// Copyright 2008 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // A DFA (deterministic finite automaton)-based regular expression search. // // The DFA search has two main parts: the construction of the automaton, // which is represented by a graph of State structures, and the execution // of the automaton over a given input string. // // The basic idea is that the State graph is constructed so that the // execution can simply start with a state s, and then for each byte c in // the input string, execute "s = s->next[c]", checking at each point whether // the current s represents a matching state. // // The simple explanation just given does convey the essence of this code, // but it omits the details of how the State graph gets constructed as well // as some performance-driven optimizations to the execution of the automaton. // All these details are explained in the comments for the code following // the definition of class DFA. // // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. #include "re2/prog.h" #include "re2/stringpiece.h" #include "util/atomicops.h" #include "util/flags.h" #include "util/sparse_set.h" DEFINE_bool(re2_dfa_bail_when_slow, true, "Whether the RE2 DFA should bail out early " "if the NFA would be faster (for testing)."); namespace re2 { #if !defined(__linux__) /* only Linux seems to have memrchr */ static void* memrchr(const void* s, int c, size_t n) { const unsigned char* p = (const unsigned char*)s; for (p += n; n > 0; n--) if (*--p == c) return (void*)p; return NULL; } #endif // Changing this to true compiles in prints that trace execution of the DFA. // Generates a lot of output -- only useful for debugging. static const bool DebugDFA = false; // A DFA implementation of a regular expression program. // Since this is entirely a forward declaration mandated by C++, // some of the comments here are better understood after reading // the comments in the sections that follow the DFA definition. class DFA { public: DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem); ~DFA(); bool ok() const { return !init_failed_; } Prog::MatchKind kind() { return kind_; } // Searches for the regular expression in text, which is considered // as a subsection of context for the purposes of interpreting flags // like ^ and $ and \A and \z. // Returns whether a match was found. // If a match is found, sets *ep to the end point of the best match in text. // If "anchored", the match must begin at the start of text. // If "want_earliest_match", the match that ends first is used, not // necessarily the best one. // If "run_forward" is true, the DFA runs from text.begin() to text.end(). // If it is false, the DFA runs from text.end() to text.begin(), // returning the leftmost end of the match instead of the rightmost one. // If the DFA cannot complete the search (for example, if it is out of // memory), it sets *failed and returns false. bool Search(const StringPiece& text, const StringPiece& context, bool anchored, bool want_earliest_match, bool run_forward, bool* failed, const char** ep, vector<int>* matches); // Builds out all states for the entire DFA. FOR TESTING ONLY // Returns number of states. int BuildAllStates(); // Computes min and max for matching strings. Won't return strings // bigger than maxlen. bool PossibleMatchRange(string* min, string* max, int maxlen); // These data structures are logically private, but C++ makes it too // difficult to mark them as such. class Workq; class RWLocker; class StateSaver; // A single DFA state. The DFA is represented as a graph of these // States, linked by the next_ pointers. If in state s and reading // byte c, the next state should be s->next_[c]. struct State { inline bool IsMatch() const { return flag_ & kFlagMatch; } void SaveMatch(vector<int>* v); int* inst_; // Instruction pointers in the state. int ninst_; // # of inst_ pointers. uint flag_; // Empty string bitfield flags in effect on the way // into this state, along with kFlagMatch if this // is a matching state. State** next_; // Outgoing arrows from State, // one per input byte class }; enum { kByteEndText = 256, // imaginary byte at end of text kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags kFlagMatch = 0x1000, // State.flag_: this is a matching state kFlagLastWord = 0x2000, // State.flag_: last byte was a word char kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left }; // STL function structures for use with unordered_set. struct StateEqual { bool operator()(const State* a, const State* b) const { if (a == b) return true; if (a == NULL || b == NULL) return false; if (a->ninst_ != b->ninst_) return false; if (a->flag_ != b->flag_) return false; for (int i = 0; i < a->ninst_; i++) if (a->inst_[i] != b->inst_[i]) return false; return true; // they're equal } }; struct StateHash { size_t operator()(const State* a) const { if (a == NULL) return 0; const char* s = reinterpret_cast<const char*>(a->inst_); int len = a->ninst_ * sizeof a->inst_[0]; if (sizeof(size_t) == sizeof(uint32)) return Hash32StringWithSeed(s, len, a->flag_); else return Hash64StringWithSeed(s, len, a->flag_); } }; typedef unordered_set<State*, StateHash, StateEqual> StateSet; private: // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.) enum { kFbUnknown = -1, // No analysis has been performed. kFbMany = -2, // Many bytes will lead out of this state. kFbNone = -3, // No bytes lead out of this state. }; enum { // Indices into start_ for unanchored searches. // Add kStartAnchored for anchored searches. kStartBeginText = 0, // text at beginning of context kStartBeginLine = 2, // text at beginning of line kStartAfterWordChar = 4, // text follows a word character kStartAfterNonWordChar = 6, // text follows non-word character kMaxStart = 8, kStartAnchored = 1, }; // Resets the DFA State cache, flushing all saved State* information. // Releases and reacquires cache_mutex_ via cache_lock, so any // State* existing before the call are not valid after the call. // Use a StateSaver to preserve important states across the call. // cache_mutex_.r <= L < mutex_ // After: cache_mutex_.w <= L < mutex_ void ResetCache(RWLocker* cache_lock); // Looks up and returns the State corresponding to a Workq. // L >= mutex_ State* WorkqToCachedState(Workq* q, uint flag); // Looks up and returns a State matching the inst, ninst, and flag. // L >= mutex_ State* CachedState(int* inst, int ninst, uint flag); // Clear the cache entirely. // Must hold cache_mutex_.w or be in destructor. void ClearCache(); // Converts a State into a Workq: the opposite of WorkqToCachedState. // L >= mutex_ static void StateToWorkq(State* s, Workq* q); // Runs a State on a given byte, returning the next state. State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ State* RunStateOnByte(State*, int); // L >= mutex_ // Runs a Workq on a given byte followed by a set of empty-string flags, // producing a new Workq in nq. If a match instruction is encountered, // sets *ismatch to true. // L >= mutex_ void RunWorkqOnByte(Workq* q, Workq* nq, int c, uint flag, bool* ismatch, Prog::MatchKind kind, int new_byte_loop); // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. // L >= mutex_ void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag); // Adds the instruction id to the Workq, following empty arrows // according to flag. // L >= mutex_ void AddToQueue(Workq* q, int id, uint flag); // For debugging, returns a text representation of State. static string DumpState(State* state); // For debugging, returns a text representation of a Workq. static string DumpWorkq(Workq* q); // Search parameters struct SearchParams { SearchParams(const StringPiece& text, const StringPiece& context, RWLocker* cache_lock) : text(text), context(context), anchored(false), want_earliest_match(false), run_forward(false), start(NULL), firstbyte(kFbUnknown), cache_lock(cache_lock), failed(false), ep(NULL), matches(NULL) { } StringPiece text; StringPiece context; bool anchored; bool want_earliest_match; bool run_forward; State* start; int firstbyte; RWLocker *cache_lock; bool failed; // "out" parameter: whether search gave up const char* ep; // "out" parameter: end pointer for match vector<int>* matches; private: DISALLOW_EVIL_CONSTRUCTORS(SearchParams); }; // Before each search, the parameters to Search are analyzed by // AnalyzeSearch to determine the state in which to start and the // "firstbyte" for that state, if any. struct StartInfo { StartInfo() : start(NULL), firstbyte(kFbUnknown) { } State* start; volatile int firstbyte; }; // Fills in params->start and params->firstbyte using // the other search parameters. Returns true on success, // false on failure. // cache_mutex_.r <= L < mutex_ bool AnalyzeSearch(SearchParams* params); bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags); // The generic search loop, inlined to create specialized versions. // cache_mutex_.r <= L < mutex_ // Might unlock and relock cache_mutex_ via params->cache_lock. inline bool InlinedSearchLoop(SearchParams* params, bool have_firstbyte, bool want_earliest_match, bool run_forward); // The specialized versions of InlinedSearchLoop. The three letters // at the ends of the name denote the true/false values used as the // last three parameters of InlinedSearchLoop. // cache_mutex_.r <= L < mutex_ // Might unlock and relock cache_mutex_ via params->cache_lock. bool SearchFFF(SearchParams* params); bool SearchFFT(SearchParams* params); bool SearchFTF(SearchParams* params); bool SearchFTT(SearchParams* params); bool SearchTFF(SearchParams* params); bool SearchTFT(SearchParams* params); bool SearchTTF(SearchParams* params); bool SearchTTT(SearchParams* params); // The main search loop: calls an appropriate specialized version of // InlinedSearchLoop. // cache_mutex_.r <= L < mutex_ // Might unlock and relock cache_mutex_ via params->cache_lock. bool FastSearchLoop(SearchParams* params); // For debugging, a slow search loop that calls InlinedSearchLoop // directly -- because the booleans passed are not constants, the // loop is not specialized like the SearchFFF etc. versions, so it // runs much more slowly. Useful only for debugging. // cache_mutex_.r <= L < mutex_ // Might unlock and relock cache_mutex_ via params->cache_lock. bool SlowSearchLoop(SearchParams* params); // Looks up bytes in bytemap_ but handles case c == kByteEndText too. int ByteMap(int c) { if (c == kByteEndText) return prog_->bytemap_range(); return prog_->bytemap()[c]; } // Constant after initialization. Prog* prog_; // The regular expression program to run. Prog::MatchKind kind_; // The kind of DFA. int start_unanchored_; // start of unanchored program bool init_failed_; // initialization failed (out of memory) Mutex mutex_; // mutex_ >= cache_mutex_.r // Scratch areas, protected by mutex_. Workq* q0_; // Two pre-allocated work queues. Workq* q1_; int* astack_; // Pre-allocated stack for AddToQueue int nastack_; // State* cache. Many threads use and add to the cache simultaneously, // holding cache_mutex_ for reading and mutex_ (above) when adding. // If the cache fills and needs to be discarded, the discarding is done // while holding cache_mutex_ for writing, to avoid interrupting other // readers. Any State* pointers are only valid while cache_mutex_ // is held. Mutex cache_mutex_; int64 mem_budget_; // Total memory budget for all States. int64 state_budget_; // Amount of memory remaining for new States. StateSet state_cache_; // All States computed so far. StartInfo start_[kMaxStart]; bool cache_warned_; // have printed to LOG(INFO) about the cache }; // Shorthand for casting to uint8*. static inline const uint8* BytePtr(const void* v) { return reinterpret_cast<const uint8*>(v); } // Work queues // Marks separate thread groups of different priority // in the work queue when in leftmost-longest matching mode. #define Mark (-1) // Internally, the DFA uses a sparse array of // program instruction pointers as a work queue. // In leftmost longest mode, marks separate sections // of workq that started executing at different // locations in the string (earlier locations first). class DFA::Workq : public SparseSet { public: // Constructor: n is number of normal slots, maxmark number of mark slots. Workq(int n, int maxmark) : SparseSet(n+maxmark), n_(n), maxmark_(maxmark), nextmark_(n), last_was_mark_(true) { } bool is_mark(int i) { return i >= n_; } int maxmark() { return maxmark_; } void clear() { SparseSet::clear(); nextmark_ = n_; } void mark() { if (last_was_mark_) return; last_was_mark_ = false; SparseSet::insert_new(nextmark_++); } int size() { return n_ + maxmark_; } void insert(int id) { if (contains(id)) return; insert_new(id); } void insert_new(int id) { last_was_mark_ = false; SparseSet::insert_new(id); } private: int n_; // size excluding marks int maxmark_; // maximum number of marks int nextmark_; // id of next mark bool last_was_mark_; // last inserted was mark DISALLOW_EVIL_CONSTRUCTORS(Workq); }; DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem) : prog_(prog), kind_(kind), init_failed_(false), q0_(NULL), q1_(NULL), astack_(NULL), mem_budget_(max_mem), cache_warned_(false) { if (DebugDFA) fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str()); int nmark = 0; start_unanchored_ = 0; if (kind_ == Prog::kLongestMatch) { nmark = prog->size(); start_unanchored_ = prog->start_unanchored(); } nastack_ = 2 * prog->size() + nmark; // Account for space needed for DFA, q0, q1, astack. mem_budget_ -= sizeof(DFA); mem_budget_ -= (prog_->size() + nmark) * (sizeof(int)+sizeof(int)) * 2; // q0, q1 mem_budget_ -= nastack_ * sizeof(int); // astack if (mem_budget_ < 0) { LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", prog_->size(), max_mem); init_failed_ = true; return; } state_budget_ = mem_budget_; // Make sure there is a reasonable amount of working room left. // At minimum, the search requires room for two states in order // to limp along, restarting frequently. We'll get better performance // if there is room for a larger number of states, say 20. int one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) + (prog_->bytemap_range()+1)*sizeof(State*); if (state_budget_ < 20*one_state) { LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", prog_->size(), max_mem); init_failed_ = true; return; } q0_ = new Workq(prog->size(), nmark); q1_ = new Workq(prog->size(), nmark); astack_ = new int[nastack_]; } DFA::~DFA() { delete q0_; delete q1_; delete[] astack_; ClearCache(); } // In the DFA state graph, s->next[c] == NULL means that the // state has not yet been computed and needs to be. We need // a different special value to signal that s->next[c] is a // state that can never lead to a match (and thus the search // can be called off). Hence DeadState. #define DeadState reinterpret_cast<State*>(1) // Signals that the rest of the string matches no matter what it is. #define FullMatchState reinterpret_cast<State*>(2) #define SpecialStateMax FullMatchState // Debugging printouts // For debugging, returns a string representation of the work queue. string DFA::DumpWorkq(Workq* q) { string s; const char* sep = ""; for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) { if (q->is_mark(*it)) { StringAppendF(&s, "|"); sep = ""; } else { StringAppendF(&s, "%s%d", sep, *it); sep = ","; } } return s; } // For debugging, returns a string representation of the state. string DFA::DumpState(State* state) { if (state == NULL) return "_"; if (state == DeadState) return "X"; if (state == FullMatchState) return "*"; string s; const char* sep = ""; StringAppendF(&s, "(%p)", state); for (int i = 0; i < state->ninst_; i++) { if (state->inst_[i] == Mark) { StringAppendF(&s, "|"); sep = ""; } else { StringAppendF(&s, "%s%d", sep, state->inst_[i]); sep = ","; } } StringAppendF(&s, " flag=%#x", state->flag_); return s; } ////////////////////////////////////////////////////////////////////// // // DFA state graph construction. // // The DFA state graph is a heavily-linked collection of State* structures. // The state_cache_ is a set of all the State structures ever allocated, // so that if the same state is