// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2011 the V8 project authors. All rights reserved. // A light-weight IA32 Assembler. #ifndef V8_IA32_ASSEMBLER_IA32_H_ #define V8_IA32_ASSEMBLER_IA32_H_ #include "isolate.h" #include "serialize.h" namespace v8 { namespace internal { // CPU Registers. // // 1) We would prefer to use an enum, but enum values are assignment- // compatible with int, which has caused code-generation bugs. // // 2) We would prefer to use a class instead of a struct but we don't like // the register initialization to depend on the particular initialization // order (which appears to be different on OS X, Linux, and Windows for the // installed versions of C++ we tried). Using a struct permits C-style // "initialization". Also, the Register objects cannot be const as this // forces initialization stubs in MSVC, making us dependent on initialization // order. // // 3) By not using an enum, we are possibly preventing the compiler from // doing certain constant folds, which may significantly reduce the // code generated for some assembly instructions (because they boil down // to a few constants). If this is a problem, we could change the code // such that we use an enum in optimized mode, and the struct in debug // mode. This way we get the compile-time error checking in debug mode // and best performance in optimized code. // struct Register { static const int kNumAllocatableRegisters = 6; static const int kNumRegisters = 8; static inline const char* AllocationIndexToString(int index); static inline int ToAllocationIndex(Register reg); static inline Register FromAllocationIndex(int index); static Register from_code(int code) { ASSERT(code >= 0); ASSERT(code < kNumRegisters); Register r = { code }; return r; } bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } bool is(Register reg) const { return code_ == reg.code_; } // eax, ebx, ecx and edx are byte registers, the rest are not. bool is_byte_register() const { return code_ <= 3; } int code() const { ASSERT(is_valid()); return code_; } int bit() const { ASSERT(is_valid()); return 1 << code_; } // Unfortunately we can't make this private in a struct. int code_; }; const int kRegister_eax_Code = 0; const int kRegister_ecx_Code = 1; const int kRegister_edx_Code = 2; const int kRegister_ebx_Code = 3; const int kRegister_esp_Code = 4; const int kRegister_ebp_Code = 5; const int kRegister_esi_Code = 6; const int kRegister_edi_Code = 7; const int kRegister_no_reg_Code = -1; const Register eax = { kRegister_eax_Code }; const Register ecx = { kRegister_ecx_Code }; const Register edx = { kRegister_edx_Code }; const Register ebx = { kRegister_ebx_Code }; const Register esp = { kRegister_esp_Code }; const Register ebp = { kRegister_ebp_Code }; const Register esi = { kRegister_esi_Code }; const Register edi = { kRegister_edi_Code }; const Register no_reg = { kRegister_no_reg_Code }; inline const char* Register::AllocationIndexToString(int index) { ASSERT(index >= 0 && index < kNumAllocatableRegisters); // This is the mapping of allocation indices to registers. const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" }; return kNames[index]; } inline int Register::ToAllocationIndex(Register reg) { ASSERT(reg.is_valid() && !reg.is(esp) && !reg.is(ebp)); return (reg.code() >= 6) ? reg.code() - 2 : reg.code(); } inline Register Register::FromAllocationIndex(int index) { ASSERT(index >= 0 && index < kNumAllocatableRegisters); return (index >= 4) ? from_code(index + 2) : from_code(index); } struct XMMRegister { static const int kNumAllocatableRegisters = 7; static const int kNumRegisters = 8; static int ToAllocationIndex(XMMRegister reg) { ASSERT(reg.code() != 0); return reg.code() - 1; } static XMMRegister FromAllocationIndex(int index) { ASSERT(index >= 0 && index < kNumAllocatableRegisters); return from_code(index + 1); } static const char* AllocationIndexToString(int index) { ASSERT(index >= 0 && index < kNumAllocatableRegisters); const char* const names[] = { "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" }; return names[index]; } static XMMRegister from_code(int code) { XMMRegister r = { code }; return r; } bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } bool is(XMMRegister reg) const { return code_ == reg.code_; } int code() const { ASSERT(is_valid()); return