// encode.h // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // // \file // Class to encode and decoder an fst. #ifndef FST_LIB_ENCODE_H__ #define FST_LIB_ENCODE_H__ #include "fst/lib/map.h" #include "fst/lib/rmfinalepsilon.h" namespace fst { static const uint32 kEncodeLabels = 0x00001; static const uint32 kEncodeWeights = 0x00002; enum EncodeType { ENCODE = 1, DECODE = 2 }; // Identifies stream data as an encode table (and its endianity) static const int32 kEncodeMagicNumber = 2129983209; // The following class encapsulates implementation details for the // encoding and decoding of label/weight tuples used for encoding // and decoding of Fsts. The EncodeTable is bidirectional. I.E it // stores both the Tuple of encode labels and weights to a unique // label, and the reverse. template <class A> class EncodeTable { public: typedef typename A::Label Label; typedef typename A::Weight Weight; // Encoded data consists of arc input/output labels and arc weight struct Tuple { Tuple() {} Tuple(Label ilabel_, Label olabel_, Weight weight_) : ilabel(ilabel_), olabel(olabel_), weight(weight_) {} Tuple(const Tuple& tuple) : ilabel(tuple.ilabel), olabel(tuple.olabel), weight(tuple.weight) {} Label ilabel; Label olabel; Weight weight; }; // Comparison object for hashing EncodeTable Tuple(s). class TupleEqual { public: bool operator()(const Tuple* x, const Tuple* y) const { return (x->ilabel == y->ilabel && x->olabel == y->olabel && x->weight == y->weight); } }; // Hash function for EncodeTabe Tuples. Based on the encode flags // we either hash the labels, weights or compbination of them. class TupleKey { static const int kPrime = 7853; public: TupleKey() : encode_flags_(kEncodeLabels | kEncodeWeights) {} TupleKey(const TupleKey& key) : encode_flags_(key.encode_flags_) {} explicit TupleKey(uint32 encode_flags) : encode_flags_(encode_flags) {} size_t operator()(const Tuple* x) const { int lshift = x->ilabel % kPrime; int rshift = sizeof(size_t) - lshift; size_t hash = x->ilabel << lshift; if (encode_flags_ & kEncodeLabels) hash ^= x->olabel >> rshift; if (encode_flags_ & kEncodeWeights) hash ^= x->weight.Hash(); return hash; } private: int32 encode_flags_; }; typedef hash_map<const Tuple*, Label, TupleKey, TupleEqual> EncodeHash; explicit EncodeTable(uint32 encode_flags) : flags_(encode_flags), encode_hash_(1024, TupleKey(encode_flags)) {} ~EncodeTable() { for (size_t i = 0; i < encode_tuples_.size(); ++i) { delete encode_tuples_[i]; } } // Given an arc encode either input/ouptut labels or input/costs or both Label Encode(const A &arc) { const Tuple tuple(arc.ilabel, flags_ & kEncodeLabels ? arc.olabel : 0, flags_ & kEncodeWeights ? arc.weight : Weight::One()); typename EncodeHash::const_iterator it = encode_hash_.find(&tuple); if (it == encode_hash_.end()) { encode_tuples_.push_back(new Tuple(tuple)); encode_hash_[encode_tuples_.back()] = encode_tuples_.size(); return encode_tuples_.size(); } else { return it->second; } } // Given an encode arc Label decode back to input/output labels and costs const Tuple* Decode(Label key) { return key <= (Label)encode_tuples_.size() ? encode_tuples_[key - 1] : 0; } bool Write(ostream &strm, const string &source) const { WriteType(strm, kEncodeMagicNumber); WriteType(strm, flags_); int64 size = encode_tuples_.size(); WriteType(strm, size); for (size_t i = 0; i < size; ++i) { const Tuple* tuple = encode_tuples_[i]; WriteType(strm, tuple->ilabel); WriteType(strm, tuple->olabel); tuple->weight.Write(strm); } strm.flush(); if (!strm) LOG(ERROR) << "EncodeTable::Write: write failed: " << source; return strm; } bool Read(istream &strm, const string &source) { encode_tuples_.clear(); encode_hash_.clear(); int32 magic_number = 