/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cvaux.h" /****************************************************************************************\ The code below is some modification of Stan Birchfield's algorithm described in: Depth Discontinuities by Pixel-to-Pixel Stereo Stan Birchfield and Carlo Tomasi International Journal of Computer Vision, 35(3): 269-293, December 1999. This implementation uses different cost function that results in O(pixPerRow*maxDisparity) complexity of dynamic programming stage versus O(pixPerRow*log(pixPerRow)*maxDisparity) in the above paper. \****************************************************************************************/ /****************************************************************************************\ * Find stereo correspondence by dynamic programming algorithm * \****************************************************************************************/ #define ICV_DP_STEP_LEFT 0 #define ICV_DP_STEP_UP 1 #define ICV_DP_STEP_DIAG 2 #define ICV_BIRCH_DIFF_LUM 5 #define ICV_MAX_DP_SUM_VAL (INT_MAX/4) typedef struct _CvDPCell { uchar step; //local-optimal step int sum; //current sum }_CvDPCell; typedef struct _CvRightImData { uchar min_val, max_val; } _CvRightImData; #define CV_IMAX3(a,b,c) ((temp3 = (a) >= (b) ? (a) : (b)),(temp3 >= (c) ? temp3 : (c))) #define CV_IMIN3(a,b,c) ((temp3 = (a) <= (b) ? (a) : (b)),(temp3 <= (c) ? temp3 : (c))) void icvFindStereoCorrespondenceByBirchfieldDP( uchar* src1, uchar* src2, uchar* disparities, CvSize size, int widthStep, int maxDisparity, float _param1, float _param2, float _param3, float _param4, float _param5 ) { int x, y, i, j, temp3; int d, s; int dispH = maxDisparity + 3; uchar *dispdata; int imgW = size.width; int imgH = size.height; uchar val, prevval, prev, curr; int min_val; uchar* dest = disparities; int param1 = cvRound(_param1); int param2 = cvRound(_param2); int param3 = cvRound(_param3); int param4 = cvRound(_param4); int param5 = cvRound(_param5); #define CELL(d,x) cells[(d)+(x)*dispH] uchar* dsi = (uchar*)cvAlloc(sizeof(uchar)*imgW*dispH); uchar* edges = (uchar*)cvAlloc(sizeof(uchar)*imgW*imgH); _CvDPCell* cells = (_CvDPCell*)cvAlloc(sizeof(_CvDPCell)*imgW*MAX(dispH,(imgH+1)/2)); _CvRightImData* rData = (_CvRightImData*)cvAlloc(sizeof(_CvRightImData)*imgW); int* reliabilities = (int*)cells; for( y = 0; y < imgH; y++ ) { uchar* srcdata1 = src1 + widthStep * y; uchar* srcdata2 = src2 + widthStep * y; //init rData prevval = prev = srcdata2[0]; for( j = 1; j < imgW; j++ ) { curr = srcdata2[j]; val = (uchar)((curr + prev)>>1); rData[j-1].max_val = (uchar)CV_IMAX3( val, prevval, prev ); rData[j-1].min_val = (uchar)CV_IMIN3( val, prevval, prev ); prevval = val; prev = curr; } rData[j-1] = rData[j-2];//last elem // fill dissimularity space image for( i = 1; i <= maxDisparity + 1; i++ ) { dsi += imgW; rData--; for( j = i - 1; j < imgW - 1; j++ ) { int t; if( (t = srcdata1[j] - rData[j+1].max_val) >= 0 ) { dsi[j] = (uchar)t; } else if( (t = rData[j+1].min_val - srcdata1[j]) >= 0 ) { dsi[j] = (uchar)t; } else { dsi[j] = 0; } } } dsi -= (maxDisparity+1)*imgW; rData += maxDisparity+1; //intensity gradients image construction //left row edges[y*imgW] = edges[y*imgW+1] = edges[y*imgW+2] = 2; edges[y*imgW+imgW-1] = edges[y*imgW+imgW-2] = edges[y*imgW+imgW-3] = 1; for( j = 3; j < imgW-4; j++ ) { edges[y*imgW+j] = 0; if( ( CV_IMAX3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) - CV_IMIN3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) ) >= ICV_BIRCH_DIFF_LUM ) { edges[y*imgW+j] |= 1; } if( ( CV_IMAX3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) - CV_IMIN3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) ) >= ICV_BIRCH_DIFF_LUM ) { edges[y*imgW+j] |= 2; } } //find correspondence using dynamical programming //init DP table for( x = 0; x < imgW; x++ ) { CELL(0,x).sum = CELL(dispH-1,x).sum = ICV_MAX_DP_SUM_VAL; CELL(0,x).step = CELL(dispH-1,x).step = ICV_DP_STEP_LEFT; } for( d = 2; d < dispH; d++ ) { CELL(d,d-2).sum = ICV_MAX_DP_SUM_VAL; CELL(d,d-2).step = ICV_DP_STEP_UP; } CELL(1,0).sum = 0; CELL(1,0).step = ICV_DP_STEP_LEFT; for( x = 1; x < imgW; x++ ) { int d = MIN( x + 1, maxDisparity + 1); uchar* _edges = edges + y*imgW + x; int e0 = _edges[0] & 1; _CvDPCell* _cell = cells + x*dispH; do { int s = dsi[d*imgW+x]; int sum[3]; //check left step sum[0] = _cell[d-dispH].sum - param2; //check up step if( _cell[d+1].step != ICV_DP_STEP_DIAG && e0 ) { sum[1] = _cell[d+1].sum + param1; if( _cell[d-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-d] & 2) ) { int t; sum[2] = _cell[d-1-dispH].sum + param1; t = sum[1] < sum[0]; //choose local-optimal pass if( sum[t] <= sum[2] ) { _cell[d].step = (uchar)t; _cell[d].sum = sum[t] + s; } else { _cell[d].step = ICV_DP_STEP_DIAG; _cell[d].sum = sum[2] + s; } } else { if( sum[0] <= sum[1] ) { _cell[d].step = ICV_DP_STEP_LEFT; _cell[d].sum = sum[0] + s; } else { _cell[d].step = ICV_DP_STEP_UP; _cell[d].sum = sum[1] + s; } } } else if( _cell[d-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-d] & 2) ) { sum[2] = _cell[d-1-dispH].sum + param1; if( sum[0] <= sum[2] ) { _cell[d].step = ICV_DP_STEP_LEFT; _cell[d].sum = sum[0] + s; } else { _cell[d].step = ICV_DP_STEP_DIAG; _cell[d].sum = sum[2] + s; } } else { _cell[d].step = ICV_DP_STEP_LEFT; _cell[d].sum = sum[0] + s; } } while( --d ); }// for x //extract optimal way and fill disparity image dispdata = dest + widthStep * y; //find min_val min_val = ICV_MAX_DP_SUM_VAL; for( i = 1; i <= maxDisparity + 1; i++ ) { if( min_val > CELL(i,imgW-1).sum ) { d = i; min_val = CELL(i,imgW-1).sum; } } //track optimal pass for( x = imgW - 1; x > 0; x-- ) { dispdata[x] = (uchar)(d - 1); while( CELL(d,x).step == ICV_DP_STEP_UP ) d++; if ( CELL(d,x).step == ICV_DP_STEP_DIAG ) { s = x; while( CELL(d,x).step == ICV_DP_STEP_DIAG ) { d--; x--; } for( i = x; i < s; i++ ) { dispdata[i] = (uchar)(d-1); } } }//for x }// for y //Postprocessing the Disparity Map //remove obvious errors in the disparity map for( x = 0; x < imgW; x++ ) { for( y = 1; y < imgH - 1; y++ ) { if( dest[(y-1)*widthStep+x] == dest[(y+1)*widthStep+x] ) { dest[y*widthStep+x] = dest[(y-1)*widthStep+x]; } } } //compute intensity Y-gradients for( x = 0; x < imgW; x++ ) { for( y = 1; y < imgH - 1; y++ ) { if( ( CV_IMAX3( src1[(y-1)*widthStep+x], src1[y*widthStep+x], src1[(y+1)*widthStep+x] ) - CV_IMIN3( src1[(y-1)*widthStep+x], src1[y*widthStep+x], src1[(y+1)*widthStep+x] ) ) >= ICV_BIRCH_DIFF_LUM ) { edges[y*imgW+x] |= 4; edges[(y+1)*imgW+x] |= 4; edges[(y-1)*imgW+x] |= 4; y++; } } } //remove along any particular row, every gradient //for which two adjacent columns do not agree. for( y = 0; y < imgH; y++ ) { prev = edges[y*imgW]; for( x = 1; x < imgW - 1; x++ ) { curr = edges[y*imgW+x]; if( (curr & 4) && ( !( prev & 4 ) || !( edges[y*imgW+x+1] & 4 ) ) ) { edges[y*imgW+x] -= 4; } prev = curr; } } // define reliability for( x = 0; x < imgW; x++ ) { for( y = 1; y < imgH; y++ ) { i = y - 1; for( ; y < imgH && dest[y*widthStep+x] == dest[(y-1)*widthStep+x]; y++ ) ; s = y - i; for( ; i < y; i++ ) { reliabilities[i*imgW+x] = s; } } } //Y - propagate reliable regions for( x = 0; x < imgW; x++ ) { for( y = 0; y < imgH; y++ ) { d = dest[y*widthStep+x]; if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 4) && d > 0 )//highly || moderately { disparities[y*widthStep+x] = (uchar)d; //up propagation for( i = y - 1; i >= 0; i-- ) { if( ( edges[i*imgW+x] & 4 ) || ( dest[i*widthStep+x] < d && reliabilities[i*imgW+x] >= param3 ) || ( reliabilities[y*imgW+x] < param5 && dest[i*widthStep+x] - 1 == d ) ) break; disparities[i*widthStep+x] = (uchar)d; } //down propagation for( i = y + 1; i < imgH; i++ ) { if( ( edges[i*imgW+x] & 4 ) || ( dest[i*widthStep+x] < d && reliabilities[i*imgW+x] >= param3 ) || ( reliabilities[y*imgW+x] < param5 && dest[i*widthStep+x] - 1 == d ) ) break; disparities[i*widthStep+x] = (uchar)d; } y = i - 1; } else { disparities[y*widthStep+x] = (uchar)d; } } } // define reliability along X for( y = 0; y < imgH; y++ ) { for( x = 1; x < imgW; x++ ) { i = x - 1; for( ; x < imgW && dest[y*widthStep+x] == dest[y*widthStep+x-1]; x++ ); s = x - i; for( ; i < x; i++ ) { reliabilities[y*imgW+i] = s; } } } //X - propagate reliable regions for( y = 0; y < imgH; y++ ) { for( x = 0; x < imgW; x++ ) { d = dest[y*widthStep+x]; if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 1) && d > 0 )//highly || moderately { disparities[y*widthStep+x] = (uchar)d; //up propagation for( i = x - 1; i >= 0; i-- ) { if( (edges[y*imgW+i] & 1) || ( dest[y*widthStep+i] < d && reliabilities[y*imgW+i] >= param3 ) || ( reliabilities[y*imgW+x] < param5 && dest[y*widthStep+i] - 1 == d ) ) break; disparities[y*widthStep+i] = (uchar)d; } //down propagation for( i = x + 1; i < imgW; i++ ) { if( (edges[y*imgW+i] & 1) || ( dest[y*widthStep+i] < d && reliabilities[y*imgW+i] >= param3 ) || ( reliabilities[y*imgW+x] < param5 && dest[y*widthStep+i] - 1 == d ) ) break; disparities[y*widthStep+i] = (uchar)d; } x = i - 1; } else { disparities[y*widthStep+x] = (uchar)d; } } } //release resources cvFree( &dsi ); cvFree( &edges ); cvFree( &cells ); cvFree( &rData ); } /*F/////////////////////////////////////////////////////////////////////////// // // Name: cvFindStereoCorrespondence // Purpose: find stereo correspondence on stereo-pair // Context: // Parameters: // leftImage - left image of stereo-pair (format 8uC1). // rightImage - right image of stereo-pair (format 8uC1). // mode -mode of correspondance retrieval (now CV_RETR_DP_BIRCHFIELD only) // dispImage - destination disparity image // maxDisparity - maximal disparity // param1, param2, param3, param4, param5 - parameters of algorithm // Returns: // Notes: // Images must be rectified. // All images must have format 8uC1. //F*/ CV_IMPL void cvFindStereoCorrespondence( const CvArr* leftImage, const CvArr* rightImage, int mode, CvArr* depthImage, int maxDisparity, double param1, double param2, double param3, double param4, double param5 ) { CV_FUNCNAME( "cvFindStereoCorrespondence" ); __BEGIN__; CvMat *src1, *src2; CvMat *dst; CvMat src1_stub, src2_stub, dst_stub; int coi; CV_CALL( src1 = cvGetMat( leftImage, &src1_stub, &coi )); if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" ); CV_CALL( src2 = cvGetMat( rightImage, &src2_stub, &coi )); if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" ); CV_CALL( dst = cvGetMat( depthImage, &dst_stub, &coi )); if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" ); // check args if( CV_MAT_TYPE( src1->type ) != CV_8UC1 || CV_MAT_TYPE( src2->type ) != CV_8UC1 || CV_MAT_TYPE( dst->type ) != CV_8UC1) CV_ERROR(CV_StsUnsupportedFormat, "All images must be single-channel and have 8u" ); if( !CV_ARE_SIZES_EQ( src1, src2 ) || !CV_ARE_SIZES_EQ( src1, dst ) ) CV_ERROR( CV_StsUnmatchedSizes, "" ); if( maxDisparity <= 0 || maxDisparity >= src1->width || maxDisparity > 255 ) CV_ERROR(CV_StsOutOfRange, "parameter /maxDisparity/ is out of range"); if( mode == CV_DISPARITY_BIRCHFIELD ) { if( param1 == CV_UNDEF_SC_PARAM ) param1 = CV_IDP_BIRCHFIELD_PARAM1; if( param2 == CV_UNDEF_SC_PARAM ) param2 = CV_IDP_BIRCHFIELD_PARAM2; if( param3 == CV_UNDEF_SC_PARAM ) param3 = CV_IDP_BIRCHFIELD_PARAM3; if( param4 == CV_UNDEF_SC_PARAM ) param4 = CV_IDP_BIRCHFIELD_PARAM4; if( param5 == CV_UNDEF_SC_PARAM ) param5 = CV_IDP_BIRCHFIELD_PARAM5; CV_CALL( icvFindStereoCorrespondenceByBirchfieldDP( src1->data.ptr, src2->data.ptr, dst->data.ptr, cvGetMatSize( src1 ), src1->step, maxDisparity, (float)param1, (float)param2, (float)param3, (float)param4, (float)param5 ) ); } else { CV_ERROR( CV_StsBadArg, "Unsupported mode of function" ); } __END__; } /* End of file. */