily accepts either forward or backward slashes, though any path // returned by a Win32 API will have backward slashes. As LLVM code basically // assumes forward slashes are used, backward slashs are converted where they // can be introduced into a path. // // Another invariant is that a path ends with a slash if and only if the path // is a root directory. Any other use of a trailing slash is stripped. Unlike // in Unix, Windows has a rather complicated notion of a root path and this // invariant helps simply the code. static void FlipBackSlashes(std::string& s) { for (size_t i = 0; i < s.size(); i++) if (s[i] == '\\') s[i] = '/'; } namespace llvm { namespace sys { const char PathSeparator = ';'; StringRef Path::GetEXESuffix() { return "exe"; } Path::Path(llvm::StringRef p) : path(p) { FlipBackSlashes(path); } Path::Path(const char *StrStart, unsigned StrLen) : path(StrStart, StrLen) { FlipBackSlashes(path); } Path& Path::operator=(StringRef that) { path.assign(that.data(), that.size()); FlipBackSlashes(path); return *this; } bool Path::isValid() const { if (path.empty()) return false; size_t len = path.size(); // If there is a null character, it and all its successors are ignored. size_t pos = path.find_first_of('\0'); if (pos != std::string::npos) len = pos; // If there is a colon, it must be the second character, preceded by a letter // and followed by something. pos = path.rfind(':',len); size_t rootslash = 0; if (pos != std::string::npos) { if (pos != 1 || !isalpha(path[0]) || len < 3) return false; rootslash = 2; } // Look for a UNC path, and if found adjust our notion of the root slash. if (len > 3 && path[0] == '/' && path[1] == '/') { rootslash = path.find('/', 2); if (rootslash == std::string::npos) rootslash = 0; } // Check for illegal characters. if (path.find_first_of("\\<>\"|\001\002\003\004\005\006\007\010\011\012" "\013\014\015\016\017\020\021\022\023\024\025\026" "\027\030\031\032\033\034\035\036\037") != std::string::npos) return false; // Remove trailing slash, unless it's a root slash. if (len > rootslash+1 && path[len-1] == '/') path.erase(--len); // Check each component for legality. for (pos = 0; pos < len; ++pos) { // A component may not end in a space. if (path[pos] == ' ') { if (pos+1 == len || path[pos+1] == '/' || path[pos+1] == '\0') return false; } // A component may not end in a period. if (path[pos] == '.') { if (pos+1 == len || path[pos+1] == '/') { // Unless it is the pseudo-directory "."... if (pos == 0 || path[pos-1] == '/' || path[pos-1] == ':') return true; // or "..". if (pos > 0 && path[pos-1] == '.') { if (pos == 1 || path[pos-2] == '/' || path[pos-2] == ':') return true; } return false; } } } return true; } void Path::makeAbsolute() { TCHAR FullPath[MAX_PATH + 1] = {0}; LPTSTR FilePart = NULL; DWORD RetLength = ::GetFullPathNameA(path.c_str(), sizeof(FullPath)/sizeof(FullPath[0]), FullPath, &FilePart); if (0 == RetLength) { // FIXME: Report the error GetLastError() assert(0 && "Unable to make absolute path!"); } else if (RetLength > MAX_PATH) { // FIXME: Report too small buffer (needed RetLength bytes). assert(0 && "Unable to make absolute path!"); } else { path = FullPath; } } bool Path::isAbsolute(const char *NameStart, unsigned NameLen) { assert(NameStart); // FIXME: This does not handle correctly an absolute path starting from // a drive letter or in UNC format. switch (NameLen) { case 0: return false; case 1: case 2: return NameStart[0] == '/'; default: return (NameStart[0] == '/' || (NameStart[1] == ':' && NameStart[2] == '/')) || (NameStart[0] == '\\' || (NameStart[1] == ':' && NameStart[2] == '\\')); } } bool