//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "ARMSubtarget.h" #include "ARMBaseRegisterInfo.h" #include "llvm/GlobalValue.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Support/CommandLine.h" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "ARMGenSubtargetInfo.inc" using namespace llvm; cl::opt<bool> ReserveR9("arm-reserve-r9", cl::Hidden, cl::desc("Reserve R9, making it unavailable as GPR")); static cl::opt<bool> DarwinUseMOVT("arm-darwin-use-movt", cl::init(true), cl::Hidden); static cl::opt<bool> StrictAlign("arm-strict-align", cl::Hidden, cl::desc("Disallow all unaligned memory accesses")); ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS) : ARMGenSubtargetInfo(TT, CPU, FS) , ARMProcFamily(Others) , HasV4TOps(false) , HasV5TOps(false) , HasV5TEOps(false) , HasV6Ops(false) , HasV6T2Ops(false) , HasV7Ops(false) , HasVFPv2(false) , HasVFPv3(false) , HasVFPv4(false) , HasNEON(false) , UseNEONForSinglePrecisionFP(false) , SlowFPVMLx(false) , HasVMLxForwarding(false) , SlowFPBrcc(false) , InThumbMode(false) , HasThumb2(false) , IsMClass(false) , NoARM(false) , PostRAScheduler(false) , IsR9Reserved(ReserveR9) , UseMovt(false) , SupportsTailCall(false) , HasFP16(false) , HasD16(false) , HasHardwareDivide(false) , HasT2ExtractPack(false) , HasDataBarrier(false) , Pref32BitThumb(false) , AvoidCPSRPartialUpdate(false) , HasMPExtension(false) , FPOnlySP(false) , AllowsUnalignedMem(false) , Thumb2DSP(false) , stackAlignment(4) , CPUString(CPU) , TargetTriple(TT) , TargetABI(ARM_ABI_APCS) { // Determine default and user specified characteristics if (CPUString.empty()) CPUString = "generic"; // Insert the architecture feature derived from the target triple into the // feature string. This is important for setting features that are implied // based on the architecture version. std::string ArchFS = ARM_MC::ParseARMTriple(TT); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = ArchFS + "," + FS; else ArchFS = FS; } ParseSubtargetFeatures(CPUString, ArchFS); // Thumb2 implies at least V6T2. FIXME: Fix tests to explicitly specify a // ARM version or CPU and then remove this. if (!HasV6T2Ops && hasThumb2()) HasV4TOps = HasV5TOps = HasV5TEOps = HasV6Ops = HasV6T2Ops = true; // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUString); // After parsing Itineraries, set ItinData.IssueWidth. computeIssueWidth(); if (TT.find("eabi") != std::string::npos) // FIXME: We might want to separate AAPCS and EABI. Some systems, e.g. // Darwin-EABI conforms to AACPS but not the rest of EABI. TargetABI = ARM_ABI_AAPCS; if (isAAPCS_ABI()) stackAlignment = 8; if (!isTargetIOS()) UseMovt = hasV6T2Ops(); else { IsR9Reserved = ReserveR9 | !HasV6Ops; UseMovt = DarwinUseMOVT && hasV6T2Ops(); SupportsTailCall = !getTargetTriple().isOSVersionLT(5, 0); } if (!isThumb() || hasThumb2()) PostRAScheduler = true; // v6+ may or may not support unaligned mem access depending on the system // configuration. if (!StrictAlign && hasV6Ops() && isTargetDarwin()) AllowsUnalignedMem = true; } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol. bool ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const { if (RelocM == Reloc::Static) return false; // Materializable GVs (in JIT lazy compilation mode) do not require an extra // load from stub. bool isDecl = GV->hasAvailableExternallyLinkage(); if (GV->isDeclaration() && !GV->isMaterializable()) isDecl = true; if (!isTargetDarwin()) { // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return false; return true; } else { if (RelocM == Reloc::PIC_) { // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return false; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return true; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) // Hidden $non_lazy_ptr reference. return true; return false; } else { // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return false; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return true; } } return false; } unsigned ARMSubtarget::getMispredictionPenalty() const { // If we have a reasonable estimate of the pipeline depth, then we can // estimate the penalty of a misprediction based on that. if (isCortexA8()) return 13; else if (isCortexA9()) return 8; // Otherwise, just return a sensible default. return 10; } void ARMSubtarget::computeIssueWidth() { unsigned allStage1Units = 0; for (const InstrItinerary *itin = InstrItins.Itineraries; itin->FirstStage != ~0U; ++itin) { const InstrStage *IS = InstrItins.Stages + itin->FirstStage; allStage1Units |= IS->getUnits(); } InstrItins.IssueWidth = 0; while (allStage1Units) { ++InstrItins.IssueWidth; // clear the lowest bit allStage1Units ^= allStage1Units & ~(allStage1Units - 1); } assert(InstrItins.IssueWidth <= 2 && "itinerary bug, too many stage 1 units"); } bool ARMSubtarget::enablePostRAScheduler( CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const { Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL; CriticalPathRCs.clear(); CriticalPathRCs.push_back(&ARM::GPRRegClass); return PostRAScheduler && OptLevel >= CodeGenOpt::Default; }