//===--- raw_ostream.cpp - Implement the raw_ostream classes --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements support for bulk buffered stream output. // //===----------------------------------------------------------------------===// #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Format.h" #include "llvm/Support/Program.h" #include "llvm/Support/Process.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Config/config.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/system_error.h" #include "llvm/ADT/STLExtras.h" #include <cctype> #include <cerrno> #include <sys/stat.h> #include <sys/types.h> #if defined(HAVE_UNISTD_H) # include <unistd.h> #endif #if defined(HAVE_FCNTL_H) # include <fcntl.h> #endif #if defined(HAVE_SYS_UIO_H) && defined(HAVE_WRITEV) # include <sys/uio.h> #endif #if defined(__CYGWIN__) #include <io.h> #endif #if defined(_MSC_VER) #include <io.h> #include <fcntl.h> #ifndef STDIN_FILENO # define STDIN_FILENO 0 #endif #ifndef STDOUT_FILENO # define STDOUT_FILENO 1 #endif #ifndef STDERR_FILENO # define STDERR_FILENO 2 #endif #endif using namespace llvm; raw_ostream::~raw_ostream() { // raw_ostream's subclasses should take care to flush the buffer // in their destructors. assert(OutBufCur == OutBufStart && "raw_ostream destructor called with non-empty buffer!"); if (BufferMode == InternalBuffer) delete [] OutBufStart; } // An out of line virtual method to provide a home for the class vtable. void raw_ostream::handle() {} size_t raw_ostream::preferred_buffer_size() const { // BUFSIZ is intended to be a reasonable default. return BUFSIZ; } void raw_ostream::SetBuffered() { // Ask the subclass to determine an appropriate buffer size. if (size_t Size = preferred_buffer_size()) SetBufferSize(Size); else // It may return 0, meaning this stream should be unbuffered. SetUnbuffered(); } void raw_ostream::SetBufferAndMode(char *BufferStart, size_t Size, BufferKind Mode) { assert(((Mode == Unbuffered && BufferStart == 0 && Size == 0) || (Mode != Unbuffered && BufferStart && Size)) && "stream must be unbuffered or have at least one byte"); // Make sure the current buffer is free of content (we can't flush here; the // child buffer management logic will be in write_impl). assert(GetNumBytesInBuffer() == 0 && "Current buffer is non-empty!"); if (BufferMode == InternalBuffer) delete [] OutBufStart; OutBufStart = BufferStart; OutBufEnd = OutBufStart+Size; OutBufCur = OutBufStart; BufferMode = Mode; assert(OutBufStart <= OutBufEnd && "Invalid size!"); } raw_ostream &raw_ostream::operator<<(unsigned long N) { // Zero is a special case. if (N == 0) return *this << '0'; char NumberBuffer[20]; char *EndPtr = NumberBuffer+sizeof(NumberBuffer); char *CurPtr = EndPtr; while (N) { *--CurPtr = '0' + char(N % 10); N /= 10; } return write(CurPtr, EndPtr-CurPtr); } raw_ostream &raw_ostream::operator<<(long N) { if (N < 0) { *this << '-'; // Avoid undefined behavior on LONG_MIN with a cast. N = -(unsigned long)N; } return this->operator<<(static_cast<unsigned long>(N)); } raw_ostream &raw_ostream::operator<<(unsigned long long N) { // Output using 32-bit div/mod when possible. if (N == static_cast<unsigned long>(N)) return this->operator<<(static_cast<unsigned long>(N)); char NumberBuffer[20]; char *EndPtr = NumberBuffer+sizeof(NumberBuffer); char *CurPtr = EndPtr; while (N) { *--CurPtr = '0' + char(N % 10); N /= 10; } return write(CurPtr, EndPtr-CurPtr); } raw_ostream &raw_ostream::operator<<(long long N) { if (N < 0) { *this << '-'; // Avoid undefined behavior on INT64_MIN with a cast. N = -(unsigned long long)N; } return this->operator<<(static_cast<unsigned long long>(N)); } raw_ostream &raw_ostream::write_hex(unsigned long long N) { // Zero is a special case. if (N == 0) return *this << '0'; char NumberBuffer[20]; char *EndPtr = NumberBuffer+sizeof(NumberBuffer); char *CurPtr = EndPtr; while (N) { uintptr_t x = N % 16; *--CurPtr = (x < 10 ? '0' + x : 'a' + x - 10); N /= 16; } return write(CurPtr, EndPtr-CurPtr); } raw_ostream &raw_ostream::write_escaped(StringRef Str, bool UseHexEscapes) { for (unsigned i = 0, e = Str.size(); i != e; ++i) { unsigned