/* * Copyright 2010 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPDFImage.h" #include "SkBitmap.h" #include "SkColor.h" #include "SkColorPriv.h" #include "SkPaint.h" #include "SkPackBits.h" #include "SkPDFCatalog.h" #include "SkRect.h" #include "SkStream.h" #include "SkString.h" #include "SkUnPreMultiply.h" namespace { void extractImageData(const SkBitmap& bitmap, const SkIRect& srcRect, SkStream** imageData, SkStream** alphaData) { SkMemoryStream* image = NULL; SkMemoryStream* alpha = NULL; bool hasAlpha = false; bool isTransparent = false; bitmap.lockPixels(); switch (bitmap.getConfig()) { case SkBitmap::kIndex8_Config: { const int rowBytes = srcRect.width(); image = new SkMemoryStream(rowBytes * srcRect.height()); uint8_t* dst = (uint8_t*)image->getMemoryBase(); for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes); dst += rowBytes; } break; } case SkBitmap::kRLE_Index8_Config: { const int rowBytes = srcRect.width(); image = new SkMemoryStream(rowBytes * srcRect.height()); uint8_t* dst = (uint8_t*)image->getMemoryBase(); const SkBitmap::RLEPixels* rle = (const SkBitmap::RLEPixels*)bitmap.getPixels(); for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { SkPackBits::Unpack8(dst, srcRect.fLeft, rowBytes, rle->packedAtY(y)); dst += rowBytes; } break; } case SkBitmap::kARGB_4444_Config: { isTransparent = true; const int rowBytes = (srcRect.width() * 3 + 1) / 2; const int alphaRowBytes = (srcRect.width() + 1) / 2; image = new SkMemoryStream(rowBytes * srcRect.height()); alpha = new SkMemoryStream(alphaRowBytes * srcRect.height()); uint8_t* dst = (uint8_t*)image->getMemoryBase(); uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase(); for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { uint16_t* src = bitmap.getAddr16(0, y); int x; for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) { dst[0] = (SkGetPackedR4444(src[x]) << 4) | SkGetPackedG4444(src[x]); dst[1] = (SkGetPackedB4444(src[x]) << 4) | SkGetPackedR4444(src[x + 1]); dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) | SkGetPackedB4444(src[x + 1]); dst += 3; alphaDst[0] = (SkGetPackedA4444(src[x]) << 4) | SkGetPackedA4444(src[x + 1]); if (alphaDst[0] != 0xFF) { hasAlpha = true; } if (alphaDst[0]) { isTransparent = false; } alphaDst++; } if (srcRect.width() & 1) { dst[0] = (SkGetPackedR4444(src[x]) << 4) | SkGetPackedG4444(src[x]); dst[1] = (SkGetPackedB4444(src[x]) << 4); dst += 2; alphaDst[0] = (SkGetPackedA4444(src[x]) << 4); if (alphaDst[0] != 0xF0) { hasAlpha = true; } if (alphaDst[0] & 0xF0) { isTransparent = false; } alphaDst++; } } break; } case SkBitmap::kRGB_565_Config: { const int rowBytes = srcRect.width() * 3; image = new SkMemoryStream(rowBytes * srcRect.height()); uint8_t* dst = (uint8_t*)image->getMemoryBase(); for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { uint16_t* src = bitmap.getAddr16(0, y); for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { dst[0] = SkGetPackedR16(src[x]); dst[1] = SkGetPackedG16(src[x]); dst[2] = SkGetPackedB16(src[x]); dst += 3; } } break; } case SkBitmap::kARGB_8888_Config: { isTransparent = true; const int rowBytes = srcRect.width() * 3; image = new SkMemoryStream(rowBytes * srcRect.height()); alpha = new SkMemoryStream(srcRect.width() * srcRect.height()); uint8_t* dst = (uint8_t*)image->getMemoryBase(); uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase(); for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { uint32_t* src = bitmap.getAddr32(0, y); for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { dst[0] = SkGetPackedR32(src[x]); dst[1] = SkGetPackedG32(src[x]); dst[2] = SkGetPackedB32(src[x]); dst += 3; alphaDst[0] = SkGetPackedA32(src[x]); if (alphaDst[0] != 0xFF) { hasAlpha = true; } if (alphaDst[0]) { isTransparent = false; } alphaDst++; } } break; } case SkBitmap::kA1_Config: { isTransparent = true; image = new SkMemoryStream(1); ((uint8_t*)image->getMemoryBase())[0] = 0; const int alphaRowBytes = (srcRect.width() + 7) / 8; alpha = new SkMemoryStream(alphaRowBytes * srcRect.height()); uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase(); int offset1 = srcRect.fLeft % 8; int offset2 = 8 - offset1; for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { uint8_t* src = bitmap.getAddr1(0, y); // This may read up to one byte after src, but the potentially // invalid bits are never used for computation. for (int x = srcRect.fLeft; x < srcRect.fRight; x += 8) { if (offset1) { alphaDst[0] = src[x / 8] << offset1 | src[x / 8 + 1] >> offset2; } else { alphaDst[0] = src[x / 8]; } if (x + 7 < srcRect.fRight && alphaDst[0] != 0xFF) { hasAlpha = true; } if (x + 7 < srcRect.fRight && alphaDst[0]) { isTransparent = false; } alphaDst++; } // Calculate the mask of bits we're interested in within the // last byte of