reached by two different paths, // the same State structure can be used. This reduces allocation // requirements and also avoids duplication of effort across the two // identical states. // // A State is defined by an ordered list of instruction ids and a flag word. // // The choice of an ordered list of instructions differs from a typical // textbook DFA implementation, which would use an unordered set. // Textbook descriptions, however, only care about whether // the DFA matches, not where it matches in the text. To decide where the // DFA matches, we need to mimic the behavior of the dominant backtracking // implementations like PCRE, which try one possible regular expression // execution, then another, then another, stopping when one of them succeeds. // The DFA execution tries these many executions in parallel, representing // each by an instruction id. These pointers are ordered in the State.inst_ // list in the same order that the executions would happen in a backtracking // search: if a match is found during execution of inst_[2], inst_[i] for i>=3 // can be discarded. // // Textbooks also typically do not consider context-aware empty string operators // like ^ or $. These are handled by the flag word, which specifies the set // of empty-string operators that should be matched when executing at the // current text position. These flag bits are defined in prog.h. // The flag word also contains two DFA-specific bits: kFlagMatch if the state // is a matching state (one that reached a kInstMatch in the program) // and kFlagLastWord if the last processed byte was a word character, for the // implementation of \B and \b. // // The flag word also contains, shifted up 16 bits, the bits looked for by // any kInstEmptyWidth instructions in the state. These provide a useful // summary indicating when new flags might be useful. // // The permanent representation of a State's instruction ids is just an array, // but while a state is being analyzed, these instruction ids are represented // as a Workq, which is an array that allows iteration in insertion order. // NOTE(rsc): The choice of State construction determines whether the DFA // mimics backtracking implementations (so-called leftmost first matching) or // traditional DFA implementations (so-called leftmost longest matching as // prescribed by POSIX). This implementation chooses to mimic the // backtracking implementations, because we want to replace PCRE. To get // POSIX behavior, the states would need to be considered not as a simple // ordered list of instruction ids, but as a list of unordered sets of instruction // ids. A match by a state in one set would inhibit the running of sets // farther down the list but not other instruction ids in the same set. Each // set would correspond to matches beginning at a given point in the string. // This is implemented by separating different sets with Mark pointers. // Looks in the State cache for a State matching q, flag. // If one is found, returns it. If one is not found, allocates one, // inserts it in the cache, and returns it. DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) { if (DEBUG_MODE) mutex_.AssertHeld(); // Construct array of instruction ids for the new state. // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: // those are the only operators with any effect in // RunWorkqOnEmptyString or RunWorkqOnByte. int* inst = new int[q->size()]; int n = 0; uint needflags = 0; // flags needed by kInstEmptyWidth instructions bool sawmatch = false; // whether queue contains guaranteed kInstMatch bool sawmark = false; // whether queue contains a Mark if (DebugDFA) fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); for (Workq::iterator it = q->begin(); it != q->end(); ++it) { int id = *it; if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) break; if (q->is_mark(id)) { if (n > 0 && inst[n-1] != Mark) { sawmark = true; inst[n++] = Mark; } continue; } Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { case kInstAltMatch: // This state will continue to a match no matter what // the rest of the input is. If it is the highest priority match // being considered, return the special FullMatchState // to indicate that it's all matches from here out. if (kind_ != Prog::kManyMatch && (kind_ != Prog::kFirstMatch || (it == q->begin() && ip->greedy(prog_))) && (kind_ != Prog::kLongestMatch || !sawmark) && (flag & kFlagMatch)) { delete[] inst; if (DebugDFA) fprintf(stderr, " -> FullMatchState\n"); return FullMatchState; } // Fall through. case kInstByteRange: // These are useful. case kInstEmptyWidth: case kInstMatch: case kInstAlt: // Not useful, but necessary [*] inst[n++] = *it; if (ip->opcode() == kInstEmptyWidth) needflags |= ip->empty(); if (ip->opcode() == kInstMatch && !prog_->anchor_end()) sawmatch = true; break; default: // The rest are not. break; } // [*] kInstAlt would seem useless to record in a state, since // we've already followed both its arrows and saved all the // interesting states we can reach from there. The problem // is that one of the empty-width instructions might lead // back to the same kInstAlt (if an empty-width operator is starred), // producing a different evaluation order depending on whether // we keep the kInstAlt to begin with. Sigh. // A specific case that this affects is /(^|a)+/ matching "a". // If we don't save the kInstAlt, we will match the whole "a" (0,1) // but in fact the correct leftmost-first match is the leading "" (0,0). } DCHECK_LE(n, q->size()); if (n > 0 && inst[n-1] == Mark) n--; // If there are no empty-width instructions waiting to execute, // then the extra flag bits will not be used, so there is no // point in saving them. (Discarding them reduces the number // of distinct states.) if (needflags == 0) flag &= kFlagMatch; // NOTE(rsc): The code above cannot do flag &= needflags, // because if the right flags were present to pass the current // kInstEmptyWidth instructions, new kInstEmptyWidth instructions // might be reached that in turn need different flags. // The only sure thing is that if there are no kInstEmptyWidth // instructions at all, no flags will be needed. // We could do the extra work to figure out the full set of // possibly needed flags by exploring past the kInstEmptyWidth // instructions, but the check above -- are any flags needed // at all? -- handles the most common case. More fine-grained // analysis can only be justified by measurements showing that // too many redundant states are being allocated. // If there are no Insts in the list, it's a dead state, // which is useful to signal with a special pointer so that // the execution loop can stop early. This is only okay // if the state is *not* a matching state. if (n == 0 && flag == 0) { delete[] inst; if (DebugDFA) fprintf(stderr, " -> DeadState\n"); return DeadState; } // If we're in longest match mode, the state is a sequence of // unordered state sets separated by Marks. Sort each set // to canonicalize, to reduce the number of distinct sets stored. if (kind_ == Prog::kLongestMatch) { int* ip = inst; int* ep = ip + n; while (ip < ep) { int* markp = ip; while (markp < ep && *markp != Mark) markp++; sort(ip, markp); if (markp < ep) markp++; ip = markp; } } // Save the needed empty-width flags in the top bits for use later. flag |= needflags << kFlagNeedShift; State* state = CachedState(inst, n, flag); delete[] inst; return state; } // Looks in the State cache for a State matching inst, ninst, flag. // If one is found, returns it. If one is not found, allocates one, // inserts it in the cache, and returns it. DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) { if (DEBUG_MODE) mutex_.AssertHeld(); // Look in the cache for a pre-existing state. State state = { inst, ninst, flag, NULL }; StateSet::iterator it = state_cache_.find(&state); if (it != state_cache_.end()) { if (DebugDFA) fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); return *it; } // Must have enough memory for new state. // In addition to what we're going to allocate, // the state cache hash table