char c = Str[i]; switch (c) { case '\\': *this << '\\' << '\\'; break; case '\t': *this << '\\' << 't'; break; case '\n': *this << '\\' << 'n'; break; case '"': *this << '\\' << '"'; break; default: if (std::isprint(c)) { *this << c; break; } // Write out the escaped representation. if (UseHexEscapes) { *this << '\\' << 'x'; *this << hexdigit((c >> 4 & 0xF)); *this << hexdigit((c >> 0) & 0xF); } else { // Always use a full 3-character octal escape. *this << '\\'; *this << char('0' + ((c >> 6) & 7)); *this << char('0' + ((c >> 3) & 7)); *this << char('0' + ((c >> 0) & 7)); } } } return *this; } raw_ostream &raw_ostream::operator<<(const void *P) { *this << '0' << 'x'; return write_hex((uintptr_t) P); } raw_ostream &raw_ostream::operator<<(double N) { #ifdef _WIN32 // On MSVCRT and compatible, output of %e is incompatible to Posix // by default. Number of exponent digits should be at least 2. "%+03d" // FIXME: Implement our formatter to here or Support/Format.h! int fpcl = _fpclass(N); // negative zero if (fpcl == _FPCLASS_NZ) return *this << "-0.000000e+00"; char buf[16]; unsigned len; len = snprintf(buf, sizeof(buf), "%e", N); if (len <= sizeof(buf) - 2) { if (len >= 5 && buf[len - 5] == 'e' && buf[len - 3] == '0') { int cs = buf[len - 4]; if (cs == '+' || cs == '-') { int c1 = buf[len - 2]; int c0 = buf[len - 1]; if (isdigit(c1) && isdigit(c0)) { // Trim leading '0': "...e+012" -> "...e+12\0" buf[len - 3] = c1; buf[len - 2] = c0; buf[--len] = 0; } } } return this->operator<<(buf); } #endif return this->operator<<(format("%e", N)); } void raw_ostream::flush_nonempty() { assert(OutBufCur > OutBufStart && "Invalid call to flush_nonempty."); size_t Length = OutBufCur - OutBufStart; OutBufCur = OutBufStart; write_impl(OutBufStart, Length); } raw_ostream &raw_ostream::write(unsigned char C) { // Group exceptional cases into a single branch. if (BUILTIN_EXPECT(OutBufCur >= OutBufEnd, false)) { if (BUILTIN_EXPECT(!OutBufStart, false)) { if (BufferMode == Unbuffered) { write_impl(reinterpret_cast<char*>(&C), 1); return *this; } // Set up a buffer and start over. SetBuffered(); return write(C); } flush_nonempty(); } *OutBufCur++ = C; return *this; } raw_ostream &raw_ostream::write(const char *Ptr, size_t Size) { // Group exceptional cases into a single branch. if (BUILTIN_EXPECT(size_t(OutBufEnd - OutBufCur) < Size, false)) { if (BUILTIN_EXPECT(!OutBufStart, false)) { if (BufferMode == Unbuffered) { write_impl(Ptr, Size); return *this; } // Set up a buffer and start over. SetBuffered(); return write(Ptr, Size); } size_t NumBytes = OutBufEnd - OutBufCur; // If the buffer is empty at this point we have a string that is larger // than the buffer. Directly write the chunk that is a multiple of the // preferred buffer size and put the remainder in the buffer. if (BUILTIN_EXPECT(OutBufCur == OutBufStart, false)) { size_t BytesToWrite = Size - (Size % NumBytes); write_impl(Ptr, BytesToWrite); copy_to_buffer(Ptr + BytesToWrite, Size - BytesToWrite); return *this; } // We don't have enough space in the buffer to fit the string in. Insert as // much as possible, flush and start over with the remainder. copy_to_buffer(Ptr, NumBytes); flush_nonempty(); return write(Ptr + NumBytes, Size - NumBytes); } copy_to_buffer(Ptr, Size); return *this; } void raw_ostream::copy_to_buffer(const char *Ptr, size_t Size) { assert(Size <= size_t(OutBufEnd - OutBufCur) && "Buffer overrun!"); // Handle short strings specially, memcpy isn't very good at very short // strings. switch (Size) { case 4: OutBufCur[3] = Ptr[3]; // FALL THROUGH case 3: OutBufCur[2] = Ptr[2]; // FALL THROUGH case 2: OutBufCur[1] = Ptr[1]; // FALL THROUGH case 1: OutBufCur[0] = Ptr[0]; // FALL THROUGH case 0: break; default: memcpy(OutBufCur, Ptr, Size); break; } OutBufCur += Size; } // Formatted output. raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) { // If we have more than a few bytes left in our output buffer, try // formatting directly onto its end. size_t NextBufferSize = 127; size_t BufferBytesLeft = OutBufEnd - OutBufCur; if (BufferBytesLeft > 3) { size_t BytesUsed = Fmt.print(OutBufCur, BufferBytesLeft); // Common