code_; } int code_; }; const XMMRegister xmm0 = { 0 }; const XMMRegister xmm1 = { 1 }; const XMMRegister xmm2 = { 2 }; const XMMRegister xmm3 = { 3 }; const XMMRegister xmm4 = { 4 }; const XMMRegister xmm5 = { 5 }; const XMMRegister xmm6 = { 6 }; const XMMRegister xmm7 = { 7 }; typedef XMMRegister DoubleRegister; enum Condition { // any value < 0 is considered no_condition no_condition = -1, overflow = 0, no_overflow = 1, below = 2, above_equal = 3, equal = 4, not_equal = 5, below_equal = 6, above = 7, negative = 8, positive = 9, parity_even = 10, parity_odd = 11, less = 12, greater_equal = 13, less_equal = 14, greater = 15, // aliases carry = below, not_carry = above_equal, zero = equal, not_zero = not_equal, sign = negative, not_sign = positive }; // Returns the equivalent of !cc. // Negation of the default no_condition (-1) results in a non-default // no_condition value (-2). As long as tests for no_condition check // for condition < 0, this will work as expected. inline Condition NegateCondition(Condition cc) { return static_cast<Condition>(cc ^ 1); } // Corresponds to transposing the operands of a comparison. inline Condition ReverseCondition(Condition cc) { switch (cc) { case below: return above; case above: return below; case above_equal: return below_equal; case below_equal: return above_equal; case less: return greater; case greater: return less; case greater_equal: return less_equal; case less_equal: return greater_equal; default: return cc; }; } // ----------------------------------------------------------------------------- // Machine instruction Immediates class Immediate BASE_EMBEDDED { public: inline explicit Immediate(int x); inline explicit Immediate(const ExternalReference& ext); inline explicit Immediate(Handle<Object> handle); inline explicit Immediate(Smi* value); inline explicit Immediate(Address addr); static Immediate CodeRelativeOffset(Label* label) { return Immediate(label); } bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; } bool is_int8() const { return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE; } bool is_int16() const { return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE; } private: inline explicit Immediate(Label* value); int x_; RelocInfo::Mode rmode_; friend class Assembler; friend class MacroAssembler; }; // ----------------------------------------------------------------------------- // Machine instruction Operands enum ScaleFactor { times_1 = 0, times_2 = 1, times_4 = 2, times_8 = 3, times_int_size = times_4, times_half_pointer_size = times_2, times_pointer_size = times_4, times_twice_pointer_size = times_8 }; class Operand BASE_EMBEDDED { public: // XMM reg INLINE(explicit Operand(XMMRegister xmm_reg)); // [disp/r] INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode)); // disp only must always be relocated // [base + disp/r] explicit Operand(Register base, int32_t disp, RelocInfo::Mode rmode = RelocInfo::NONE); // [base + index*scale + disp/r] explicit Operand(Register base, Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode = RelocInfo::NONE); // [index*scale + disp/r] explicit Operand(Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode = RelocInfo::NONE); static Operand StaticVariable(const ExternalReference& ext) { return Operand(reinterpret_cast<int32_t>(ext.address()), RelocInfo::EXTERNAL_REFERENCE); } static Operand StaticArray(Register index, ScaleFactor scale, const ExternalReference& arr) { return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()), RelocInfo::EXTERNAL_REFERENCE); } static Operand Cell(Handle<JSGlobalPropertyCell> cell) { return Operand(reinterpret_cast<int32_t>(cell.location()), RelocInfo::GLOBAL_PROPERTY_CELL); } // Returns true if this Operand is a wrapper for the specified register. bool is_reg(Register reg) const; // Returns true if this Operand is a wrapper for one register. bool is_reg_only() const; // Asserts that this Operand is a wrapper for one register and returns the // register. Register reg() const; private: // reg INLINE(explicit Operand(Register reg)); // Set the ModRM byte without an encoded 'reg' register. The // register is encoded later as part of the emit_operand operation. inline void set_modrm(int mod, Register rm); inline void set_sib(ScaleFactor scale, Register index, Register base); inline void