// weight.h // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Copyright 2005-2010 Google, Inc. // Author: riley@google.com (Michael Riley) // // \file // General weight set and associated semiring operation definitions. // // A semiring is specified by two binary operations Plus and Times and // two designated elements Zero and One with the following properties: // Plus: associative, commutative, and has Zero as its identity. // Times: associative and has identity One, distributes w.r.t. Plus, and // has Zero as an annihilator: // Times(Zero(), a) == Times(a, Zero()) = Zero(). // // A left semiring distributes on the left; a right semiring is // similarly defined. // // A Weight class is required to be (at least) a left or right semiring. // // In addition, the following should be defined for a Weight: // Member: predicate on set membership. // NoWeight: returns an element that is not a member, should only be // used to signal an error. // >>: reads weight. // <<: prints weight. // Read(istream &strm): reads from an input stream. // Write(ostream &strm): writes to an output stream. // Hash: maps weight to size_t. // ApproxEqual: approximate equality (for inexact weights) // Quantize: quantizes wrt delta (for inexact weights) // Divide: for all a,b,c s.t. Times(a, b) == c // --> b' = Divide(c, a, DIVIDE_LEFT) if a left semiring, b'.Member() // and Times(a, b') == c // --> a' = Divide(c, b, DIVIDE_RIGHT) if a right semiring, a'.Member() // and Times(a', b) == c // --> b' = Divide(c, a) // = Divide(c, a, DIVIDE_ANY) // = Divide(c, a, DIVIDE_LEFT) // = Divide(c, a, DIVIDE_RIGHT) if a commutative semiring, // b'.Member() and Times(a, b') == Times(b', a) == c // ReverseWeight: the type of the corresponding reverse weight. // Typically the same type as Weight for a (both left and right) semiring. // For the left string semiring, it is the right string semiring. // Reverse: a mapping from Weight to ReverseWeight s.t. // --> Reverse(Reverse(a)) = a // --> Reverse(Plus(a, b)) = Plus(Reverse(a), Reverse(b)) // --> Reverse(Times(a, b)) = Times(Reverse(b), Reverse(a)) // Typically the identity mapping in a (both left and right) semiring. // In the left string semiring, it maps to the reverse string // in the right string semiring. // Properties: specifies additional properties that hold: // LeftSemiring: indicates weights form a left semiring. // RightSemiring: indicates weights form a right semiring. // Commutative: for all a,b: Times(a,b) == Times(b,a) // Idempotent: for all a: Plus(a, a) == a. // Path Property: for all a, b: Plus(a, b) == a or Plus(a, b) == b. #ifndef FST_LIB_WEIGHT_H__ #define FST_LIB_WEIGHT_H__ #include <cmath> #include <cctype> #include <iostream> #include <sstream> #include <fst/compat.h> #include <fst/util.h> namespace fst { // // CONSTANT DEFINITIONS // // A representable float near .001 const float kDelta = 1.0F/1024.0F; // For all a,b,c: Times(c, Plus(a,b)) = Plus(Times(c,a), Times(c, b)) const uint64 kLeftSemiring = 0x0000000000000001ULL; // For all a,b,c: Times(Plus(a,b), c) = Plus(Times(a,c), Times(b, c)) const uint64 kRightSemiring = 0x0000000000000002ULL; const uint64 kSemiring = kLeftSemiring | kRightSemiring; // For all a,b: Times(a,b) = Times(b,a) const uint64 kCommutative = 0x0000000000000004ULL; // For all a: Plus(a, a) = a const uint64 kIdempotent = 0x0000000000000008ULL; // For all a,b: Plus(a,b) = a or Plus(a,b) = b const uint64 kPath = 0x0000000000000010ULL; // Determines direction of division. enum DivideType { DIVIDE_LEFT, // left division DIVIDE_RIGHT, // right division DIVIDE_ANY }; // division in a commutative semiring // NATURAL ORDER // // By definition: // a <= b iff a + b = a // The natural order is a negative partial order iff the semiring is // idempotent. It is trivially monotonic for plus. It is left // (resp. right) monotonic for times iff the semiring is left // (resp. right) distributive. It is a total order iff the semiring // has the path property. See Mohri, "Semiring Framework and // Algorithms for Shortest-Distance Problems", Journal of Automata, // Languages and Combinatorics 7(3):321-350, 2002. We define the // strict version of this order below. template <class W> class NaturalLess { public: typedef W Weight; NaturalLess() { if (!(W::Properties() & kIdempotent)) { FSTERROR() << "NaturalLess: Weight type is not idempotent: " << W::Type(); } } bool operator()(const W &w1, const W &w2) const { return (Plus(w1, w2) == w1) && w1 != w2; } }; // Power is the iterated product for arbitrary semirings such that // Power(w, 0) is One() for the semiring, and // Power(w, n) = Times(Power(w, n-1), w) template <class W> W Power(W w, size_t n) { W result = W::One(); for (size_t i = 0; i < n; ++i) { result = Times(result, w); } return result; } // General weight converter - raises error. template <class W1, class W2> struct WeightConvert { W2 operator()(W1 w1) const { FSTERROR() << "WeightConvert: can't convert weight from \"" << W1::Type() << "\" to \"" << W2::Type(); return W2::NoWeight(); } }; // Specialized weight converter to self. template <class W> struct WeightConvert<W, W> { W operator()(W w) const { return w; } }; } // namespace fst #endif // FST_LIB_WEIGHT_H__