Path::isAbsolute() const { // FIXME: This does not handle correctly an absolute path starting from // a drive letter or in UNC format. switch (path.length()) { case 0: return false; case 1: case 2: return path[0] == '/'; default: return path[0] == '/' || (path[1] == ':' && path[2] == '/'); } } static Path *TempDirectory; Path Path::GetTemporaryDirectory(std::string* ErrMsg) { if (TempDirectory) return *TempDirectory; char pathname[MAX_PATH]; if (!GetTempPath(MAX_PATH, pathname)) { if (ErrMsg) *ErrMsg = "Can't determine temporary directory"; return Path(); } Path result; result.set(pathname); // Append a subdirectory passed on our process id so multiple LLVMs don't // step on each other's toes. #ifdef __MINGW32__ // Mingw's Win32 header files are broken. sprintf(pathname, "LLVM_%u", unsigned(GetCurrentProcessId())); #else sprintf(pathname, "LLVM_%u", GetCurrentProcessId()); #endif result.appendComponent(pathname); // If there's a directory left over from a previous LLVM execution that // happened to have the same process id, get rid of it. result.eraseFromDisk(true); // And finally (re-)create the empty directory. result.createDirectoryOnDisk(false); TempDirectory = new Path(result); return *TempDirectory; } // FIXME: the following set of functions don't map to Windows very well. Path Path::GetRootDirectory() { // This is the only notion that that Windows has of a root directory. Nothing // is here except for drives. return Path("file:///"); } void Path::GetSystemLibraryPaths(std::vector<sys::Path>& Paths) { char buff[MAX_PATH]; // Generic form of C:\Windows\System32 HRESULT res = SHGetFolderPathA(NULL, CSIDL_FLAG_CREATE | CSIDL_SYSTEM, NULL, SHGFP_TYPE_CURRENT, buff); if (res != S_OK) { assert(0 && "Failed to get system directory"); return; } Paths.push_back(sys::Path(buff)); // Reset buff. buff[0] = 0; // Generic form of C:\Windows res = SHGetFolderPathA(NULL, CSIDL_FLAG_CREATE | CSIDL_WINDOWS, NULL, SHGFP_TYPE_CURRENT, buff); if (res != S_OK) { assert(0 && "Failed to get windows directory"); return; } Paths.push_back(sys::Path(buff)); } void Path::GetBitcodeLibraryPaths(std::vector<sys::Path>& Paths) { char * env_var = getenv("LLVM_LIB_SEARCH_PATH"); if (env_var != 0) { getPathList(env_var,Paths); } #ifdef LLVM_LIBDIR { Path tmpPath; if (tmpPath.set(LLVM_LIBDIR)) if (tmpPath.canRead()) Paths.push_back(tmpPath); } #endif GetSystemLibraryPaths(Paths); } Path Path::GetUserHomeDirectory() { char buff[MAX_PATH]; HRESULT res = SHGetFolderPathA(NULL, CSIDL_FLAG_CREATE | CSIDL_APPDATA, NULL, SHGFP_TYPE_CURRENT, buff); if (res != S_OK) assert(0 && "Failed to get user home directory"); return Path(buff); } Path Path::GetCurrentDirectory() { char pathname[MAX_PATH]; ::GetCurrentDirectoryA(MAX_PATH,pathname); return Path(pathname); } /// GetMainExecutable - Return the path to the main executable, given the /// value of argv[0] from program startup. Path Path::GetMainExecutable(const char *argv0, void *MainAddr) { char pathname[MAX_PATH]; DWORD ret = ::GetModuleFileNameA(NULL, pathname, MAX_PATH); return ret != MAX_PATH ? Path(pathname) : Path(); } // FIXME: the above set of functions don't map to Windows very well. StringRef Path::getDirname() const { return getDirnameCharSep(path, "/"); } StringRef Path::getBasename() const { // Find the last slash size_t slash = path.rfind('/'); if (slash == std::string::npos) slash = 0; else slash++; size_t dot = path.rfind('.'); if (dot == std::string::npos || dot < slash) return StringRef(path).substr(slash); else return