seems to incur about 32 bytes per // State*, empirically. const int kStateCacheOverhead = 32; int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int); if (mem_budget_ < mem + kStateCacheOverhead) { mem_budget_ = -1; return NULL; } mem_budget_ -= mem + kStateCacheOverhead; // Allocate new state, along with room for next and inst. char* space = new char[mem]; State* s = reinterpret_cast<State*>(space); s->next_ = reinterpret_cast<State**>(s + 1); s->inst_ = reinterpret_cast<int*>(s->next_ + nnext); memset(s->next_, 0, nnext*sizeof s->next_[0]); memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); s->ninst_ = ninst; s->flag_ = flag; if (DebugDFA) fprintf(stderr, " -> %s\n", DumpState(s).c_str()); // Put state in cache and return it. state_cache_.insert(s); return s; } // Clear the cache. Must hold cache_mutex_.w or be in destructor. void DFA::ClearCache() { // In case state_cache_ doesn't support deleting entries // during iteration, copy into a vector and then delete. vector<State*> v; v.reserve(state_cache_.size()); for (StateSet::iterator it = state_cache_.begin(); it != state_cache_.end(); ++it) v.push_back(*it); state_cache_.clear(); for (int i = 0; i < v.size(); i++) delete[] reinterpret_cast<const char*>(v[i]); } // Copies insts in state s to the work queue q. void DFA::StateToWorkq(State* s, Workq* q) { q->clear(); for (int i = 0; i < s->ninst_; i++) { if (s->inst_[i] == Mark) q->mark(); else q->insert_new(s->inst_[i]); } } // Adds ip to the work queue, following empty arrows according to flag // and expanding kInstAlt instructions (two-target gotos). void DFA::AddToQueue(Workq* q, int id, uint flag) { // Use astack_ to hold our stack of states yet to process. // It is sized to have room for nastack_ == 2*prog->size() + nmark // instructions, which is enough: each instruction can be // processed by the switch below only once, and the processing // pushes at most two instructions plus maybe a mark. // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.) int* stk = astack_; int nstk = 0; stk[nstk++] = id; while (nstk > 0) { DCHECK_LE(nstk, nastack_); id = stk[--nstk]; if (id == Mark) { q->mark(); continue; } if (id == 0) continue; // If ip is already on the queue, nothing to do. // Otherwise add it. We don't actually keep all the ones // that get added -- for example, kInstAlt is ignored // when on a work queue -- but adding all ip's here // increases the likelihood of q->contains(id), // reducing the amount of duplicated work. if (q->contains(id)) continue; q->insert_new(id); // Process instruction. Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { case kInstFail: // can't happen: discarded above break; case kInstByteRange: // just save these on the queue case kInstMatch: break; case kInstCapture: // DFA treats captures as no-ops. case kInstNop: stk[nstk++] = ip->out(); break; case kInstAlt: // two choices: expand both, in order case kInstAltMatch: // Want to visit out then out1, so push on stack in reverse order. // This instruction is the [00-FF]* loop at the beginning of // a leftmost-longest unanchored search, separate out from out1 // with a Mark, so that out1's threads (which will start farther // to the right in the string being searched) are lower priority // than the current ones. stk[nstk++] = ip->out1(); if (q->maxmark() > 0 && id == prog_->start_unanchored() && id != prog_->start()) stk[nstk++] = Mark; stk[nstk++] = ip->out(); break; case kInstEmptyWidth: if ((ip->empty() & flag) == ip->empty()) stk[nstk++] = ip->out(); break; } } } // Running of work queues. In the work queue, order matters: // the queue is sorted in priority order. If instruction i comes before j, // then the instructions that i produces during the run must come before // the ones that j produces. In order to keep this invariant, all the // work queue runners have to take an old queue to process and then // also a new queue to fill in. It's not acceptable to add to the end of // an existing queue, because new instructions will not end up in the // correct position. // Runs the work queue, processing the empty strings indicated by flag. // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match // both ^ and $. It is important that callers pass all flags at once: // processing both ^ and $ is not the same as first processing only ^ // and then processing only $. Doing the two-step sequence won't match // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior // exhibited by existing implementations). void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) { newq->clear(); for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { if (oldq->is_mark(*i)) AddToQueue(newq, Mark, flag); else AddToQueue(newq, *i, flag); } } // Runs the work queue, processing the single byte c followed by any empty // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, // means to match c$. Sets the bool *ismatch to true if the end of the // regular expression program has been reached (the regexp has matched). void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, int c, uint flag, bool* ismatch, Prog::MatchKind kind, int new_byte_loop) { if (DEBUG_MODE) mutex_.AssertHeld(); newq->clear(); for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { if (oldq->is_mark(*i)) { if (*ismatch) return; newq->mark(); continue; } int id = *i; Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { case kInstFail: // never succeeds case kInstCapture: // already followed case kInstNop: // already followed case kInstAlt: // already followed case kInstAltMatch: // already followed case kInstEmptyWidth: // already followed break; case kInstByteRange: // can follow if c is in range if (ip->Matches(c)) AddToQueue(newq, ip->out(), flag); break; case kInstMatch: if (prog_->anchor_end() && c != kByteEndText) break; *ismatch = true; if (kind == Prog::kFirstMatch) { // Can stop processing work queue since we found a match. return; } break; } } if (DebugDFA) fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), c, flag, DumpWorkq(newq).c_str(), *ismatch); } // Processes input byte c in state, returning new state. // Caller does not hold mutex. DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { // Keep only one RunStateOnByte going // even if the DFA is being run by multiple threads. MutexLock l(&mutex_); return RunStateOnByte(state, c); } // Processes input byte c in state, returning new state. DFA::State* DFA::RunStateOnByte(State* state, int c) { if (DEBUG_MODE) mutex_.AssertHeld(); if (state <= SpecialStateMax) { if (state == FullMatchState) { // It is convenient for routines like PossibleMatchRange // if we implement RunStateOnByte for FullMatchState: // once you get into this state you never get out, // so it's pretty easy. return FullMatchState; } if (state == DeadState) { LOG(DFATAL) << "DeadState in RunStateOnByte"; return NULL; } if (state == NULL) { LOG(DFATAL) << "NULL state in RunStateOnByte"; return NULL; } LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; return NULL; } // If someone else already computed this, return it. MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering if (state->next_[ByteMap(c)]) return state->next_[ByteMap(c)]; // Convert state into Workq. StateToWorkq(state, q0_); // Flags marking the kinds of empty-width things (^ $ etc) // around this byte. Before the byte we have the flags recorded // in the State structure itself. After the byte we have // nothing yet (but that will change: read on). uint needflag = state->flag_ >> kFlagNeedShift; uint beforeflag = state->flag_ & kFlagEmptyMask; uint oldbeforeflag = beforeflag; uint afterflag = 0; if (c == '\n') { // Insert implicit $ and ^ around \n beforeflag |= kEmptyEndLine; afterflag |= kEmptyBeginLine; } if (c == kByteEndText) { // Insert implicit $ and \z before the fake "end text" byte. beforeflag |= kEmptyEndLine | kEmptyEndText; } // The state flag kFlagLastWord says whether the last // byte processed was a word character. Use that info to // insert empty-width (non-)word boundaries. bool islastword = state->flag_ & kFlagLastWord; bool