alphaDst. // width mod 8 == 1 -> 0x80 ... width mod 8 == 7 -> 0xFE uint8_t mask = ~((1 << (8 - (srcRect.width() % 8))) - 1); if (srcRect.width() % 8 && (alphaDst[-1] & mask) != mask) { hasAlpha = true; } if (srcRect.width() % 8 && (alphaDst[-1] & mask)) { isTransparent = false; } } break; } case SkBitmap::kA8_Config: { isTransparent = true; image = new SkMemoryStream(1); ((uint8_t*)image->getMemoryBase())[0] = 0; const int alphaRowBytes = srcRect.width(); alpha = new SkMemoryStream(alphaRowBytes * srcRect.height()); uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase(); for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { uint8_t* src = bitmap.getAddr8(0, y); for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { alphaDst[0] = src[x]; if (alphaDst[0] != 0xFF) { hasAlpha = true; } if (alphaDst[0]) { isTransparent = false; } alphaDst++; } } break; } default: SkASSERT(false); } bitmap.unlockPixels(); if (isTransparent) { SkSafeUnref(image); } else { *imageData = image; } if (isTransparent || !hasAlpha) { SkSafeUnref(alpha); } else { *alphaData = alpha; } } SkPDFArray* makeIndexedColorSpace(SkColorTable* table) { SkPDFArray* result = new SkPDFArray(); result->reserve(4); result->appendName("Indexed"); result->appendName("DeviceRGB"); result->appendInt(table->count() - 1); // Potentially, this could be represented in fewer bytes with a stream. // Max size as a string is 1.5k. SkString index; for (int i = 0; i < table->count(); i++) { char buf[3]; SkColor color = SkUnPreMultiply::PMColorToColor((*table)[i]); buf[0] = SkGetPackedR32(color); buf[1] = SkGetPackedG32(color); buf[2] = SkGetPackedB32(color); index.append(buf, 3); } result->append(new SkPDFString(index))->unref(); return result; } }; // namespace // static SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap, const SkIRect& srcRect, const SkPaint& paint) { if (bitmap.getConfig() == SkBitmap::kNo_Config) { return NULL; } SkStream* imageData = NULL; SkStream* alphaData = NULL; extractImageData(bitmap, srcRect, &imageData, &alphaData); SkAutoUnref unrefImageData(imageData); SkAutoUnref unrefAlphaData(alphaData); if (!imageData) { SkASSERT(!alphaData); return NULL; } SkPDFImage* image = new SkPDFImage(imageData, bitmap, srcRect, false, paint); if (alphaData != NULL) { image->addSMask(new SkPDFImage(alphaData, bitmap, srcRect, true, paint))->unref(); } return image; } SkPDFImage::~SkPDFImage() { fResources.unrefAll(); } SkPDFImage* SkPDFImage::addSMask(SkPDFImage* mask) { fResources.push(mask); mask->ref(); insert("SMask", new SkPDFObjRef(mask))->unref(); return mask; } void SkPDFImage::getResources(SkTDArray<SkPDFObject*>* resourceList) { GetResourcesHelper(&fResources, resourceList); } SkPDFImage::SkPDFImage(SkStream* imageData, const SkBitmap& bitmap, const SkIRect& srcRect, bool doingAlpha, const SkPaint& paint) { this->setData(imageData); SkBitmap::Config config = bitmap.getConfig(); bool alphaOnly = (config == SkBitmap::kA1_Config || config == SkBitmap::kA8_Config); insertName("Type", "XObject"); insertName("Subtype", "Image"); if (!doingAlpha && alphaOnly) { // For alpha only images, we stretch a single pixel of black for // the color/shape part. SkRefPtr<SkPDFInt> one = new SkPDFInt(1); one->unref(); // SkRefPtr and new both took a reference. insert("Width", one.get()); insert("Height", one.get()); } else { insertInt("Width", srcRect.width()); insertInt("Height", srcRect.height()); } // if (!image mask) { if (doingAlpha || alphaOnly) { insertName("ColorSpace", "DeviceGray"); } else if (config == SkBitmap::kIndex8_Config || config == SkBitmap::kRLE_Index8_Config) { insert("ColorSpace", makeIndexedColorSpace(bitmap.getColorTable()))->unref(); } else { insertName("ColorSpace", "DeviceRGB"); } // } int bitsPerComp = 8; if (config == SkBitmap::kARGB_4444_Config) { bitsPerComp = 4; } else if (doingAlpha && config == SkBitmap::kA1_Config) { bitsPerComp = 1; } insertInt("BitsPerComponent", bitsPerComp); if (config == SkBitmap::kRGB_565_Config) { SkRefPtr<SkPDFInt> zeroVal = new SkPDFInt(0); zeroVal->unref(); // SkRefPtr and new both took a reference. SkRefPtr<SkPDFScalar> scale5Val = new SkPDFScalar(8.2258f); // 255/2^5-1 scale5Val->unref(); // SkRefPtr and new both took a reference. SkRefPtr<SkPDFScalar> scale6Val = new SkPDFScalar(4.0476f); // 255/2^6-1 scale6Val->unref(); // SkRefPtr and new both took a reference. SkRefPtr<SkPDFArray> decodeValue = new SkPDFArray(); decodeValue->unref(); // SkRefPtr and new both took a reference. decodeValue->reserve(6); decodeValue->append(zeroVal.get()); decodeValue->append(scale5Val.get()); decodeValue->append(zeroVal.get()); decodeValue->append(scale6Val.get()); decodeValue->append(zeroVal.get()); decodeValue->append(scale5Val.get()); insert("Decode", decodeValue.get()); } }