StringRef(path).substr(slash, dot - slash); } StringRef Path::getSuffix() const { // Find the last slash size_t slash = path.rfind('/'); if (slash == std::string::npos) slash = 0; else slash++; size_t dot = path.rfind('.'); if (dot == std::string::npos || dot < slash) return StringRef(""); else return StringRef(path).substr(dot + 1); } bool Path::exists() const { DWORD attr = GetFileAttributes(path.c_str()); return attr != INVALID_FILE_ATTRIBUTES; } bool Path::isDirectory() const { DWORD attr = GetFileAttributes(path.c_str()); return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY); } bool Path::isSymLink() const { DWORD attributes = GetFileAttributes(path.c_str()); if (attributes == INVALID_FILE_ATTRIBUTES) // There's no sane way to report this :(. assert(0 && "GetFileAttributes returned INVALID_FILE_ATTRIBUTES"); // This isn't exactly what defines a NTFS symlink, but it is only true for // paths that act like a symlink. return attributes & FILE_ATTRIBUTE_REPARSE_POINT; } bool Path::canRead() const { // FIXME: take security attributes into account. DWORD attr = GetFileAttributes(path.c_str()); return attr != INVALID_FILE_ATTRIBUTES; } bool Path::canWrite() const { // FIXME: take security attributes into account. DWORD attr = GetFileAttributes(path.c_str()); return (attr != INVALID_FILE_ATTRIBUTES) && !(attr & FILE_ATTRIBUTE_READONLY); } bool Path::canExecute() const { // FIXME: take security attributes into account. DWORD attr = GetFileAttributes(path.c_str()); return attr != INVALID_FILE_ATTRIBUTES; } bool Path::isRegularFile() const { bool res; if (fs::is_regular_file(path, res)) return false; return res; } StringRef Path::getLast() const { // Find the last slash size_t pos = path.rfind('/'); // Handle the corner cases if (pos == std::string::npos) return path; // If the last character is a slash, we have a root directory if (pos == path.length()-1) return path; // Return everything after the last slash return StringRef(path).substr(pos+1); } const FileStatus * PathWithStatus::getFileStatus(bool update, std::string *ErrStr) const { if (!fsIsValid || update) { WIN32_FILE_ATTRIBUTE_DATA fi; if (!GetFileAttributesEx(path.c_str(), GetFileExInfoStandard, &fi)) { MakeErrMsg(ErrStr, "getStatusInfo():" + std::string(path) + ": Can't get status: "); return 0; } status.fileSize = fi.nFileSizeHigh; status.fileSize <<= sizeof(fi.nFileSizeHigh)*8; status.fileSize += fi.nFileSizeLow; status.mode = fi.dwFileAttributes & FILE_ATTRIBUTE_READONLY ? 0555 : 0777; status.user = 9999; // Not applicable to Windows, so... status.group = 9999; // Not applicable to Windows, so... // FIXME: this is only unique if the file is accessed by the same file path. // How do we do this for C:\dir\file and ..\dir\file ? Unix has inode // numbers, but the concept doesn't exist in Windows. status.uniqueID = 0; for (unsigned i = 0; i < path.length(); ++i) status.uniqueID += path[i]; ULARGE_INTEGER ui; ui.LowPart = fi.ftLastWriteTime.dwLowDateTime; ui.HighPart = fi.ftLastWriteTime.dwHighDateTime; status.modTime.fromWin32Time(ui.QuadPart); status.isDir = fi.