/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #ifndef CPU_ALL_H #define CPU_ALL_H #include "qemu-common.h" #include "cpu-common.h" /* some important defines: * * WORDS_ALIGNED : if defined, the host cpu can only make word aligned * memory accesses. * * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) * * TARGET_WORDS_BIGENDIAN : same for target cpu */ #include "softfloat.h" #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED #endif #ifdef BSWAP_NEEDED static inline uint16_t tswap16(uint16_t s) { return bswap16(s); } static inline uint32_t tswap32(uint32_t s) { return bswap32(s); } static inline uint64_t tswap64(uint64_t s) { return bswap64(s); } static inline void tswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void tswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void tswap64s(uint64_t *s) { *s = bswap64(*s); } #else static inline uint16_t tswap16(uint16_t s) { return s; } static inline uint32_t tswap32(uint32_t s) { return s; } static inline uint64_t tswap64(uint64_t s) { return s; } static inline void tswap16s(uint16_t *s) { } static inline void tswap32s(uint32_t *s) { } static inline void tswap64s(uint64_t *s) { } #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define tswapls(s) tswap32s((uint32_t *)(s)) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define tswapls(s) tswap64s((uint64_t *)(s)) #define bswaptls(s) bswap64s(s) #endif typedef union { float32 f; uint32_t l; } CPU_FloatU; /* NOTE: arm FPA is horrible as double 32 bit words are stored in big endian ! */ typedef union { float64 d; #if defined(HOST_WORDS_BIGENDIAN) \ || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) struct { uint32_t upper; uint32_t lower; } l; #else struct { uint32_t lower; uint32_t upper; } l; #endif uint64_t ll; } CPU_DoubleU; #ifdef TARGET_SPARC typedef union { float128 q; #if defined(HOST_WORDS_BIGENDIAN) \ || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) struct { uint32_t upmost; uint32_t upper; uint32_t lower; uint32_t lowest; } l; struct { uint64_t upper; uint64_t lower; } ll; #else struct { uint32_t lowest; uint32_t lower; uint32_t upper; uint32_t upmost; } l; struct { uint64_t lower; uint64_t upper; } ll; #endif } CPU_QuadU; #endif /* CPU memory access without any memory or io remapping */ /* * the generic syntax for the memory accesses is: * * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) * * store: st{type}{size}{endian}_{access_type}(ptr, val) * * type is: * (empty): integer access * f : float access * * sign is: * (empty): for floats or 32 bit size * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * endian is: * (empty): target cpu endianness or 8 bit access * r : reversed target cpu endianness (not implemented yet) * be : big endian (not implemented yet) * le : little endian (not implemented yet) * * access_type is: * raw : host memory access * user : user mode access using soft MMU * kernel : kernel mode access using soft MMU */ static inline int ldub_p(const void *ptr) { return *(uint8_t *)ptr; } static inline int ldsb_p(const void *ptr) { return *(int8_t *)ptr; } static inline void stb_p(void *ptr, int v) { *(uint8_t *)ptr = v; } /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the kernel handles unaligned load/stores may give better results, but it is a system wide setting : bad */ #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) /* conservative code for little endian unaligned accesses */ static inline int lduw_le_p(const void *ptr) { #ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else const uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } static inline int ldsw_le_p(const void *ptr) { #ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else const uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } static inline int ldl_le_p(const void *ptr) { #ifdef _ARCH_PPC int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else const uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } static inline uint64_t ldq_le_p(const void *ptr) { const uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl_le_p(p); v2 = ldl_le_p(p + 4); return v1 | ((uint64_t)v2 << 32); } static inline void