0; ReadType(strm, &magic_number); if (magic_number != kEncodeMagicNumber) { LOG(ERROR) << "EncodeTable::Read: Bad encode table header: " << source; return false; } ReadType(strm, &flags_); int64 size; ReadType(strm, &size); if (!strm) { LOG(ERROR) << "EncodeTable::Read: read failed: " << source; return false; } for (size_t i = 0; i < size; ++i) { Tuple* tuple = new Tuple(); ReadType(strm, &tuple->ilabel); ReadType(strm, &tuple->olabel); tuple->weight.Read(strm); encode_tuples_.push_back(tuple); encode_hash_[encode_tuples_.back()] = encode_tuples_.size(); } if (!strm) LOG(ERROR) << "EncodeTable::Read: read failed: " << source; return strm; } const uint32 flags() const { return flags_; } private: uint32 flags_; vector<Tuple*> encode_tuples_; EncodeHash encode_hash_; DISALLOW_EVIL_CONSTRUCTORS(EncodeTable); }; // A mapper to encode/decode weighted transducers. Encoding of an // Fst is useful for performing classical determinization or minimization // on a weighted transducer by treating it as an unweighted acceptor over // encoded labels. // // The Encode mapper stores the encoding in a local hash table (EncodeTable) // This table is shared (and reference counted) between the encoder and // decoder. A decoder has read only access to the EncodeTable. // // The EncodeMapper allows on the fly encoding of the machine. As the // EncodeTable is generated the same table may by used to decode the machine // on the fly. For example in the following sequence of operations // // Encode -> Determinize -> Decode // // we will use the encoding table generated during the encode step in the // decode, even though the encoding is not complete. // template <class A> class EncodeMapper { typedef typename A::Weight Weight; typedef typename A::Label Label; public: EncodeMapper(uint32 flags, EncodeType type) : ref_count_(1), flags_(flags), type_(type), table_(new EncodeTable<A>(flags)) {} EncodeMapper(const EncodeMapper& mapper) : ref_count_(mapper.ref_count_ + 1), flags_(mapper.flags_), type_(mapper.type_), table_(mapper.table_) { } // Copy constructor but setting the type, typically to DECODE EncodeMapper(const EncodeMapper& mapper, EncodeType type) : ref_count_(mapper.ref_count_ + 1), flags_(mapper.flags_), type_(type), table_(mapper.table_) { } ~EncodeMapper() { if (--ref_count_ == 0) delete table_; } A operator()(const A &arc) { if (type_ == ENCODE) { // labels and/or weights to single label if ((arc.nextstate == kNoStateId && !(flags_ & kEncodeWeights)) || (arc.nextstate == kNoStateId && (flags_ & kEncodeWeights) && arc.weight == Weight::Zero())) { return arc; } else { Label label = table_->Encode(arc); return A(label, flags_ & kEncodeLabels ? label : arc.olabel, flags_ & kEncodeWeights ? Weight::One() : arc.weight, arc.nextstate); } } else { if (arc.nextstate == kNoStateId) { return arc; } else { const typename EncodeTable<A>::Tuple* tuple = table_->Decode(arc.ilabel); return A(tuple->ilabel, flags_ & kEncodeLabels ? tuple->olabel : arc.olabel, flags_ & kEncodeWeights ? tuple->weight : arc.weight, arc.nextstate);; } } } uint64 Properties(uint64 props) { uint64 mask = kFstProperties; if (flags_ & kEncodeLabels) mask &= kILabelInvariantProperties & kOLabelInvariantProperties; if (flags_ & kEncodeWeights) mask &= kILabelInvariantProperties & kWeightInvariantProperties & (type_ == ENCODE ? kAddSuperFinalProperties : kRmSuperFinalProperties); return props & mask; } MapFinalAction FinalAction() const { return (type_ == ENCODE && (flags_ & kEncodeWeights)) ? MAP_REQUIRE_SUPERFINAL : MAP_NO_SUPERFINAL; } const uint32 flags() const { return flags_; } const EncodeType type() const { return type_; } bool Write(ostream &strm, const string& source) { return table_->Write(strm, source); } bool