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY; fsIsValid = true; } return &status; } bool Path::makeReadableOnDisk(std::string* ErrMsg) { // All files are readable on Windows (ignoring security attributes). return false; } bool Path::makeWriteableOnDisk(std::string* ErrMsg) { DWORD attr = GetFileAttributes(path.c_str()); // If it doesn't exist, we're done. if (attr == INVALID_FILE_ATTRIBUTES) return false; if (attr & FILE_ATTRIBUTE_READONLY) { if (!SetFileAttributes(path.c_str(), attr & ~FILE_ATTRIBUTE_READONLY)) { MakeErrMsg(ErrMsg, std::string(path) + ": Can't make file writable: "); return true; } } return false; } bool Path::makeExecutableOnDisk(std::string* ErrMsg) { // All files are executable on Windows (ignoring security attributes). return false; } bool Path::getDirectoryContents(std::set<Path>& result, std::string* ErrMsg) const { WIN32_FILE_ATTRIBUTE_DATA fi; if (!GetFileAttributesEx(path.c_str(), GetFileExInfoStandard, &fi)) { MakeErrMsg(ErrMsg, path + ": can't get status of file"); return true; } if (!(fi.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) { if (ErrMsg) *ErrMsg = path + ": not a directory"; return true; } result.clear(); WIN32_FIND_DATA fd; std::string searchpath = path; if (path.size() == 0 || searchpath[path.size()-1] == '/') searchpath += "*"; else searchpath += "/*"; HANDLE h = FindFirstFile(searchpath.c_str(), &fd); if (h == INVALID_HANDLE_VALUE) { if (GetLastError() == ERROR_FILE_NOT_FOUND) return true; // not really an error, now is it? MakeErrMsg(ErrMsg, path + ": Can't read directory: "); return true; } do { if (fd.cFileName[0] == '.') continue; Path aPath(path); aPath.appendComponent(&fd.cFileName[0]); result.insert(aPath); } while (FindNextFile(h, &fd)); DWORD err = GetLastError(); FindClose(h); if (err != ERROR_NO_MORE_FILES) { SetLastError(err); MakeErrMsg(ErrMsg, path + ": Can't read directory: "); return true; } return false; } bool Path::set(StringRef a_path) { if (a_path.empty()) return false; std::string save(path); path = a_path; FlipBackSlashes(path); if (!isValid()) { path = save; return false; } return true; } bool Path::appendComponent(StringRef name) { if (name.empty()) return false; std::string save(path); if (!path.empty()) { size_t last = path.size() - 1; if (path[last] != '/') path += '/'; } path += name; if (!isValid()) { path = save; return false; } return true; } bool Path::eraseComponent() { size_t slashpos = path.rfind('/',path.size()); if (slashpos == path.size() - 1 || slashpos == std::string::npos) return false; std::string save(path); path.erase(slashpos); if (!isValid()) { path = save; return false; } return true; } bool Path::eraseSuffix() { size_t dotpos = path.rfind('.',path.size()); size_t slashpos = path.rfind('/',path.size()); if (dotpos != std::string::npos) { if (slashpos == std::string::npos || dotpos > slashpos+1) { std::string save(path); path.erase(dotpos, path.size()-dotpos); if (!isValid()) { path = save; return false; } return true; } } return false; } inline bool PathMsg(std::string* ErrMsg, const char* pathname, const char*msg) { if (ErrMsg) *ErrMsg = std::string(pathname) + ": " + std::string(msg); return true; } bool Path::createDirectoryOnDisk(bool create_parents, std::string* ErrMsg) { // Get a writeable copy of the path name size_t len = path.length(); char *pathname = reinterpret_cast<char *>(_alloca(len+2)); path.copy(pathname, len); pathname[len] = 0; // Make sure it ends with a slash. if (len == 0 || pathname[len - 1] != '/') { pathname[len] = '/'; pathname[++len] = 0; } // Determine starting point for initial / search. char *next = pathname; if (pathname[0] == '/' && pathname[1] == '/') { // Skip host name. next = strchr(pathname+2, '/'); if (next == NULL) return PathMsg(ErrMsg, pathname, "badly formed remote directory"); // Skip share name. next = strchr(next+1, '/'); if (next == NULL) return PathMsg(ErrMsg, pathname,"badly formed remote directory"); next++; if (*next == 0) return PathMsg(ErrMsg, pathname, "badly formed remote directory"); } else { if (pathname[1] == ':') next += 2; // skip drive letter