stw_le_p(void *ptr, int v) { #ifdef _ARCH_PPC __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; #endif } static inline void stl_le_p(void *ptr, int v) { #ifdef _ARCH_PPC __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; #endif } static inline void stq_le_p(void *ptr, uint64_t v) { uint8_t *p = ptr; stl_le_p(p, (uint32_t)v); stl_le_p(p + 4, v >> 32); } /* float access */ static inline float32 ldfl_le_p(const void *ptr) { union { float32 f; uint32_t i; } u; u.i = ldl_le_p(ptr); return u.f; } static inline void stfl_le_p(void *ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; stl_le_p(ptr, u.i); } static inline float64 ldfq_le_p(const void *ptr) { CPU_DoubleU u; u.l.lower = ldl_le_p(ptr); u.l.upper = ldl_le_p(ptr + 4); return u.d; } static inline void stfq_le_p(void *ptr, float64 v) { CPU_DoubleU u; u.d = v; stl_le_p(ptr, u.l.lower); stl_le_p(ptr + 4, u.l.upper); } #else static inline int lduw_le_p(const void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_le_p(const void *ptr) { return *(int16_t *)ptr; } static inline int ldl_le_p(const void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_le_p(const void *ptr) { return *(uint64_t *)ptr; } static inline void stw_le_p(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_le_p(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_le_p(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float32 ldfl_le_p(const void *ptr) { return *(float32 *)ptr; } static inline float64 ldfq_le_p(const void *ptr) { return *(float64 *)ptr; } static inline void stfl_le_p(void *ptr, float32 v) { *(float32 *)ptr = v; } static inline void stfq_le_p(void *ptr, float64 v) { *(float64 *)ptr = v; } #endif #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) static inline int lduw_be_p(const void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return val; #else const uint8_t *b = ptr; return ((b[0] << 8) | b[1]); #endif } static inline int ldsw_be_p(const void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return (int16_t)val; #else const uint8_t *b = ptr; return (int16_t)((b[0] << 8) | b[1]); #endif } static inline int ldl_be_p(const void *ptr) { #if defined(__i386__) || defined(__x86_64__) int val; asm volatile ("movl %1, %0\n" "bswap %0\n" : "=r" (val) : "m" (*(uint32_t *)ptr)); return val; #else const uint8_t *b = ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; #endif } static inline uint64_t ldq_be_p(const void *ptr) { uint32_t a,b; a = ldl_be_p(ptr); b = ldl_be_p((uint8_t *)ptr + 4); return (((uint64_t)a<<32)|b); } static inline void stw_be_p(void *ptr, int v) { #if defined(__i386__) asm volatile ("xchgb %b0, %h0\n" "movw %w0, %1\n" : "=q" (v) : "m" (*(uint16_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 8; d[1] = v; #endif } static inline void stl_be_p(void *ptr, int v) { #if defined(__i386__) || defined(__x86_64__) asm volatile ("bswap %0\n" "movl %0, %1\n" : "=r" (v) : "m" (*(uint32_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 24; d[1] = v >> 16; d[2] = v >> 8; d[3] = v; #endif } static inline void stq_be_p(void *ptr, uint64_t v) { stl_be_p(ptr, v >> 32); stl_be_p((uint8_t *)ptr + 4, v); } /* float access */ static inline float32 ldfl_be_p(const void *ptr) { union { float32 f; uint32_t i; } u; u.i = ldl_be_p(ptr); return u.f; } static inline void stfl_be_p(void *ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; stl_be_p(ptr, u.i); } static inline float64 ldfq_be_p(const void *ptr) { CPU_DoubleU u; u.l.upper = ldl_be_p(ptr); u.l.lower = ldl_be_p((uint8_t *)ptr + 4); return u.d; } static inline void stfq_be_p(void *ptr, float64 v) { CPU_DoubleU u; u.d = v; stl_be_p(ptr, u.l.upper); stl_be_p((uint8_t *)ptr + 4, u.l.lower); } #else static inline int lduw_be_p(const void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_be_p(const void *ptr) { return *(int16_t *)ptr; } static inline int ldl_be_p(const void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_be_p(const void *ptr) { return *(uint64_t *)ptr; } static inline void stw_be_p(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_be_p(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_be_p(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float32 