isword = (c != kByteEndText && Prog::IsWordChar(c)); if (isword == islastword) beforeflag |= kEmptyNonWordBoundary; else beforeflag |= kEmptyWordBoundary; // Okay, finally ready to run. // Only useful to rerun on empty string if there are new, useful flags. if (beforeflag & ~oldbeforeflag & needflag) { RunWorkqOnEmptyString(q0_, q1_, beforeflag); swap(q0_, q1_); } bool ismatch = false; RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_); swap(q0_, q1_); // Save afterflag along with ismatch and isword in new state. uint flag = afterflag; if (ismatch) flag |= kFlagMatch; if (isword) flag |= kFlagLastWord; State* ns = WorkqToCachedState(q0_, flag); // Write barrier before updating state->next_ so that the // main search loop can proceed without any locking, for speed. // (Otherwise it would need one mutex operation per input byte.) // The annotations below tell race detectors that: // a) the access to next_ should be ignored, // b) 'ns' is properly published. WriteMemoryBarrier(); // Flush ns before linking to it. ANNOTATE_PUBLISH_MEMORY_RANGE(ns, sizeof(*ns)); ANNOTATE_IGNORE_WRITES_BEGIN(); state->next_[ByteMap(c)] = ns; ANNOTATE_IGNORE_WRITES_END(); return ns; } ////////////////////////////////////////////////////////////////////// // DFA cache reset. // Reader-writer lock helper. // // The DFA uses a reader-writer mutex to protect the state graph itself. // Traversing the state graph requires holding the mutex for reading, // and discarding the state graph and starting over requires holding the // lock for writing. If a search needs to expand the graph but is out // of memory, it will need to drop its read lock and then acquire the // write lock. Since it cannot then atomically downgrade from write lock // to read lock, it runs the rest of the search holding the write lock. // (This probably helps avoid repeated contention, but really the decision // is forced by the Mutex interface.) It's a bit complicated to keep // track of whether the lock is held for reading or writing and thread // that through the search, so instead we encapsulate it in the RWLocker // and pass that around. class DFA::RWLocker { public: explicit RWLocker(Mutex* mu); ~RWLocker(); // If the lock is only held for reading right now, // drop the read lock and re-acquire for writing. // Subsequent calls to LockForWriting are no-ops. // Notice that the lock is *released* temporarily. void LockForWriting(); // Returns whether the lock is already held for writing. bool IsLockedForWriting() { return writing_; } private: Mutex* mu_; bool writing_; DISALLOW_EVIL_CONSTRUCTORS(RWLocker); }; DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) { mu_->ReaderLock(); } // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations // does not support lock upgrade. void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { if (!writing_) { mu_->ReaderUnlock(); mu_->Lock(); writing_ = true; } } DFA::RWLocker::~RWLocker() { if (writing_) mu_->WriterUnlock(); else mu_->ReaderUnlock(); } // When the DFA's State cache fills, we discard all the states in the // cache and start over. Many threads can be using and adding to the // cache at the same time, so we synchronize using the cache_mutex_ // to keep from stepping on other threads. Specifically, all the // threads using the current cache hold cache_mutex_ for reading. // When a thread decides to flush the cache, it drops cache_mutex_ // and then re-acquires it for writing. That ensures there are no // other threads accessing the cache anymore. The rest of the search // runs holding cache_mutex_ for writing, avoiding any contention // with or cache pollution caused by other threads. void DFA::ResetCache(RWLocker* cache_lock) { // Re-acquire the cache_mutex_ for writing (exclusive use). bool was_writing = cache_lock->IsLockedForWriting(); cache_lock->LockForWriting(); // If we already held cache_mutex_ for writing, it means // this invocation of Search() has already reset the // cache once already. That's a pretty clear indication // that the cache is too small. Warn about that, once. // TODO(rsc): Only warn if state_cache_.size() < some threshold. if (was_writing && !cache_warned_) { LOG(INFO) << "DFA memory cache could be too small: " << "only room for " << state_cache_.size() << " states."; cache_warned_ = true; } // Clear the cache, reset the memory budget. for (int i = 0; i < kMaxStart; i++) { start_[i].start = NULL; start_[i].firstbyte = kFbUnknown; } ClearCache(); mem_budget_ = state_budget_; } // Typically, a couple States do need to be preserved across a cache // reset, like the State at the current point in the search. // The StateSaver class helps keep States across cache resets. // It makes a copy of the state's guts outside the cache (before the reset) // and then can be asked, after the reset, to recreate the State // in the new cache. For example, in a DFA method ("this" is a DFA): // // StateSaver saver(this, s); // ResetCache(cache_lock); // s = saver.Restore(); // // The saver should always have room in the cache to re-create the state, // because resetting the cache locks out all other threads, and the cache // is known to have room for at least a couple states (otherwise the DFA // constructor fails). class DFA::StateSaver { public: explicit StateSaver(DFA* dfa, State* state); ~StateSaver(); // Recreates and returns a state equivalent to the // original state passed to the constructor. // Returns NULL if the cache has filled, but // since the DFA guarantees to have room in the cache // for a couple states, should never return NULL // if used right after ResetCache. State* Restore(); private: DFA* dfa_; // the DFA to use int* inst_; // saved info from State int ninst_; uint flag_; bool is_special_; // whether original state was special State* special_; // if is_special_, the original state DISALLOW_EVIL_CONSTRUCTORS(StateSaver); }; DFA::StateSaver::StateSaver(DFA* dfa, State* state) { dfa_ = dfa; if (state <= SpecialStateMax) { inst_ = NULL; ninst_ = 0; flag_ = 0; is_special_ = true; special_ = state; return; } is_special_ = false; special_ = NULL; flag_ = state->flag_; ninst_ = state->ninst_; inst_ = new int[ninst_]; memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); } DFA::StateSaver::~StateSaver() { if (!is_special_) delete[] inst_; } DFA::State* DFA::StateSaver::Restore() { if (is_special_) return special_; MutexLock l(&dfa_->mutex_); State* s = dfa_->CachedState(inst_, ninst_, flag_); if (s == NULL) LOG(DFATAL) << "StateSaver failed to restore state."; return s; } ////////////////////////////////////////////////////////////////////// // // DFA execution. // // The basic search loop is easy: start in a state s and then for each // byte c in the input, s = s->next[c]. // // This simple description omits a few efficiency-driven complications. // // First, the State graph is constructed incrementally: it is possible // that s->next[c] is null, indicating that that state has not been // fully explored. In this case, RunStateOnByte must be invoked to // determine the next state, which is cached in s->next[c] to save // future effort. An alternative reason for s->next[c] to be null is // that the DFA has reached a so-called "dead state", in which any match // is no longer possible. In this case RunStateOnByte will return NULL // and the processing of the string can stop early. // // Second, a 256-element pointer array for s->next_ makes each State // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] // maps from bytes to "byte classes" and then next_ only needs to have // as many pointers as there are byte classes. A byte class is simply a // range of bytes that the regexp never distinguishes between. // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit // but in exchange we typically cut the size of a State (and thus our // memory footprint) by about 5-10x. The comments still refer to // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. // // Third, it is common for a DFA for an unanchored match to begin in a // state in which only one particular byte