set_disp8(int8_t disp); inline void set_dispr(int32_t disp, RelocInfo::Mode rmode); byte buf_[6]; // The number of bytes in buf_. unsigned int len_; // Only valid if len_ > 4. RelocInfo::Mode rmode_; friend class Assembler; friend class MacroAssembler; friend class LCodeGen; }; // ----------------------------------------------------------------------------- // A Displacement describes the 32bit immediate field of an instruction which // may be used together with a Label in order to refer to a yet unknown code // position. Displacements stored in the instruction stream are used to describe // the instruction and to chain a list of instructions using the same Label. // A Displacement contains 2 different fields: // // next field: position of next displacement in the chain (0 = end of list) // type field: instruction type // // A next value of null (0) indicates the end of a chain (note that there can // be no displacement at position zero, because there is always at least one // instruction byte before the displacement). // // Displacement _data field layout // // |31.....2|1......0| // [ next | type | class Displacement BASE_EMBEDDED { public: enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER }; int data() const { return data_; } Type type() const { return TypeField::decode(data_); } void next(Label* L) const { int n = NextField::decode(data_); n > 0 ? L->link_to(n) : L->Unuse(); } void link_to(Label* L) { init(L, type()); } explicit Displacement(int data) { data_ = data; } Displacement(Label* L, Type type) { init(L, type); } void print() { PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"), NextField::decode(data_)); } private: int data_; class TypeField: public BitField<Type, 0, 2> {}; class NextField: public BitField<int, 2, 32-2> {}; void init(Label* L, Type type); }; // CpuFeatures keeps track of which features are supported by the target CPU. // Supported features must be enabled by a Scope before use. // Example: // if (CpuFeatures::IsSupported(SSE2)) { // CpuFeatures::Scope fscope(SSE2); // // Generate SSE2 floating point code. // } else { // // Generate standard x87 floating point code. // } class CpuFeatures : public AllStatic { public: // Detect features of the target CPU. Set safe defaults if the serializer // is enabled (snapshots must be portable). static void Probe(); // Check whether a feature is supported by the target CPU. static bool IsSupported(CpuFeature f) { ASSERT(initialized_); if (f == SSE2 && !FLAG_enable_sse2) return false; if (f == SSE3 && !FLAG_enable_sse3) return false; if (f == SSE4_1 && !FLAG_enable_sse4_1) return false; if (f == CMOV && !FLAG_enable_cmov) return false; if (f == RDTSC && !FLAG_enable_rdtsc) return false; return (supported_ & (static_cast<uint64_t>(1) << f)) != 0; } #ifdef DEBUG // Check whether a feature is currently enabled. static bool IsEnabled(CpuFeature f) { ASSERT(initialized_); Isolate* isolate = Isolate::UncheckedCurrent(); if (isolate == NULL) { // When no isolate is available, work as if we're running in // release mode. return IsSupported(f); } uint64_t enabled = isolate->enabled_cpu_features(); return (enabled & (static_cast<uint64_t>(1) << f)) != 0; } #endif // Enable a specified feature within a scope. class Scope BASE_EMBEDDED { #ifdef DEBUG public: explicit Scope(CpuFeature f) { uint64_t mask = static_cast<uint64_t>(1) << f; ASSERT(CpuFeatures::IsSupported(f)); ASSERT(!Serializer::enabled() || (CpuFeatures::found_by_runtime_probing_ & mask) == 0); isolate_ = Isolate::UncheckedCurrent(); old_enabled_ = 0; if (isolate_ != NULL) { old_enabled_ = isolate_->enabled_cpu_features(); isolate_->set_enabled_cpu_features(old_enabled_ | mask); } } ~Scope() { ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_); if (isolate_ != NULL) { isolate_->set_enabled_cpu_features(old_enabled_); } } private: Isolate* isolate_; uint64_t old_enabled_; #else public: explicit Scope(CpuFeature f) {} #endif }; class TryForceFeatureScope BASE_EMBEDDED { public: explicit TryForceFeatureScope(CpuFeature f) : old_supported_(CpuFeatures::supported_) { if (CanForce()) { CpuFeatures::supported_ |= (static_cast<uint64_t>(1) << f); } } ~TryForceFeatureScope() { if (CanForce()) { CpuFeatures::supported_ = old_supported_; } } private: static bool CanForce() { // It's only safe to temporarily force support