ldfl_be_p(const void *ptr) { return *(float32 *)ptr; } static inline float64 ldfq_be_p(const void *ptr) { return *(float64 *)ptr; } static inline void stfl_be_p(void *ptr, float32 v) { *(float32 *)ptr = v; } static inline void stfq_be_p(void *ptr, float64 v) { *(float64 *)ptr = v; } #endif /* target CPU memory access functions */ #if defined(TARGET_WORDS_BIGENDIAN) #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define ldfl_p(p) ldfl_be_p(p) #define ldfq_p(p) ldfq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define stfl_p(p, v) stfl_be_p(p, v) #define stfq_p(p, v) stfq_be_p(p, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define ldfl_p(p) ldfl_le_p(p) #define ldfq_p(p) ldfq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define stfl_p(p, v) stfl_le_p(p, v) #define stfq_p(p, v) stfq_le_p(p, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) #include <assert.h> #include "qemu-types.h" /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ #if defined(CONFIG_USE_GUEST_BASE) extern unsigned long guest_base; extern int have_guest_base; extern unsigned long reserved_va; #define GUEST_BASE guest_base #define RESERVED_VA reserved_va #else #define GUEST_BASE 0ul #define RESERVED_VA 0ul #endif /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS #define h2g_valid(x) 1 #else #define h2g_valid(x) ({ \ unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \ }) #endif #define h2g(x) ({ \ unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ /* Check if given address fits target address space */ \ assert(h2g_valid(x)); \ (abi_ulong)__ret; \ }) #define saddr(x) g2h(x) #define laddr(x) g2h(x) #else /* !CONFIG_USER_ONLY */ /* NOTE: we use double casts if pointers and target_ulong have different sizes */ #define saddr(x) (uint8_t *)(long)(x) #define laddr(x) (uint8_t *)(long)(x) #endif #define ldub_raw(p) ldub_p(laddr((p))) #define ldsb_raw(p) ldsb_p(laddr((p))) #define lduw_raw(p) lduw_p(laddr((p))) #define ldsw_raw(p) ldsw_p(laddr((p))) #define ldl_raw(p) ldl_p(laddr((p))) #define ldq_raw(p) ldq_p(laddr((p))) #define ldfl_raw(p) ldfl_p(laddr((p))) #define ldfq_raw(p) ldfq_p(laddr((p))) #define stb_raw(p, v) stb_p(saddr((p)), v) #define stw_raw(p, v) stw_p(saddr((p)), v) #define stl_raw(p, v) stl_p(saddr((p)), v) #define stq_raw(p, v) stq_p(saddr((p)), v) #define stfl_raw(p, v) stfl_p(saddr((p)), v) #define stfq_raw(p, v) stfq_p(saddr((p)), v) #if defined(CONFIG_USER_ONLY) /* if user mode, no other memory access functions */ #define ldub(p) ldub_raw(p) #define ldsb(p) ldsb_raw(p) #define lduw(p) lduw_raw(p) #define ldsw(p) ldsw_raw(p) #define ldl(p) ldl_raw(p) #define ldq(p) ldq_raw(p) #define ldfl(p) ldfl_raw(p) #define ldfq(p) ldfq_raw(p) #define stb(p, v) stb_raw(p, v) #define stw(p, v) stw_raw(p, v) #define stl(p, v) stl_raw(p, v) #define stq(p, v) stq_raw(p, v) #define stfl(p, v) stfl_raw(p, v) #define stfq(p, v) stfq_raw(p, v) #define ldub_code(p) ldub_raw(p) #define ldsb_code(p) ldsb_raw(p) #define lduw_code(p) lduw_raw(p) #define ldsw_code(p) ldsw_raw(p) #define ldl_code(p) ldl_raw(p) #define ldq_code(p) ldq_raw(p) #define ldub_kernel(p) ldub_raw(p) #define ldsb_kernel(p) ldsb_raw(p) #define lduw_kernel(p) lduw_raw(p) #define ldsw_kernel(p) ldsw_raw(p) #define ldl_kernel(p) ldl_raw(p) #define ldq_kernel(p) ldq_raw(p) #define ldfl_kernel(p) ldfl_raw(p) #define ldfq_kernel(p) ldfq_raw(p) #define stb_kernel(p, v) stb_raw(p, v) #define stw_kernel(p, v) stw_raw(p, v) #define stl_kernel(p, v) stl_raw(p, v) #define stq_kernel(p, v) stq_raw(p, v) #define stfl_kernel(p, v) stfl_raw(p, v) #define stfq_kernel(p, vt) stfq_raw(p, v) #endif /* defined(CONFIG_USER_ONLY) */ /* page related stuff */ #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) /* ??? These should be the larger of unsigned long and target_ulong. */ extern unsigned long qemu_real_host_page_size; extern unsigned long qemu_host_page_bits; extern unsigned long qemu_host_page_size; extern unsigned long qemu_host_page_mask; #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) /* FIXME: Code that sets/uses this is broken and needs to go away. */ #define PAGE_RESERVED 0x0020 #endif #if defined(CONFIG_USER_ONLY) void page_dump(FILE *f); typedef int (*walk_memory_regions_fn)(void *, abi_ulong, abi_ulong, unsigned long); int walk_memory_regions(void *, walk_memory_regions_fn); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong end, int flags); int page_check_range(target_ulong start, target_ulong len, int flags); #endif CPUState *cpu_copy(CPUState *env); CPUState *qemu_get_cpu(int cpu); #define CPU_DUMP_CODE 0x00010000 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf, int flags); void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf, int flags); void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...) GCC_FMT_ATTR(2, 3); extern CPUState *first_cpu; extern CPUState *cpu_single_env; #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */ #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */ #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */ #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */ #define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */ #define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */ #define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */ /* Flags for use in ENV->INTERRUPT_PENDING. The numbers assigned here are non-sequential in order to preserve binary compatibility with the vmstate dump. Bit 0 (0x0001) was previously used for CPU_INTERRUPT_EXIT, and is cleared when loading the vmstate dump. */ /* External hardware interrupt pending. This is typically used for interrupts from devices. */ #define CPU_INTERRUPT_HARD 0x0002 /* Exit the current TB. This is typically used when some system-level device makes some change to the memory mapping. E.g. the a20 line change. */ #define CPU_INTERRUPT_EXITTB 0x0004 /* Halt the CPU. */ #define CPU_INTERRUPT_HALT 0x0020 /* Debug event pending. */ #define CPU_INTERRUPT_DEBUG 0x0080 /* Several target-specific external hardware interrupts. Each target/cpu.h should define proper names based on these defines. */ #define CPU_INTERRUPT_TGT_EXT_0 0x0008 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 /* Several target-specific internal interrupts. These differ from the preceeding target-specific interrupts in that they are intended to originate from within the cpu itself, typically in response to some instruction being executed. These, therefore, are not masked while single-stepping within the debugger. */ #define CPU_INTERRUPT_TGT_INT_0 0x0100 #define CPU_INTERRUPT_TGT_INT_1 0x0400 #define CPU_INTERRUPT_TGT_INT_2 0x0800 /* First unused bit: 0x2000. */ /* The set of all bits that should be masked when single-stepping. */ #define CPU_INTERRUPT_SSTEP_MASK \ (CPU_INTERRUPT_HARD \ | CPU_INTERRUPT_TGT_EXT_0 \ | CPU_INTERRUPT_TGT_EXT_1 \ | CPU_INTERRUPT_TGT_EXT_2 \ | CPU_INTERRUPT_TGT_EXT_3 \ | CPU_INTERRUPT_TGT_EXT_4) void cpu_interrupt(CPUState *s, int mask); void cpu_reset_interrupt(CPUState *env, int mask); void cpu_exit(CPUState *s); int qemu_cpu_has_work(CPUState *env); /* Breakpoint/watchpoint flags */ #define BP_MEM_READ 0x01 #define BP_MEM_WRITE 0x02 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) #define BP_STOP_BEFORE_ACCESS 0x04 #define BP_WATCHPOINT_HIT 0x08 #define BP_GDB 0x10 #define BP_CPU 0x20 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, CPUBreakpoint **breakpoint); int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags); void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint); void cpu_breakpoint_remove_all(CPUState *env, int mask); int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, int flags, CPUWatchpoint **watchpoint); int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, int flags); void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint); void cpu_watchpoint_remove_all(CPUState *env, int mask); #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ void cpu_single_step(CPUState *env, int enabled); void cpu_reset(CPUState *s); int cpu_is_stopped(CPUState *env); void run_on_cpu(CPUState *env, void (*func)(void *data), void *data); #define CPU_LOG_TB_OUT_ASM (1 << 0) #define CPU_LOG_TB_IN_ASM (1 << 1) #define CPU_LOG_TB_OP (1 << 2) #define CPU_LOG_TB_OP_OPT (1 << 3) #define CPU_LOG_INT (1 << 4) #define