value can take the DFA to a // different state. That is, s->next[c] != s for only one c. In this // situation, the DFA can do better than executing the simple loop. // Instead, it can call memchr to search very quickly for the byte c. // Whether the start state has this property is determined during a // pre-compilation pass, and if so, the byte b is passed to the search // loop as the "firstbyte" argument, along with a boolean "have_firstbyte". // // Fourth, the desired behavior is to search for the leftmost-best match // (approximately, the same one that Perl would find), which is not // necessarily the match ending earliest in the string. Each time a // match is found, it must be noted, but the DFA must continue on in // hope of finding a higher-priority match. In some cases, the caller only // cares whether there is any match at all, not which one is found. // The "want_earliest_match" flag causes the search to stop at the first // match found. // // Fifth, one algorithm that uses the DFA needs it to run over the // input string backward, beginning at the end and ending at the beginning. // Passing false for the "run_forward" flag causes the DFA to run backward. // // The checks for these last three cases, which in a naive implementation // would be performed once per input byte, slow the general loop enough // to merit specialized versions of the search loop for each of the // eight possible settings of the three booleans. Rather than write // eight different functions, we write one general implementation and then // inline it to create the specialized ones. // // Note that matches are delayed by one byte, to make it easier to // accomodate match conditions depending on the next input byte (like $ and \b). // When s->next[c]->IsMatch(), it means that there is a match ending just // *before* byte c. // The generic search loop. Searches text for a match, returning // the pointer to the end of the chosen match, or NULL if no match. // The bools are equal to the same-named variables in params, but // making them function arguments lets the inliner specialize // this function to each combination (see two paragraphs above). inline bool DFA::InlinedSearchLoop(SearchParams* params, bool have_firstbyte, bool want_earliest_match, bool run_forward) { State* start = params->start; const uint8* bp = BytePtr(params->text.begin()); // start of text const uint8* p = bp; // text scanning point const uint8* ep = BytePtr(params->text.end()); // end of text const uint8* resetp = NULL; // p at last cache reset if (!run_forward) swap(p, ep); const uint8* bytemap = prog_->bytemap(); const uint8* lastmatch = NULL; // most recent matching position in text bool matched = false; State* s = start; if (s->IsMatch()) { matched = true; lastmatch = p; if (want_earliest_match) { params->ep = reinterpret_cast<const char*>(lastmatch); return true; } } while (p != ep) { if (DebugDFA) fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp), DumpState(s).c_str()); if (have_firstbyte && s == start) { // In start state, only way out is to find firstbyte, // so use optimized assembly in memchr to skip ahead. // If firstbyte isn't found, we can skip to the end // of the string. if (run_forward) { if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) { p = ep; break; } } else { if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) { p = ep; break; } p++; } } int c; if (run_forward) c = *p++; else c = *--p; // Note that multiple threads might be consulting // s->next_[bytemap[c]] simultaneously. // RunStateOnByte takes care of the appropriate locking, // including a memory barrier so that the unlocked access // (sometimes known as "double-checked locking") is safe. // The alternative would be either one DFA per thread // or one mutex operation per input byte. // // ns == DeadState means the state is known to be dead // (no more matches are possible). // ns == NULL means the state has not yet been computed // (need to call RunStateOnByteUnlocked). // RunStateOnByte returns ns == NULL if it is out of memory. // ns == FullMatchState means the rest of the string matches. // // Okay to use bytemap[] not ByteMap() here, because // c is known to be an actual byte and not kByteEndText. MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering State* ns = s->next_[bytemap[c]]; if (ns == NULL) { ns = RunStateOnByteUnlocked(s, c); if (ns == NULL) { // After we reset the cache, we hold cache_mutex exclusively, // so if resetp != NULL, it means we filled the DFA state // cache with this search alone (without any other threads). // Benchmarks show that doing a state computation on every // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the // same at about 2 MB/s. Unless we're processing an average // of 10 bytes per state computation, fail so that RE2 can // fall back to the NFA. if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL && (p - resetp) < 10*state_cache_.size()) { params->failed = true; return false; } resetp = p; // Prepare to save start and s across the reset. StateSaver save_start(this, start); StateSaver save_s(this, s); // Discard all the States in the cache. ResetCache(params->cache_lock); // Restore start and s so we can continue. if ((start = save_start.Restore()) == NULL || (s = save_s.Restore()) == NULL) { // Restore already did LOG(DFATAL). params->failed = true; return false; } ns = RunStateOnByteUnlocked(s, c); if (ns == NULL) { LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; params->failed = true; return false; } } } if (ns <= SpecialStateMax) { if (ns == DeadState) { params->ep = reinterpret_cast<const char*>(lastmatch); return matched; } // FullMatchState params->ep = reinterpret_cast<const char*>(ep); return true; } s = ns; if (s->IsMatch()) { matched = true; // The DFA notices the match one byte late, // so adjust p before using it in the match. if (run_forward) lastmatch = p - 1; else lastmatch = p + 1; if (DebugDFA) fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), DumpState(s).c_str()); if (want_earliest_match) { params->ep = reinterpret_cast<const char*>(lastmatch); return true; } } } // Peek in state to see if a match is coming up. if (params->matches && kind_ == Prog::kManyMatch) { vector<int>* v = params->matches; v->clear(); if (s > SpecialStateMax) { for (int i = 0; i < s->ninst_; i++) { Prog::Inst* ip = prog_->inst(s->inst_[i]); if (ip->opcode() == kInstMatch) v->push_back(ip->match_id()); } } } // Process one more byte to see if it triggers a match. // (Remember, matches are delayed one byte.) int lastbyte; if (run_forward) { if (params->text.end() == params->context.end()) lastbyte = kByteEndText; else lastbyte = params->text.end()[0] & 0xFF; } else { if (params->text.begin() == params->context.begin()) lastbyte = kByteEndText; else lastbyte = params->text.begin()[-1] & 0xFF; } MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering State* ns = s->next_[ByteMap(lastbyte)]; if (ns == NULL) { ns = RunStateOnByteUnlocked(s, lastbyte); if (ns == NULL) { StateSaver save_s(this, s); ResetCache(params->cache_lock); if ((s = save_s.Restore()) == NULL) { params->failed = true; return false; } ns = RunStateOnByteUnlocked(s, lastbyte); if (ns == NULL) { LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; params->failed = true; return false; } } } s = ns; if (DebugDFA) fprintf(stderr, "@_: %s\n", DumpState(s).c_str()); if (s == FullMatchState) { params->ep = reinterpret_cast<const char*>(ep); return true; } if (s > SpecialStateMax && s->IsMatch()) { matched = true; lastmatch = p; if (DebugDFA) fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), DumpState(s).c_str()); } params->ep = reinterpret_cast<const char*>(lastmatch); return matched; } // Inline specializations of the general loop. bool DFA::SearchFFF(SearchParams* params) { return InlinedSearchLoop(params, 0, 0, 0); } bool DFA::SearchFFT(SearchParams* params) { return InlinedSearchLoop(params, 0, 0, 1); } bool DFA::SearchFTF(SearchParams* params) { return InlinedSearchLoop(params, 0, 1, 0); } bool DFA::SearchFTT(SearchParams* params) { return