case is that we have plenty of space. if (BytesUsed <= BufferBytesLeft) { OutBufCur += BytesUsed; return *this; } // Otherwise, we overflowed and the return value tells us the size to try // again with. NextBufferSize = BytesUsed; } // If we got here, we didn't have enough space in the output buffer for the // string. Try printing into a SmallVector that is resized to have enough // space. Iterate until we win. SmallVector<char, 128> V; while (1) { V.resize(NextBufferSize); // Try formatting into the SmallVector. size_t BytesUsed = Fmt.print(V.data(), NextBufferSize); // If BytesUsed fit into the vector, we win. if (BytesUsed <= NextBufferSize) return write(V.data(), BytesUsed); // Otherwise, try again with a new size. assert(BytesUsed > NextBufferSize && "Didn't grow buffer!?"); NextBufferSize = BytesUsed; } } /// indent - Insert 'NumSpaces' spaces. raw_ostream &raw_ostream::indent(unsigned NumSpaces) { static const char Spaces[] = " " " " " "; // Usually the indentation is small, handle it with a fastpath. if (NumSpaces < array_lengthof(Spaces)) return write(Spaces, NumSpaces); while (NumSpaces) { unsigned NumToWrite = std::min(NumSpaces, (unsigned)array_lengthof(Spaces)-1); write(Spaces, NumToWrite); NumSpaces -= NumToWrite; } return *this; } //===----------------------------------------------------------------------===// // Formatted Output //===----------------------------------------------------------------------===// // Out of line virtual method. void format_object_base::home() { } //===----------------------------------------------------------------------===// // raw_fd_ostream //===----------------------------------------------------------------------===// /// raw_fd_ostream - Open the specified file for writing. If an error /// occurs, information about the error is put into ErrorInfo, and the /// stream should be immediately destroyed; the string will be empty /// if no error occurred. raw_fd_ostream::raw_fd_ostream(const char *Filename, std::string &ErrorInfo, unsigned Flags) : Error(false), UseAtomicWrites(false), pos(0) { assert(Filename != 0 && "Filename is null"); // Verify that we don't have both "append" and "excl". assert((!(Flags & F_Excl) || !(Flags & F_Append)) && "Cannot specify both 'excl' and 'append' file creation flags!"); ErrorInfo.clear(); // Handle "-" as stdout. Note that when we do this, we consider ourself // the owner of stdout. This means that we can do things like close the // file descriptor when we're done and set the "binary" flag globally. if (Filename[0] == '-' && Filename[1] == 0) { FD = STDOUT_FILENO; // If user requested binary then put stdout into binary mode if // possible. if (Flags & F_Binary) sys::Program::ChangeStdoutToBinary(); // Close stdout when we're done, to detect any output errors. ShouldClose = true; return; } int OpenFlags = O_WRONLY|O_CREAT; #ifdef O_BINARY if (Flags & F_Binary) OpenFlags |= O_BINARY; #endif if (Flags & F_Append) OpenFlags |= O_APPEND; else OpenFlags |= O_TRUNC; if (Flags & F_Excl) OpenFlags |= O_EXCL; while ((FD = open(Filename, OpenFlags, 0664)) < 0) { if (errno != EINTR) { ErrorInfo = "Error opening output file '" + std::string(Filename) + "'"; ShouldClose = false; return; } } // Ok, we successfully opened the file, so it'll need to be closed. ShouldClose = true; } /// raw_fd_ostream ctor - FD is the file descriptor that this writes to. If /// ShouldClose is true, this closes the file when the stream is destroyed. raw_fd_ostream::raw_fd_ostream(int fd, bool shouldClose, bool unbuffered) : raw_ostream(unbuffered), FD(fd), ShouldClose(shouldClose), Error(false), UseAtomicWrites(false) { #ifdef O_BINARY // Setting STDOUT and STDERR to binary mode is necessary in Win32 // to avoid undesirable linefeed conversion. if (fd == STDOUT_FILENO || fd == STDERR_FILENO) setmode(fd, O_BINARY); #endif // Get the starting position. off_t loc = ::lseek(FD, 0, SEEK_CUR); if (loc == (off_t)-1) pos = 0; else pos = static_cast<uint64_t>(loc); } raw_fd_ostream::~raw_fd_ostream() { if (FD >= 0) { flush(); if (ShouldClose) while (::close(FD) != 0) if (errno != EINTR) { error_detected(); break; } } #ifdef __MINGW32__ // On mingw, global dtors should not call exit(). // report_fatal_error() invokes exit(). We know report_fatal_error() // might not write messages to stderr when any errors were detected // on FD == 2. if (FD == 2) return; #endif // If there are any pending errors, report them now. Clients wishing // to avoid report_fatal_error calls should check for errors with // has_error() and clear the error flag with clear_error() before // destructing raw_ostream objects which may have errors. if (has_error()) report_fatal_error("IO failure on output stream."); } void raw_fd_ostream::write_impl(const char *Ptr, size_t Size) { assert(FD >= 0 && "File already closed."); pos += Size; do { ssize_t ret; // Check whether we should attempt to use atomic writes. if (BUILTIN_EXPECT(!UseAtomicWrites, true)) { ret = ::write(FD, Ptr, Size); } else { // Use ::writev() where available. #if defined(HAVE_WRITEV) struct iovec IOV = { (void*) Ptr, Size }; ret = ::writev(FD, &IOV, 1); #else ret = ::write(FD, Ptr, Size); #endif } if (ret < 0) { // If it's a recoverable error, swallow it and retry the write. // // Ideally we wouldn't ever see EAGAIN or EWOULDBLOCK here, since // raw_ostream isn't designed to do non-blocking I/O. However, some // programs, such as old versions of bjam, have mistakenly used // O_NONBLOCK. For compatibility, emulate blocking semantics by // spinning until the write succeeds. If you don't want spinning, // don't use O_NONBLOCK file descriptors with raw_ostream. if (errno == EINTR || errno == EAGAIN #ifdef EWOULDBLOCK || errno == EWOULDBLOCK #endif ) continue; // Otherwise it's a non-recoverable error. Note it and quit. error_detected(); break; } // The write may have written some or all of the data. Update the // size and buffer pointer to reflect the remainder that needs // to be written. If there are no bytes left, we're done. Ptr += ret; Size -= ret; } while (Size > 0); } void raw_fd_ostream::close() { assert(ShouldClose); ShouldClose = false; flush(); while (::close(FD) != 0) if (errno != EINTR) { error_detected(); break; } FD = -1; } uint64_t raw_fd_ostream::seek(uint64_t off) { flush(); pos = ::lseek(FD, off, SEEK_SET); if (pos != off) error_detected(); return pos; } size_t raw_fd_ostream::preferred_buffer_size() const { #if !defined(_MSC_VER) && !defined(__MINGW32__) && !defined(__minix) // Windows and Minix have no st_blksize. assert(FD >= 0 && "File not yet open!"); struct stat statbuf; if (fstat(FD, &statbuf) != 0) return 0; // If this is a terminal, don't use buffering. Line buffering // would be a more traditional thing to do, but it's not worth // the complexity. if (S_ISCHR(statbuf.st_mode) && isatty(FD)) return 0; // Return the preferred block size. return statbuf.st_blksize; #else return raw_ostream::preferred_buffer_size(); #endif } raw_ostream &raw_fd_ostream::changeColor(enum Colors colors, bool bold, bool bg) { if (sys::Process::ColorNeedsFlush()) flush(); const char *colorcode = (colors == SAVEDCOLOR) ? sys::Process::OutputBold(bg) : sys::Process::OutputColor(colors, bold, bg); if (colorcode) { size_t len = strlen(colorcode); write(colorcode, len); // don't account colors towards output characters pos -= len; } return *this; } raw_ostream &raw_fd_ostream::resetColor() { if (sys::Process::ColorNeedsFlush()) flush(); const char *colorcode = sys::Process::ResetColor(); if (colorcode) { size_t len = strlen(colorcode); write(colorcode, len); // don't account colors towards output characters pos -= len; } return *this; } raw_ostream &raw_fd_ostream::reverseColor() { if (sys::Process::ColorNeedsFlush()) flush(); const char *colorcode = sys::Process::OutputReverse(); if (colorcode) { size_t len = strlen(colorcode); write(colorcode, len); // don't account colors towards output characters pos -= len; } return *this; } bool raw_fd_ostream::is_displayed() const { return sys::Process::FileDescriptorIsDisplayed(FD); } //===----------------------------------------------------------------------===// // outs(), errs(), nulls() //===----------------------------------------------------------------------===// /// outs() - This