CPU_LOG_EXEC (1 << 5) #define CPU_LOG_PCALL (1 << 6) #define CPU_LOG_IOPORT (1 << 7) #define CPU_LOG_TB_CPU (1 << 8) #define CPU_LOG_RESET (1 << 9) /* define log items */ typedef struct CPULogItem { int mask; const char *name; const char *help; } CPULogItem; extern const CPULogItem cpu_log_items[]; void cpu_set_log(int log_flags); void cpu_set_log_filename(const char *filename); int cpu_str_to_log_mask(const char *str); /* IO ports API */ #include "ioport.h" /* Return the physical page corresponding to a virtual one. Use it only for debugging because no protection checks are done. Return -1 if no page found. */ target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); /* memory API */ extern int phys_ram_fd; extern ram_addr_t ram_size; /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ #define RAM_PREALLOC_MASK (1 << 0) typedef struct RAMBlock { uint8_t *host; ram_addr_t offset; ram_addr_t length; uint32_t flags; char idstr[256]; QLIST_ENTRY(RAMBlock) next; #if defined(__linux__) && !defined(TARGET_S390X) int fd; #endif } RAMBlock; typedef struct RAMList { uint8_t *phys_dirty; QLIST_HEAD(ram, RAMBlock) blocks; } RAMList; extern RAMList ram_list; extern const char *mem_path; extern int mem_prealloc; /* physical memory access */ /* MMIO pages are identified by a combination of an IO device index and 3 flags. The ROMD code stores the page ram offset in iotlb entry, so only a limited number of ids are avaiable. */ #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT)) /* Flags stored in the low bits of the TLB virtual address. These are defined so that fast path ram access is all zeros. */ /* Zero if TLB entry is valid. */ #define TLB_INVALID_MASK (1 << 3) /* Set if TLB entry references a clean RAM page. The iotlb entry will contain the page physical address. */ #define TLB_NOTDIRTY (1 << 4) /* Set if TLB entry is an IO callback. */ #define TLB_MMIO (1 << 5) #define VGA_DIRTY_FLAG 0x01 #define CODE_DIRTY_FLAG 0x02 #define MIGRATION_DIRTY_FLAG 0x08 /* read dirty bit (return 0 or 1) */ static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) { return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff; } static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr) { return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS]; } static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, int dirty_flags) { return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags; } static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) { ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff; } static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr, int dirty_flags) { return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags; } static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start, int length, int dirty_flags) { int i, mask, len; uint8_t *p; len = length >> TARGET_PAGE_BITS; mask = ~dirty_flags; p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS); for (i = 0; i < len; i++) { p[i] &= mask; } } void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, int dirty_flags); void cpu_tlb_update_dirty(CPUState *env); int cpu_physical_memory_set_dirty_tracking(int enable); int cpu_physical_memory_get_dirty_tracking(void); int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr); void dump_exec_info(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)); /* Coalesced MMIO regions are areas where write operations can be reordered. * This usually implies that write operations are side-effect free. This allows * batching which can make a major impact on performance when using * virtualization. */ void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); void qemu_flush_coalesced_mmio_buffer(void); /* profiling */ #ifdef CONFIG_PROFILER static inline int64_t profile_getclock(void) { return cpu_get_real_ticks(); } extern int64_t qemu_time, qemu_time_start; extern int64_t tlb_flush_time; extern int64_t dev_time; #endif int cpu_memory_rw_debug(CPUState *env, target_ulong addr, uint8_t *buf, int len, int is_write); void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status, uint64_t mcg_status, uint64_t addr, uint64_t misc); #endif /* CPU_ALL_H */