if (*next == '/') next++; // skip root directory } // If we're supposed to create intermediate directories if (create_parents) { // Loop through the directory components until we're done while (*next) { next = strchr(next, '/'); *next = 0; if (!CreateDirectory(pathname, NULL) && GetLastError() != ERROR_ALREADY_EXISTS) return MakeErrMsg(ErrMsg, std::string(pathname) + ": Can't create directory: "); *next++ = '/'; } } else { // Drop trailing slash. pathname[len-1] = 0; if (!CreateDirectory(pathname, NULL) && GetLastError() != ERROR_ALREADY_EXISTS) { return MakeErrMsg(ErrMsg, std::string(pathname) + ": Can't create directory: "); } } return false; } bool Path::createFileOnDisk(std::string* ErrMsg) { // Create the file HANDLE h = CreateFile(path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL); if (h == INVALID_HANDLE_VALUE) return MakeErrMsg(ErrMsg, path + ": Can't create file: "); CloseHandle(h); return false; } bool Path::eraseFromDisk(bool remove_contents, std::string *ErrStr) const { WIN32_FILE_ATTRIBUTE_DATA fi; if (!GetFileAttributesEx(path.c_str(), GetFileExInfoStandard, &fi)) return true; if (fi.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) { // If it doesn't exist, we're done. bool Exists; if (fs::exists(path, Exists) || !Exists) return false; char *pathname = reinterpret_cast<char *>(_alloca(path.length()+3)); int lastchar = path.length() - 1 ; path.copy(pathname, lastchar+1); // Make path end with '/*'. if (pathname[lastchar] != '/') pathname[++lastchar] = '/'; pathname[lastchar+1] = '*'; pathname[lastchar+2] = 0; if (remove_contents) { WIN32_FIND_DATA fd; HANDLE h = FindFirstFile(pathname, &fd); // It's a bad idea to alter the contents of a directory while enumerating // its contents. So build a list of its contents first, then destroy them. if (h != INVALID_HANDLE_VALUE) { std::vector<Path> list; do { if (strcmp(fd.cFileName, ".") == 0) continue; if (strcmp(fd.cFileName, "..") == 0) continue; Path aPath(path); aPath.appendComponent(&fd.cFileName[0]); list.push_back(aPath); } while (FindNextFile(h, &fd)); DWORD err = GetLastError(); FindClose(h); if (err != ERROR_NO_MORE_FILES) { SetLastError(err); return MakeErrMsg(ErrStr, path + ": Can't read directory: "); } for (std::vector<Path>::iterator I = list.begin(); I != list.end(); ++I) { Path &aPath = *I; aPath.eraseFromDisk(true); } } else { if (GetLastError() != ERROR_FILE_NOT_FOUND) return MakeErrMsg(ErrStr, path + ": Can't read directory: "); } } pathname[lastchar] = 0; if (!RemoveDirectory(pathname)) return MakeErrMsg(ErrStr, std::string(pathname) + ": Can't destroy directory: "); return false; } else { // Read-only files cannot be deleted on Windows. Must remove the read-only // attribute first. if (fi.dwFileAttributes & FILE_ATTRIBUTE_READONLY) { if (!SetFileAttributes(path.c_str(), fi.dwFileAttributes & ~FILE_ATTRIBUTE_READONLY)) return MakeErrMsg(ErrStr, path + ": Can't destroy file: "); } if (!DeleteFile(path.c_str())) return MakeErrMsg(ErrStr, path + ": Can't destroy file: "); return false; } } bool Path::getMagicNumber(std::string& Magic, unsigned len) const { assert(len < 1024 && "Request for magic string too long"); char* buf = reinterpret_cast<char*>(alloca(len)); HANDLE h = CreateFile(path.