returns a reference to a raw_ostream for standard output. /// Use it like: outs() << "foo" << "bar"; raw_ostream &llvm::outs() { // Set buffer settings to model stdout behavior. // Delete the file descriptor when the program exists, forcing error // detection. If you don't want this behavior, don't use outs(). static raw_fd_ostream S(STDOUT_FILENO, true); return S; } /// errs() - This returns a reference to a raw_ostream for standard error. /// Use it like: errs() << "foo" << "bar"; raw_ostream &llvm::errs() { // Set standard error to be unbuffered by default. static raw_fd_ostream S(STDERR_FILENO, false, true); return S; } /// nulls() - This returns a reference to a raw_ostream which discards output. raw_ostream &llvm::nulls() { static raw_null_ostream S; return S; } //===----------------------------------------------------------------------===// // raw_string_ostream //===----------------------------------------------------------------------===// raw_string_ostream::~raw_string_ostream() { flush(); } void raw_string_ostream::write_impl(const char *Ptr, size_t Size) { OS.append(Ptr, Size); } //===----------------------------------------------------------------------===// // raw_svector_ostream //===----------------------------------------------------------------------===// // The raw_svector_ostream implementation uses the SmallVector itself as the // buffer for the raw_ostream. We guarantee that the raw_ostream buffer is // always pointing past the end of the vector, but within the vector // capacity. This allows raw_ostream to write directly into the correct place, // and we only need to set the vector size when the data is flushed. raw_svector_ostream::raw_svector_ostream(SmallVectorImpl<char> &O) : OS(O) { // Set up the initial external buffer. We make sure that the buffer has at // least 128 bytes free; raw_ostream itself only requires 64, but we want to // make sure that we don't grow the buffer unnecessarily on destruction (when // the data is flushed). See the FIXME below. OS.reserve(OS.size() + 128); SetBuffer(OS.end(), OS.capacity() - OS.size()); } raw_svector_ostream::~raw_svector_ostream() { // FIXME: Prevent resizing during this flush(). flush(); } /// resync - This is called when the SmallVector we're appending to is changed /// outside of the raw_svector_ostream's control. It is only safe to do this /// if the raw_svector_ostream has previously been flushed. void raw_svector_ostream::resync() { assert(GetNumBytesInBuffer() == 0 && "Didn't flush before mutating vector"); if (OS.capacity() - OS.size() < 64) OS.reserve(OS.capacity() * 2); SetBuffer(OS.end(), OS.capacity() - OS.size()); } void raw_svector_ostream::write_impl(const char *Ptr, size_t Size) { // If we're writing bytes from the end of the buffer into the smallvector, we // don't need to copy the bytes, just commit the bytes because they are // already in the right place. if (Ptr == OS.end()) { assert(OS.size() + Size <= OS.capacity() && "Invalid write_impl() call!"); OS.set_size(OS.size() + Size); } else { assert(GetNumBytesInBuffer() == 0 && "Should be writing from buffer if some bytes in it"); // Otherwise, do copy the bytes. OS.append(Ptr, Ptr+Size); } // Grow the vector if necessary. if (OS.capacity() - OS.size() < 64) OS.reserve(OS.capacity() * 2); // Update the buffer position. SetBuffer(OS.end(), OS.capacity() - OS.size()); } uint64_t raw_svector_ostream::current_pos() const { return OS.size(); } StringRef raw_svector_ostream::str() { flush(); return StringRef(OS.begin(), OS.size()); } //===----------------------------------------------------------------------===// // raw_null_ostream //===----------------------------------------------------------------------===// raw_null_ostream::~raw_null_ostream() { #ifndef NDEBUG // ~raw_ostream asserts that the buffer is empty. This isn't necessary // with raw_null_ostream, but it's better to have raw_null_ostream follow // the rules than to change the rules just for raw_null_ostream. flush(); #endif } void raw_null_ostream::write_impl(const char *Ptr, size_t Size) { } uint64_t raw_null_ostream::current_pos() const { return 0; }