of CPU features // when there's only a single isolate, which is guaranteed when // the serializer is enabled. return Serializer::enabled(); } const uint64_t old_supported_; }; private: #ifdef DEBUG static bool initialized_; #endif static uint64_t supported_; static uint64_t found_by_runtime_probing_; DISALLOW_COPY_AND_ASSIGN(CpuFeatures); }; class Assembler : public AssemblerBase { private: // We check before assembling an instruction that there is sufficient // space to write an instruction and its relocation information. // The relocation writer's position must be kGap bytes above the end of // the generated instructions. This leaves enough space for the // longest possible ia32 instruction, 15 bytes, and the longest possible // relocation information encoding, RelocInfoWriter::kMaxLength == 16. // (There is a 15 byte limit on ia32 instruction length that rules out some // otherwise valid instructions.) // This allows for a single, fast space check per instruction. static const int kGap = 32; public: // Create an assembler. Instructions and relocation information are emitted // into a buffer, with the instructions starting from the beginning and the // relocation information starting from the end of the buffer. See CodeDesc // for a detailed comment on the layout (globals.h). // // If the provided buffer is NULL, the assembler allocates and grows its own // buffer, and buffer_size determines the initial buffer size. The buffer is // owned by the assembler and deallocated upon destruction of the assembler. // // If the provided buffer is not NULL, the assembler uses the provided buffer // for code generation and assumes its size to be buffer_size. If the buffer // is too small, a fatal error occurs. No deallocation of the buffer is done // upon destruction of the assembler. // TODO(vitalyr): the assembler does not need an isolate. Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler(); // Overrides the default provided by FLAG_debug_code. void set_emit_debug_code(bool value) { emit_debug_code_ = value; } // GetCode emits any pending (non-emitted) code and fills the descriptor // desc. GetCode() is idempotent; it returns the same result if no other // Assembler functions are invoked in between GetCode() calls. void GetCode(CodeDesc* desc); // Read/Modify the code target in the branch/call instruction at pc. inline static Address target_address_at(Address pc); inline static void set_target_address_at(Address pc, Address target); // This sets the branch destination (which is in the instruction on x86). // This is for calls and branches within generated code. inline static void deserialization_set_special_target_at( Address instruction_payload, Address target) { set_target_address_at(instruction_payload, target); } // This sets the branch destination (which is in the instruction on x86). // This is for calls and branches to runtime code. inline static void set_external_target_at(Address instruction_payload, Address target) { set_target_address_at(instruction_payload, target); } static const int kSpecialTargetSize = kPointerSize; // Distance between the address of the code target in the call instruction // and the return address static const int kCallTargetAddressOffset = kPointerSize; // Distance between start of patched return sequence and the emitted address // to jump to. static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32. // Distance between start of patched debug break slot and the emitted address // to jump to. static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32. static const int kCallInstructionLength = 5; static const int kJSReturnSequenceLength = 6; // The debug break slot must be able to contain a call instruction. static const int kDebugBreakSlotLength = kCallInstructionLength; // One byte opcode for test al, 0xXX. static const byte kTestAlByte = 0xA8; // One byte opcode for nop. static const byte kNopByte = 0x90; // One byte opcode for a short unconditional jump. static const byte kJmpShortOpcode = 0xEB; // One byte prefix for a short conditional jump. static const byte kJccShortPrefix = 0x70; static const byte kJncShortOpcode = kJccShortPrefix | not_carry; static const byte kJcShortOpcode = kJccShortPrefix | carry; // --------------------------------------------------------------------------- // Code generation // // - function names correspond one-to-one to ia32 instruction mnemonics // - unless specified otherwise, instructions operate on 32bit operands // - instructions on 8bit (byte) operands/registers have a trailing '_b' // - instructions on 16bit (word) operands/registers have a trailing '_w' // - naming conflicts with C++ keywords are resolved via a trailing '_' // NOTE ON INTERFACE: Currently, the interface is not very consistent // in the sense that some operations (e.g. mov()) can be called in more // the one way to generate the same instruction: The Register argument // can in some cases be replaced with an Operand(Register) argument. // This should be cleaned up and made more orthogonal. The questions // is: should we always use Operands instead of Registers where an // Operand is possible, or should we have a Register (overloaded) form // instead? We must be careful to make sure that the selected instruction // is obvious from the parameters to avoid hard-to-find code generation // bugs. // Insert the smallest number of nop instructions // possible to align the pc offset to a multiple // of m. m must be a power of 2. void Align(int m); void Nop(int bytes = 1); // Aligns code to something that's optimal for a jump target for the platform. void CodeTargetAlign(); // Stack void pushad(); void popad(); void pushfd(); void popfd(); void push(const Immediate& x); void push_imm32(int32_t imm32); void push(Register src); void push(const Operand& src); void pop(Register dst); void pop(const Operand& dst); void enter(const Immediate& size); void leave(); // Moves void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); } void mov_b(Register dst, const Operand& src); void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); } void mov_b(const Operand& dst, int8_t imm8); void mov_b(const Operand& dst, Register src); void mov_w(Register dst, const Operand& src); void mov_w(const Operand& dst, Register src); void mov(Register dst, int32_t imm32); void mov(Register dst, const Immediate& x); void mov(Register dst, Handle<Object> handle); void mov(Register dst, const Operand& src); void mov(Register dst, Register src); void mov(const Operand& dst, const Immediate& x); void mov(const Operand& dst, Handle<Object> handle); void mov(const Operand& dst, Register src); void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); } void movsx_b(Register dst, const Operand& src); void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); } void movsx_w(Register dst, const Operand& src); void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); } void movzx_b(Register dst, const Operand& src); void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); } void movzx_w(Register dst, const Operand& src); // Conditional moves void cmov(Condition cc, Register dst, Register src) { cmov(cc, dst, Operand(src)); } void cmov(Condition cc, Register dst, const Operand& src); // Flag management. void cld(); // Repetitive string instructions. void rep_movs(); void rep_stos(); void stos(); // Exchange two registers void xchg(Register dst, Register src); // Arithmetics void adc(Register dst, int32_t imm32); void adc(Register dst, const Operand& src); void add(Register dst, Register src) { add(dst, Operand(src)); } void add(Register dst, const Operand& src); void add(const Operand& dst, Register src); void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); } void add(const Operand& dst, const Immediate& x); void and_(Register dst, int32_t imm32); void and_(Register dst, const Immediate& x); void and_(Register dst, Register src) { and_(dst, Operand(src)); } void and_(Register dst, const Operand& src); void and_(const Operand& dst, Register src); void and_(const Operand& dst, const Immediate& x); void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); } void cmpb(const Operand& op, int8_t imm8); void cmpb(Register reg, const Operand& op); void cmpb(const Operand& op, Register reg); void cmpb_al(const Operand& op); void cmpw_ax(const Operand& op); void cmpw(const Operand& op, Immediate imm16); void cmp(Register reg, int32_t imm32); void cmp(Register reg, Handle<Object> handle); void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); } void cmp(Register reg, const Operand& op); void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); } void cmp(const