InlinedSearchLoop(params, 0, 1, 1); } bool DFA::SearchTFF(SearchParams* params) { return InlinedSearchLoop(params, 1, 0, 0); } bool DFA::SearchTFT(SearchParams* params) { return InlinedSearchLoop(params, 1, 0, 1); } bool DFA::SearchTTF(SearchParams* params) { return InlinedSearchLoop(params, 1, 1, 0); } bool DFA::SearchTTT(SearchParams* params) { return InlinedSearchLoop(params, 1, 1, 1); } // For debugging, calls the general code directly. bool DFA::SlowSearchLoop(SearchParams* params) { return InlinedSearchLoop(params, params->firstbyte >= 0, params->want_earliest_match, params->run_forward); } // For performance, calls the appropriate specialized version // of InlinedSearchLoop. bool DFA::FastSearchLoop(SearchParams* params) { // Because the methods are private, the Searches array // cannot be declared at top level. static bool (DFA::*Searches[])(SearchParams*) = { &DFA::SearchFFF, &DFA::SearchFFT, &DFA::SearchFTF, &DFA::SearchFTT, &DFA::SearchTFF, &DFA::SearchTFT, &DFA::SearchTTF, &DFA::SearchTTT, }; bool have_firstbyte = (params->firstbyte >= 0); int index = 4 * have_firstbyte + 2 * params->want_earliest_match + 1 * params->run_forward; return (this->*Searches[index])(params); } // The discussion of DFA execution above ignored the question of how // to determine the initial state for the search loop. There are two // factors that influence the choice of start state. // // The first factor is whether the search is anchored or not. // The regexp program (Prog*) itself has // two different entry points: one for anchored searches and one for // unanchored searches. (The unanchored version starts with a leading ".*?" // and then jumps to the anchored one.) // // The second factor is where text appears in the larger context, which // determines which empty-string operators can be matched at the beginning // of execution. If text is at the very beginning of context, \A and ^ match. // Otherwise if text is at the beginning of a line, then ^ matches. // Otherwise it matters whether the character before text is a word character // or a non-word character. // // The two cases (unanchored vs not) and four cases (empty-string flags) // combine to make the eight cases recorded in the DFA's begin_text_[2], // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached // StartInfos. The start state for each is filled in the first time it // is used for an actual search. // Examines text, context, and anchored to determine the right start // state for the DFA search loop. Fills in params and returns true on success. // Returns false on failure. bool DFA::AnalyzeSearch(SearchParams* params) { const StringPiece& text = params->text; const StringPiece& context = params->context; // Sanity check: make sure that text lies within context. if (text.begin() < context.begin() || text.end() > context.end()) { LOG(DFATAL) << "Text is not inside context."; params->start = DeadState; return true; } // Determine correct search type. int start; uint flags; if (params->run_forward) { if (text.begin() == context.begin()) { start = kStartBeginText; flags = kEmptyBeginText|kEmptyBeginLine; } else if (text.begin()[-1] == '\n') { start = kStartBeginLine; flags = kEmptyBeginLine; } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { start = kStartAfterWordChar; flags = kFlagLastWord; } else { start = kStartAfterNonWordChar; flags = 0; } } else { if (text.end() == context.end()) { start = kStartBeginText; flags = kEmptyBeginText|kEmptyBeginLine; } else if (text.end()[0] == '\n') { start = kStartBeginLine; flags = kEmptyBeginLine; } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { start = kStartAfterWordChar; flags = kFlagLastWord; } else { start = kStartAfterNonWordChar; flags = 0; } } if (params->anchored || prog_->anchor_start()) start |= kStartAnchored; StartInfo* info = &start_[start]; // Try once without cache_lock for writing. // Try again after resetting the cache // (ResetCache will relock cache_lock for writing). if (!AnalyzeSearchHelper(params, info, flags)) { ResetCache(params->cache_lock); if (!AnalyzeSearchHelper(params, info, flags)) { LOG(DFATAL) << "Failed to analyze start state."; params->failed = true; return false; } } if (DebugDFA) fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n", params->anchored, params->run_forward, flags, DumpState(info->start).c_str(), info->firstbyte); params->start = info->start; params->firstbyte = info->firstbyte; return true; } // Fills in info if needed. Returns true on success, false on failure. bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags) { // Quick check; okay because of memory barriers below. if (info->firstbyte != kFbUnknown) return true; MutexLock l(&mutex_); if (info->firstbyte != kFbUnknown) return true; q0_->clear(); AddToQueue(q0_, params->anchored ? prog_->start() : prog_->start_unanchored(), flags); info->start = WorkqToCachedState(q0_, flags); if (info->start == NULL) return false; if (info->start == DeadState) { WriteMemoryBarrier(); // Synchronize with "quick check" above. info->firstbyte = kFbNone; return true; } if (info->start == FullMatchState) { WriteMemoryBarrier(); // Synchronize with "quick check" above. info->firstbyte = kFbNone; // will be ignored return true; } // Compute info->firstbyte by running state on all // possible byte values, looking for a single one that // leads to a different state. int firstbyte = kFbNone; for (int i = 0; i < 256; i++) { State* s = RunStateOnByte(info->start, i); if (s == NULL) { WriteMemoryBarrier(); // Synchronize with "quick check" above. info->firstbyte = firstbyte; return false; } if (s == info->start) continue; // Goes to new state... if (firstbyte == kFbNone) { firstbyte = i; // ... first one } else { firstbyte = kFbMany; // ... too many break; } } WriteMemoryBarrier(); // Synchronize with "quick check" above. info->firstbyte = firstbyte; return true; } // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. bool DFA::Search(const StringPiece& text, const StringPiece& context, bool anchored, bool want_earliest_match, bool run_forward, bool* failed, const char** epp, vector<int>* matches) { *epp = NULL; if (!ok()) { *failed = true; return false; } *failed = false; if (DebugDFA) { fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", text.as_string().c_str(), anchored, want_earliest_match, run_forward, kind_); } RWLocker l(&cache_mutex_); SearchParams params(text, context, &l); params.anchored = anchored; params.want_earliest_match = want_earliest_match; params.run_forward = run_forward; params.matches = matches; if (!AnalyzeSearch(¶ms)) { *failed = true; return false; } if (params.start == DeadState) return NULL; if (params.start == FullMatchState) { if (run_forward == want_earliest_match) *epp = text.begin(); else *epp = text.end(); return true; } if (DebugDFA) fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); bool ret = FastSearchLoop(¶ms); if (params.failed) { *failed = true; return false; } *epp = params.ep; return ret; } // Deletes dfa. // // This is a separate function so that // prog.h can be used without moving the definition of // class DFA out of this file. If you set // prog->dfa_ = dfa; // then you also have to set // prog->delete_dfa_ = DeleteDFA; // so that ~Prog can delete the dfa. static void DeleteDFA(DFA* dfa) { delete dfa; } DFA* Prog::GetDFA(MatchKind kind) { DFA*volatile* pdfa; if (kind == kFirstMatch || kind == kManyMatch) { pdfa = &dfa_first_; } else { kind = kLongestMatch; pdfa = &dfa_longest_; } // Quick check; okay because of memory barrier below. DFA *dfa = *pdfa; if (dfa != NULL) { ANNOTATE_HAPPENS_AFTER(dfa); return dfa; } MutexLock l(&dfa_mutex_); dfa = *pdfa; if (dfa != NULL) return dfa; // For a forward DFA, half the memory goes to each DFA. // For a reverse DFA, all the memory goes to the // "longest match" DFA, because RE2 never does reverse // "first match" searches. int64 m = dfa_mem_/2; if (reversed_) { if (kind == kLongestMatch || kind == kManyMatch) m = dfa_mem_; else m = 0; } dfa = new DFA(this, kind, m); delete_dfa_ = DeleteDFA; // Synchronize with "quick check" above. ANNOTATE_HAPPENS_BEFORE(dfa); WriteMemoryBarrier(); *pdfa = dfa; return dfa; } // Executes the regexp program to search in text, // which itself is inside the larger context. (As a convenience, // passing a NULL context is equivalent to passing text.) // Returns true if a match is found, false if not. // If a match is found, fills in match0->end() to point at the end of the match // and sets match0->begin() to text.begin(), since the DFA can't track // where the match actually began. // // This is the only external interface (class DFA only exists in this file). // bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, Anchor anchor, MatchKind kind, StringPiece* match0, bool* failed, vector<int>* matches) { *failed = false; StringPiece context = const_context; if (context.begin() == NULL) context = text; bool carat = anchor_start(); bool dollar = anchor_end(); if (reversed_) { bool t = carat; carat = dollar; dollar = t; } if (carat && context.begin() != text.begin()) return false; if (dollar && context.end() != text.end()) return false; // Handle full match by running an anchored longest match // and then checking if it covers all of text. bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; bool endmatch = false; if (kind == kManyMatch) { endmatch = true; } else if (kind == kFullMatch || anchor_end()) { endmatch = true; kind = kLongestMatch; } // If the caller doesn't care where the match is (just whether one exists), // then we can stop at the very first match we find, the so-called // "shortest match". bool want_shortest_match = false; if (match0 == NULL && !endmatch) { want_shortest_match = true; kind = kLongestMatch; } DFA* dfa = GetDFA(kind); const char* ep; bool matched = dfa->Search(text, context, anchored, want_shortest_match, !reversed_, failed, &ep, matches); if (*failed) return false; if (!matched) return false; if (endmatch && ep != (reversed_ ? text.begin() : text.end())) return false; // If caller cares, record the boundary of the match. // We only know where it ends, so use the boundary of text // as the beginning. if (match0) { if (reversed_) *match0 = StringPiece(ep, text.end() - ep); else *match0 = StringPiece(text.begin(), ep - text.begin()); } return true; } // Build out all states in DFA. Returns number of states. int DFA::BuildAllStates() { if (!ok()) return 0; // Pick out start state for unanchored search // at beginning of text. RWLocker l(&cache_mutex_); SearchParams params(NULL, NULL, &l); params.anchored = false; if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax) return 0; // Add start state to work queue. StateSet queued; vector<State*> q; queued.insert(params.start); q.push_back(params.start); // Flood to expand every state. for (int i = 0; i < q.size(); i++) { State* s = q[i]; for (int c = 0; c < 257; c++) { State* ns = RunStateOnByteUnlocked(s, c); if (ns > SpecialStateMax && queued.find(ns) == queued.end()) { queued.insert(ns); q.push_back(ns); } } } return q.size(); } // Build out all states in DFA for kind. Returns number of states. int Prog::BuildEntireDFA(MatchKind kind) { //LOG(ERROR) << "BuildEntireDFA is only for testing."; return GetDFA(kind)->BuildAllStates(); } // Computes min and max for matching string. // Won't return strings bigger than maxlen. bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { if (!ok()) return false; // NOTE: if future users of PossibleMatchRange want more precision when // presented with infinitely repeated elements, consider making this a // parameter to PossibleMatchRange. static int kMaxEltRepetitions = 0; // Keep track of the number of times we've visited states previously. We only // revisit a given state if it's part of a repeated group, so if the value // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set // |*max| to |PrefixSuccessor(*max)|. // // Also note that previously_visited_states[UnseenStatePtr] will, in the STL // tradition, implicitly insert a '0' value at first use. We take advantage // of that property below. map<State*, int> previously_visited_states; // Pick out start state for anchored search at beginning of text. RWLocker l(&cache_mutex_); SearchParams params(NULL, NULL, &l); params.anchored = true; if (!AnalyzeSearch(¶ms)) return false; if (params.start == DeadState) { // No matching strings *min = ""; *max = ""; return true; } if (params.start == FullMatchState) // Every string matches: no max return false; // The DFA is essentially a big graph rooted at params.start, // and paths in the graph correspond to accepted strings. // Each node in the graph has potentially 256+1 arrows // coming out, one for each byte plus the magic end of // text character kByteEndText. // To find the smallest possible prefix of an accepted // string, we just walk the graph preferring to follow // arrows with the lowest bytes possible. To find the // largest possible prefix, we follow the largest bytes // possible. // The test for whether there is an arrow from s on byte j is // ns = RunStateOnByteUnlocked(s, j); // if (ns == NULL) // return false; // if (ns != DeadState && ns->ninst > 0) // The RunStateOnByteUnlocked call asks the DFA to build out the graph. // It returns NULL only if the DFA has run out of memory, // in which case we can't be sure of anything. // The second check sees whether there was graph built // and whether it is interesting graph. Nodes might have // ns->ninst == 0 if they exist only to represent the fact // that a match was found on the previous byte. // Build minimum prefix. State* s = params.start; min->clear(); for (int i = 0; i < maxlen; i++) { if (previously_visited_states[s] > kMaxEltRepetitions) { VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions << " for state s=" << s << " and min=" << CEscape(*min); break; } previously_visited_states[s]++; // Stop if min is a match. State* ns = RunStateOnByteUnlocked(s, kByteEndText); if (ns == NULL) // DFA out of memory return false; if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) break; // Try to extend the string with low bytes. bool extended = false; for (int j = 0; j < 256; j++) { ns = RunStateOnByteUnlocked(s, j); if (ns == NULL) // DFA out of memory return false; if (ns == FullMatchState || (ns > SpecialStateMax && ns->ninst_ > 0)) { extended = true; min->append(1, j); s = ns; break; } } if (!extended) break; } // Build maximum prefix. previously_visited_states.clear(); s = params.start; max->clear(); for (int i = 0; i < maxlen; i++) { if (previously_visited_states[s] > kMaxEltRepetitions) { VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions << " for state s=" << s << " and max=" << CEscape(*max); break; } previously_visited_states[s] += 1; // Try to extend the string with high bytes. bool extended = false; for (int j = 255; j >= 0; j--) { State* ns = RunStateOnByteUnlocked(s, j); if (ns == NULL) return false; if (ns == FullMatchState || (ns > SpecialStateMax && ns->ninst_ > 0)) { extended = true; max->append(1, j); s = ns; break; } } if (!extended) { // Done, no need for PrefixSuccessor. return true; } } // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b *max = PrefixSuccessor(*max); // If there are no bytes left, we have no way to say "there is no maximum // string". We could make the interface more complicated and be able to // return "there is no maximum but here is a minimum", but that seems like // overkill -- the most common no-max case is all possible strings, so not // telling the caller that the empty string is the minimum match isn't a // great loss. if (max->empty()) return false; return true; } // PossibleMatchRange for a Prog. bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { DFA* dfa = NULL; { MutexLock l(&dfa_mutex_); // Have to use dfa_longest_ to get all strings for full matches. // For example, (a|aa) never matches aa in first-match mode. if (dfa_longest_ == NULL) { dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2); delete_dfa_ = DeleteDFA; } dfa = dfa_longest_; } return dfa->PossibleMatchRange(min, max, maxlen); } } // namespace re2