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (h == INVALID_HANDLE_VALUE) return false; DWORD nRead = 0; BOOL ret = ReadFile(h, buf, len, &nRead, NULL); CloseHandle(h); if (!ret || nRead != len) return false; Magic = std::string(buf, len); return true; } bool Path::renamePathOnDisk(const Path& newName, std::string* ErrMsg) { if (!MoveFileEx(path.c_str(), newName.c_str(), MOVEFILE_REPLACE_EXISTING)) return MakeErrMsg(ErrMsg, "Can't move '" + path + "' to '" + newName.path + "': "); return false; } bool Path::setStatusInfoOnDisk(const FileStatus &si, std::string *ErrMsg) const { // FIXME: should work on directories also. if (!si.isFile) { return true; } HANDLE h = CreateFile(path.c_str(), FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (h == INVALID_HANDLE_VALUE) return true; BY_HANDLE_FILE_INFORMATION bhfi; if (!GetFileInformationByHandle(h, &bhfi)) { DWORD err = GetLastError(); CloseHandle(h); SetLastError(err); return MakeErrMsg(ErrMsg, path + ": GetFileInformationByHandle: "); } ULARGE_INTEGER ui; ui.QuadPart = si.modTime.toWin32Time(); FILETIME ft; ft.dwLowDateTime = ui.LowPart; ft.dwHighDateTime = ui.HighPart; BOOL ret = SetFileTime(h, NULL, &ft, &ft); DWORD err = GetLastError(); CloseHandle(h); if (!ret) { SetLastError(err); return MakeErrMsg(ErrMsg, path + ": SetFileTime: "); } // Best we can do with Unix permission bits is to interpret the owner // writable bit. if (si.mode & 0200) { if (bhfi.dwFileAttributes & FILE_ATTRIBUTE_READONLY) { if (!SetFileAttributes(path.c_str(), bhfi.dwFileAttributes & ~FILE_ATTRIBUTE_READONLY)) return MakeErrMsg(ErrMsg, path + ": SetFileAttributes: "); } } else { if (!(bhfi.dwFileAttributes & FILE_ATTRIBUTE_READONLY)) { if (!SetFileAttributes(path.c_str(), bhfi.dwFileAttributes | FILE_ATTRIBUTE_READONLY)) return MakeErrMsg(ErrMsg, path + ": SetFileAttributes: "); } } return false; } bool CopyFile(const sys::Path &Dest, const sys::Path &Src, std::string* ErrMsg) { // Can't use CopyFile macro defined in Windows.h because it would mess up the // above line. We use the expansion it would have in a non-UNICODE build. if (!::CopyFileA(Src.c_str(), Dest.c_str(), false)) return MakeErrMsg(ErrMsg, "Can't copy '" + Src.str() + "' to '" + Dest.str() + "': "); return false; } bool Path::makeUnique(bool reuse_current, std::string* ErrMsg) { bool Exists; if (reuse_current && (fs::exists(path, Exists) || !Exists)) return false; // File doesn't exist already, just use it! // Reserve space for -XXXXXX at the end. char *FNBuffer = (char*) alloca(path.size()+8); unsigned offset = path.size(); path.copy(FNBuffer, offset); // Find a numeric suffix that isn't used by an existing file. Assume there // won't be more than 1 million files with the same prefix. Probably a safe // bet. static int FCounter = -1; if (FCounter < 0) { // Give arbitrary initial seed. // FIXME: We should use sys::fs::unique_file() in future. LARGE_INTEGER cnt64; DWORD x = GetCurrentProcessId(); x = (x << 16) | (x >> 16); if (QueryPerformanceCounter(&cnt64)) // RDTSC x ^= cnt64.HighPart ^ cnt64.LowPart; FCounter = x % 1000000; } do { sprintf(FNBuffer+offset, "-%06u", FCounter); if (++FCounter > 999999) FCounter = 0; path = FNBuffer; } while (!fs::exists(path, Exists) && Exists); return false; } bool Path::createTemporaryFileOnDisk(bool reuse_current, std::string* ErrMsg) { // Make this into a unique file name makeUnique(reuse_current, ErrMsg); // Now go and create it HANDLE h = CreateFile(path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL); if (h == INVALID_HANDLE_VALUE) return MakeErrMsg(ErrMsg, path + ": can't create file"); CloseHandle(h); return false; } /// MapInFilePages - Not yet implemented on win32. const char *Path::MapInFilePages(int FD, size_t FileSize, off_t Offset) { return 0; } /// MapInFilePages - Not yet implemented on win32. void Path::UnMapFilePages(const char *Base, size_t FileSize) { assert(0 && "NOT IMPLEMENTED"); } } }