Operand& op, const Immediate& imm); void cmp(const Operand& op, Handle<Object> handle); void dec_b(Register dst); void dec_b(const Operand& dst); void dec(Register dst); void dec(const Operand& dst); void cdq(); void idiv(Register src); // Signed multiply instructions. void imul(Register src); // edx:eax = eax * src. void imul(Register dst, Register src) { imul(dst, Operand(src)); } void imul(Register dst, const Operand& src); // dst = dst * src. void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32. void inc(Register dst); void inc(const Operand& dst); void lea(Register dst, const Operand& src); // Unsigned multiply instruction. void mul(Register src); // edx:eax = eax * reg. void neg(Register dst); void not_(Register dst); void or_(Register dst, int32_t imm32); void or_(Register dst, Register src) { or_(dst, Operand(src)); } void or_(Register dst, const Operand& src); void or_(const Operand& dst, Register src); void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); } void or_(const Operand& dst, const Immediate& x); void rcl(Register dst, uint8_t imm8); void rcr(Register dst, uint8_t imm8); void sar(Register dst, uint8_t imm8); void sar_cl(Register dst); void sbb(Register dst, const Operand& src); void shld(Register dst, Register src) { shld(dst, Operand(src)); } void shld(Register dst, const Operand& src); void shl(Register dst, uint8_t imm8); void shl_cl(Register dst); void shrd(Register dst, Register src) { shrd(dst, Operand(src)); } void shrd(Register dst, const Operand& src); void shr(Register dst, uint8_t imm8); void shr_cl(Register dst); void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); } void sub(const Operand& dst, const Immediate& x); void sub(Register dst, Register src) { sub(dst, Operand(src)); } void sub(Register dst, const Operand& src); void sub(const Operand& dst, Register src); void test(Register reg, const Immediate& imm); void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); } void test(Register reg, const Operand& op); void test_b(Register reg, const Operand& op); void test(const Operand& op, const Immediate& imm); void test_b(Register reg, uint8_t imm8) { test_b(Operand(reg), imm8); } void test_b(const Operand& op, uint8_t imm8); void xor_(Register dst, int32_t imm32); void xor_(Register dst, Register src) { xor_(dst, Operand(src)); } void xor_(Register dst, const Operand& src); void xor_(const Operand& dst, Register src); void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); } void xor_(const Operand& dst, const Immediate& x); // Bit operations. void bt(const Operand& dst, Register src); void bts(Register dst, Register src) { bts(Operand(dst), src); } void bts(const Operand& dst, Register src); // Miscellaneous void hlt(); void int3(); void nop(); void rdtsc(); void ret(int imm16); // Label operations & relative jumps (PPUM Appendix D) // // Takes a branch opcode (cc) and a label (L) and generates // either a backward branch or a forward branch and links it // to the label fixup chain. Usage: // // Label L; // unbound label // j(cc, &L); // forward branch to unbound label // bind(&L); // bind label to the current pc // j(cc, &L); // backward branch to bound label // bind(&L); // illegal: a label may be bound only once // // Note: The same Label can be used for forward and backward branches // but it may be bound only once. void bind(Label* L); // binds an unbound label L to the current code position // Calls void call(Label* L); void call(byte* entry, RelocInfo::Mode rmode); int CallSize(const Operand& adr); void call(Register reg) { call(Operand(reg)); } void call(const Operand& adr); int CallSize(Handle<Code> code, RelocInfo::Mode mode); void call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, unsigned ast_id = kNoASTId); // Jumps // unconditional jump to L void jmp(Label* L, Label::Distance distance = Label::kFar); void jmp(byte* entry, RelocInfo::Mode rmode); void jmp(Register reg) { jmp(Operand(reg)); } void jmp(const Operand& adr); void jmp(Handle<Code> code, RelocInfo::Mode rmode); // Conditional jumps void j(Condition cc, Label* L, Label::Distance distance = Label::kFar); void j(Condition cc, byte* entry, RelocInfo::Mode rmode); void j(Condition cc, Handle<Code> code); // Floating-point operations void fld(int i); void fstp(int i); void fld1(); void fldz(); void fldpi(); void