Write(const string& filename) { ofstream strm(filename.c_str()); if (!strm) { LOG(ERROR) << "EncodeMap: Can't open file: " << filename; return false; } return Write(strm, filename); } static EncodeMapper<A> *Read(istream &strm, const string& source, EncodeType type) { EncodeTable<A> *table = new EncodeTable<A>(0); bool r = table->Read(strm, source); return r ? new EncodeMapper(table->flags(), type, table) : 0; } static EncodeMapper<A> *Read(const string& filename, EncodeType type) { ifstream strm(filename.c_str()); if (!strm) { LOG(ERROR) << "EncodeMap: Can't open file: " << filename; return false; } return Read(strm, filename, type); } private: uint32 ref_count_; uint32 flags_; EncodeType type_; EncodeTable<A>* table_; explicit EncodeMapper(uint32 flags, EncodeType type, EncodeTable<A> *table) : ref_count_(1), flags_(flags), type_(type), table_(table) {} void operator=(const EncodeMapper &); // Disallow. }; // Complexity: O(nstates + narcs) template<class A> inline void Encode(MutableFst<A> *fst, EncodeMapper<A>* mapper) { Map(fst, mapper); } template<class A> inline void Decode(MutableFst<A>* fst, const EncodeMapper<A>& mapper) { Map(fst, EncodeMapper<A>(mapper, DECODE)); RmFinalEpsilon(fst); } // On the fly label and/or weight encoding of input Fst // // Complexity: // - Constructor: O(1) // - Traversal: O(nstates_visited + narcs_visited), assuming constant // time to visit an input state or arc. template <class A> class EncodeFst : public MapFst<A, A, EncodeMapper<A> > { public: typedef A Arc; typedef EncodeMapper<A> C; EncodeFst(const Fst<A> &fst, EncodeMapper<A>* encoder) : MapFst<A, A, C>(fst, encoder, MapFstOptions()) {} EncodeFst(const Fst<A> &fst, const EncodeMapper<A>& encoder) : MapFst<A, A, C>(fst, encoder, MapFstOptions()) {} EncodeFst(const EncodeFst<A> &fst) : MapFst<A, A, C>(fst) {} virtual EncodeFst<A> *Copy() const { return new EncodeFst(*this); } }; // On the fly label and/or weight encoding of input Fst // // Complexity: // - Constructor: O(1) // - Traversal: O(nstates_visited + narcs_visited), assuming constant // time to visit an input state or arc. template <class A> class DecodeFst : public MapFst<A, A, EncodeMapper<A> > { public: typedef A Arc; typedef EncodeMapper<A> C; DecodeFst(const Fst<A> &fst, const EncodeMapper<A>& encoder) : MapFst<A, A, C>(fst, EncodeMapper<A>(encoder, DECODE), MapFstOptions()) {} DecodeFst(const EncodeFst<A> &fst) : MapFst<A, A, C>(fst) {} virtual DecodeFst<A> *Copy() const { return new DecodeFst(*this); } }; // Specialization for EncodeFst. template <class A> class StateIterator< EncodeFst<A> > : public StateIterator< MapFst<A, A, EncodeMapper<A> > > { public: explicit StateIterator(const EncodeFst<A> &fst) : StateIterator< MapFst<A, A, EncodeMapper<A> > >(fst) {} }; // Specialization for EncodeFst. template <class A> class ArcIterator< EncodeFst<A> > : public ArcIterator< MapFst<A, A, EncodeMapper<A> > > { public: ArcIterator(const EncodeFst<A> &fst, typename A::StateId s) : ArcIterator< MapFst<A, A, EncodeMapper<A> > >(fst, s) {} }; // Specialization for DecodeFst. template <class A> class StateIterator< DecodeFst<A> > : public StateIterator< MapFst<A, A, EncodeMapper<A> > > { public: explicit StateIterator(const DecodeFst<A> &fst) : StateIterator< MapFst<A, A, EncodeMapper<A> > >(fst) {} }; // Specialization for DecodeFst. template <class A> class ArcIterator< DecodeFst<A> > : public ArcIterator< MapFst<A, A, EncodeMapper<A> > > { public: ArcIterator(const DecodeFst<A> &fst, typename A::StateId s) : ArcIterator< MapFst<A, A, EncodeMapper<A> > >(fst, s) {} }; // Useful aliases when using StdArc. typedef EncodeFst<StdArc> StdEncodeFst; typedef DecodeFst<StdArc> StdDecodeFst; } #endif // FST_LIB_ENCODE_H__