fldln2(); void fld_s(const Operand& adr); void fld_d(const Operand& adr); void fstp_s(const Operand& adr); void fstp_d(const Operand& adr); void fst_d(const Operand& adr); void fild_s(const Operand& adr); void fild_d(const Operand& adr); void fist_s(const Operand& adr); void fistp_s(const Operand& adr); void fistp_d(const Operand& adr); // The fisttp instructions require SSE3. void fisttp_s(const Operand& adr); void fisttp_d(const Operand& adr); void fabs(); void fchs(); void fcos(); void fsin(); void fptan(); void fyl2x(); void f2xm1(); void fscale(); void fninit(); void fadd(int i); void fsub(int i); void fmul(int i); void fdiv(int i); void fisub_s(const Operand& adr); void faddp(int i = 1); void fsubp(int i = 1); void fsubrp(int i = 1); void fmulp(int i = 1); void fdivp(int i = 1); void fprem(); void fprem1(); void fxch(int i = 1); void fincstp(); void ffree(int i = 0); void ftst(); void fucomp(int i); void fucompp(); void fucomi(int i); void fucomip(); void fcompp(); void fnstsw_ax(); void fwait(); void fnclex(); void frndint(); void sahf(); void setcc(Condition cc, Register reg); void cpuid(); // SSE2 instructions void cvttss2si(Register dst, const Operand& src); void cvttsd2si(Register dst, const Operand& src); void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); } void cvtsi2sd(XMMRegister dst, const Operand& src); void cvtss2sd(XMMRegister dst, XMMRegister src); void cvtsd2ss(XMMRegister dst, XMMRegister src); void addsd(XMMRegister dst, XMMRegister src); void subsd(XMMRegister dst, XMMRegister src); void mulsd(XMMRegister dst, XMMRegister src); void divsd(XMMRegister dst, XMMRegister src); void xorpd(XMMRegister dst, XMMRegister src); void xorps(XMMRegister dst, XMMRegister src); void sqrtsd(XMMRegister dst, XMMRegister src); void andpd(XMMRegister dst, XMMRegister src); void ucomisd(XMMRegister dst, XMMRegister src); void ucomisd(XMMRegister dst, const Operand& src); enum RoundingMode { kRoundToNearest = 0x0, kRoundDown = 0x1, kRoundUp = 0x2, kRoundToZero = 0x3 }; void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode); void movmskpd(Register dst, XMMRegister src); void cmpltsd(XMMRegister dst, XMMRegister src); void movaps(XMMRegister dst, XMMRegister src); void movdqa(XMMRegister dst, const Operand& src); void movdqa(const Operand& dst, XMMRegister src); void movdqu(XMMRegister dst, const Operand& src); void movdqu(const Operand& dst, XMMRegister src); // Use either movsd or movlpd. void movdbl(XMMRegister dst, const Operand& src); void movdbl(const Operand& dst, XMMRegister src); void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); } void movd(XMMRegister dst, const Operand& src); void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); } void movd(const Operand& dst, XMMRegister src); void movsd(XMMRegister dst, XMMRegister src); void movss(XMMRegister dst, const Operand& src); void movss(const Operand& dst, XMMRegister src); void movss(XMMRegister dst, XMMRegister src); void extractps(Register dst, XMMRegister src, byte imm8); void pand(XMMRegister dst, XMMRegister src); void pxor(XMMRegister dst, XMMRegister src); void por(XMMRegister dst, XMMRegister src); void ptest(XMMRegister dst, XMMRegister src); void psllq(XMMRegister reg, int8_t shift); void psllq(XMMRegister dst, XMMRegister src); void psrlq(XMMRegister reg, int8_t shift); void psrlq(XMMRegister dst, XMMRegister src); void pshufd(XMMRegister dst, XMMRegister src, int8_t shuffle); void pextrd(Register dst, XMMRegister src, int8_t offset) { pextrd(Operand(dst), src, offset); } void pextrd(const Operand& dst, XMMRegister src, int8_t offset); void pinsrd(XMMRegister dst, Register src, int8_t offset) { pinsrd(dst, Operand(src), offset); } void pinsrd(XMMRegister dst, const Operand& src, int8_t offset); // Parallel XMM operations. void movntdqa(XMMRegister dst, const Operand& src); void movntdq(const Operand& dst, XMMRegister src); // Prefetch src position into cache level. // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a // non-temporal void prefetch(const Operand& src, int level); // TODO(lrn): Need SFENCE for movnt? // Debugging void Print(); // Check the code size generated from label to here. int SizeOfCodeGeneratedSince(Label* label) { return pc_offset() - label->pos(); } // Mark address of the ExitJSFrame code. void RecordJSReturn(); // Mark address of a debug break slot. void RecordDebugBreakSlot(); // Record a comment relocation entry that can be used by a disassembler. // Use --code-comments to enable, or provide "force = true" flag to always // write a comment. void RecordComment(const char* msg, bool force = false); // Writes a single byte or word of data in the code stream. Used for // inline tables, e.g., jump-tables. void db(uint8_t data); void dd(uint32_t data); int pc_offset() const { return pc_ - buffer_; } // Check if there is less than kGap bytes available in the buffer. // If this is the case, we need to grow the buffer before emitting // an instruction or relocation information. inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } // Get the number of bytes available in the buffer. inline int available_space() const { return reloc_info_writer.pos() - pc_; } static bool IsNop(Address addr); PositionsRecorder* positions_recorder() { return &positions_recorder_; } int relocation_writer_size() { return (buffer_ + buffer_size_) - reloc_info_writer.pos(); } // Avoid overflows for displacements etc. static const int kMaximalBufferSize = 512*MB; static const int kMinimalBufferSize = 4*KB; byte byte_at(int pos) { return buffer_[pos]; } void set_byte_at(int pos, byte value) { buffer_[pos] = value; } protected: bool emit_debug_code() const { return emit_debug_code_; } void movsd(XMMRegister dst, const Operand& src); void movsd(const Operand& dst, XMMRegister src); void emit_sse_operand(XMMRegister reg, const Operand& adr); void emit_sse_operand(XMMRegister dst, XMMRegister src); void emit_sse_operand(Register dst, XMMRegister src); byte* addr_at(int pos) { return buffer_ + pos; } private: uint32_t long_at(int pos) { return *reinterpret_cast<uint32_t*>(addr_at(pos)); } void long_at_put(int pos, uint32_t x) { *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; } // code emission void GrowBuffer(); inline void emit(uint32_t x); inline void emit(Handle<Object> handle); inline void emit(uint32_t x, RelocInfo::Mode rmode, unsigned ast_id = kNoASTId); inline void emit(const Immediate& x); inline void emit_w(const Immediate& x); // Emit the code-object-relative offset of the label's position inline void emit_code_relative_offset(Label* label); // instruction generation void emit_arith_b(int op1, int op2, Register dst, int imm8); // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81) // with a given destination expression and an immediate operand. It attempts // to use the shortest encoding possible. // sel specifies the /n in the modrm byte (see the Intel PRM). void emit_arith(int sel, Operand dst, const Immediate& x); void emit_operand(Register reg, const Operand& adr); void emit_farith(int b1, int b2, int i); // labels void print(Label* L); void bind_to(Label* L, int pos); // displacements inline Displacement disp_at(Label* L); inline void disp_at_put(Label* L, Displacement disp); inline void emit_disp(Label* L, Displacement::Type type); inline void emit_near_disp(Label* L); // record reloc info for current pc_ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); friend class CodePatcher; friend class EnsureSpace; // Code buffer: // The buffer into which code and relocation info are generated. byte* buffer_; int buffer_size_; // True if the assembler owns the buffer, false if buffer is external. bool own_buffer_; // code generation byte* pc_; // the program counter; moves forward RelocInfoWriter reloc_info_writer; PositionsRecorder positions_recorder_; bool emit_debug_code_; friend class PositionsRecorder; }; // Helper class that ensures that there is enough space for generating // instructions and relocation information. The constructor makes // sure that there is enough space and (in debug mode) the destructor // checks that we did not generate too much. class EnsureSpace BASE_EMBEDDED { public: explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { if (assembler_->overflow()) assembler_->GrowBuffer(); #ifdef DEBUG space_before_ = assembler_->available_space(); #endif } #ifdef DEBUG ~EnsureSpace() { int bytes_generated = space_before_ - assembler_->available_space(); ASSERT(bytes_generated < assembler_->kGap); } #endif private: Assembler* assembler_; #ifdef DEBUG int space_before_; #endif }; } } // namespace v8::internal #endif // V8_IA32_ASSEMBLER_IA32_H_