// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "api.h" #include "ast.h" #include "bootstrapper.h" #include "char-predicates-inl.h" #include "codegen.h" #include "compiler.h" #include "func-name-inferrer.h" #include "messages.h" #include "parser.h" #include "platform.h" #include "preparser.h" #include "runtime.h" #include "scanner-character-streams.h" #include "scopeinfo.h" #include "string-stream.h" namespace v8 { namespace internal { // PositionStack is used for on-stack allocation of token positions for // new expressions. Please look at ParseNewExpression. class PositionStack { public: explicit PositionStack(bool* ok) : top_(NULL), ok_(ok) {} ~PositionStack() { ASSERT(!*ok_ || is_empty()); } class Element { public: Element(PositionStack* stack, int value) { previous_ = stack->top(); value_ = value; stack->set_top(this); } private: Element* previous() { return previous_; } int value() { return value_; } friend class PositionStack; Element* previous_; int value_; }; bool is_empty() { return top_ == NULL; } int pop() { ASSERT(!is_empty()); int result = top_->value(); top_ = top_->previous(); return result; } private: Element* top() { return top_; } void set_top(Element* value) { top_ = value; } Element* top_; bool* ok_; }; RegExpBuilder::RegExpBuilder() : zone_(Isolate::Current()->zone()), pending_empty_(false), characters_(NULL), terms_(), alternatives_() #ifdef DEBUG , last_added_(ADD_NONE) #endif {} void RegExpBuilder::FlushCharacters() { pending_empty_ = false; if (characters_ != NULL) { RegExpTree* atom = new(zone()) RegExpAtom(characters_->ToConstVector()); characters_ = NULL; text_.Add(atom); LAST(ADD_ATOM); } } void RegExpBuilder::FlushText() { FlushCharacters(); int num_text = text_.length(); if (num_text == 0) { return; } else if (num_text == 1) { terms_.Add(text_.last()); } else { RegExpText* text = new(zone()) RegExpText(); for (int i = 0; i < num_text; i++) text_.Get(i)->AppendToText(text); terms_.Add(text); } text_.Clear(); } void RegExpBuilder::AddCharacter(uc16 c) { pending_empty_ = false; if (characters_ == NULL) { characters_ = new(zone()) ZoneList<uc16>(4); } characters_->Add(c); LAST(ADD_CHAR); } void RegExpBuilder::AddEmpty() { pending_empty_ = true; } void RegExpBuilder::AddAtom(RegExpTree* term) { if (term->IsEmpty()) { AddEmpty(); return; } if (term->IsTextElement()) { FlushCharacters(); text_.Add(term); } else { FlushText(); terms_.Add(term); } LAST(ADD_ATOM); } void RegExpBuilder::AddAssertion(RegExpTree* assert) { FlushText(); terms_.Add(assert); LAST(ADD_ASSERT); } void RegExpBuilder::NewAlternative() { FlushTerms(); } void RegExpBuilder::FlushTerms() { FlushText(); int num_terms = terms_.length(); RegExpTree* alternative; if (num_terms == 0) { alternative = RegExpEmpty::GetInstance(); } else if (num_terms == 1) { alternative = terms_.last(); } else { alternative = new(zone()) RegExpAlternative(terms_.GetList()); } alternatives_.Add(alternative); terms_.Clear(); LAST(ADD_NONE); } RegExpTree* RegExpBuilder::ToRegExp() { FlushTerms(); int num_alternatives = alternatives_.length(); if (num_alternatives == 0) { return RegExpEmpty::GetInstance(); } if (num_alternatives == 1) { return alternatives_.last(); } return new(zone()) RegExpDisjunction(alternatives_.GetList()); } void RegExpBuilder::AddQuantifierToAtom(int min, int max, RegExpQuantifier::Type type) { if (pending_empty_) { pending_empty_ = false; return; } RegExpTree* atom; if (characters_ != NULL) { ASSERT(last_added_ == ADD_CHAR); // Last atom was character. Vector<const uc16> char_vector = characters_->ToConstVector(); int num_chars = char_vector.length(); if (num_chars > 1) { Vector<const uc16> prefix = char_vector.SubVector(0, num_chars - 1); text_.Add(new(zone()) RegExpAtom(prefix)); char_vector = char_vector.SubVector(num_chars - 1, num_chars); } characters_ = NULL; atom = new(zone()) RegExpAtom(char_vector); FlushText(); } else if (text_.length() > 0) { ASSERT(last_added_ == ADD_ATOM); atom = text_.RemoveLast(); FlushText(); } else if (terms_.length() > 0) { ASSERT(last_added_ == ADD_ATOM); atom = terms_.RemoveLast(); if (atom->max_match() == 0) { // Guaranteed to only match an empty string. LAST(ADD_TERM); if (min == 0) { return; } terms_.Add(atom); return; } } else { // Only call immediately after adding an atom or character! UNREACHABLE(); return; } terms_.Add(new(zone()) RegExpQuantifier(min, max, type, atom)); LAST(ADD_TERM); } Handle<String> Parser::LookupSymbol(int symbol_id) { // Length of symbol cache is the number of identified symbols. // If we are larger than that, or negative, it's not a cached symbol. // This might also happen if there is no preparser symbol data, even // if there is some preparser data. if (static_cast<unsigned>(symbol_id) >= static_cast<unsigned>(symbol_cache_.length())) { if (scanner().is_literal_ascii()) { return isolate()->factory()->LookupAsciiSymbol( scanner().literal_ascii_string()); } else { return isolate()->factory()->LookupTwoByteSymbol( scanner().literal_utf16_string()); } } return LookupCachedSymbol(symbol_id); } Handle<String> Parser::LookupCachedSymbol(int symbol_id) { // Make sure the cache is large enough to hold the symbol identifier. if (symbol_cache_.length() <= symbol_id) { // Increase length to index + 1. symbol_cache_.AddBlock(Handle<String>::null(), symbol_id + 1 - symbol_cache_.length()); } Handle<String> result = symbol_cache_.at(symbol_id); if (result.is_null()) { if (scanner().is_literal_ascii()) { result = isolate()->factory()->LookupAsciiSymbol( scanner().literal_ascii_string()); } else { result = isolate()->factory()->LookupTwoByteSymbol( scanner().literal_utf16_string()); } symbol_cache_.at(symbol_id) = result; return result; } isolate()->counters()->total_preparse_symbols_skipped()->Increment(); return result; } FunctionEntry ScriptDataImpl::GetFunctionEntry(int start) { // The current pre-data entry must be a FunctionEntry with the given // start position. if ((function_index_ + FunctionEntry::kSize <= store_.length()) && (static_cast<int>(store_[function_index_]) == start)) { int index = function_index_; function_index_ += FunctionEntry::kSize; return FunctionEntry(store_.SubVector(index, index + FunctionEntry::kSize)); } return FunctionEntry(); } int ScriptDataImpl::GetSymbolIdentifier() { return ReadNumber(&symbol_data_); } bool ScriptDataImpl::SanityCheck() { // Check that the header data is valid and doesn't specify // point to positions outside the store. if (store_.length() < PreparseDataConstants::kHeaderSize) return false; if (magic() != PreparseDataConstants::kMagicNumber) return false; if (version() != PreparseDataConstants::kCurrentVersion) return false; if (has_error()) { // Extra sane sanity check for error message encoding. if (store_.length() <= PreparseDataConstants::kHeaderSize + PreparseDataConstants::kMessageTextPos) { return false; } if (Read(PreparseDataConstants::kMessageStartPos) > Read(PreparseDataConstants::kMessageEndPos)) { return false; } unsigned arg_count = Read(PreparseDataConstants::kMessageArgCountPos); int pos = PreparseDataConstants::kMessageTextPos; for (unsigned int i = 0; i <= arg_count; i++) { if (store_.length() <= PreparseDataConstants::kHeaderSize + pos) { return false; } int length = static_cast<int>(Read(pos)); if (length < 0) return false; pos += 1 + length; } if (store_.length() < PreparseDataConstants::kHeaderSize + pos) { return false; } return true; } // Check that the space allocated for function entries is sane. int functions_size = static_cast<int>(store_[PreparseDataConstants::kFunctionsSizeOffset]); if (functions_size < 0) return false; if (functions_size % FunctionEntry::kSize != 0) return false; // Check that the count of symbols is non-negative. int symbol_count = static_cast<int>(store_[PreparseDataConstants::kSymbolCountOffset]); if (symbol_count < 0) return false; // Check that the total size has room for header and function entries. int minimum_size = PreparseDataConstants::kHeaderSize + functions_size; if (store_.length() < minimum_size) return false; return true; } const char* ScriptDataImpl::ReadString(unsigned* start, int* chars) { int length = start[0]; char* result = NewArray<char>(length + 1); for (int i = 0; i < length; i++) { result[i] = start[i + 1]; } result[length] = '\0'; if (chars != NULL) *chars = length; return result; } Scanner::Location ScriptDataImpl::MessageLocation() { int beg_pos = Read(PreparseDataConstants::kMessageStartPos); int end_pos = Read(PreparseDataConstants::kMessageEndPos); return Scanner::Location(beg_pos, end_pos); } const char* ScriptDataImpl::BuildMessage() { unsigned* start = ReadAddress(PreparseDataConstants::kMessageTextPos); return ReadString(start, NULL); } Vector<const char*> ScriptDataImpl::BuildArgs() { int arg_count = Read(PreparseDataConstants::kMessageArgCountPos); const char** array = NewArray<const char*>(arg_count); // Position after text found by skipping past length field and // length field content words. int pos = PreparseDataConstants::kMessageTextPos + 1 + Read(PreparseDataConstants::kMessageTextPos); for (int i = 0; i < arg_count; i++) { int count = 0; array[i] = ReadString(ReadAddress(pos), &count); pos += count + 1; } return Vector<const char*>(array, arg_count); } unsigned ScriptDataImpl::Read(int position) { return store_[PreparseDataConstants::kHeaderSize + position]; } unsigned* ScriptDataImpl::ReadAddress(int position) { return &store_[PreparseDataConstants::kHeaderSize + position]; } Scope* Parser::NewScope(Scope* parent, ScopeType type) { Scope* result = new(zone()) Scope(parent, type); result->Initialize(); return result; } // ---------------------------------------------------------------------------- // Target is a support class to facilitate manipulation of the // Parser's target_stack_ (the stack of potential 'break' and // 'continue' statement targets). Upon construction, a new target is // added; it is removed upon destruction. class Target BASE_EMBEDDED { public: Target(Target** variable, AstNode* node) : variable_(variable), node_(node), previous_(*variable) { *variable = this; } ~Target() { *variable_ = previous_; } Target* previous() { return previous_; } AstNode* node() { return node_; } private: Target** variable_; AstNode* node_; Target* previous_; }; class TargetScope BASE_EMBEDDED { public: explicit TargetScope(Target** variable) : variable_(variable), previous_(*variable) { *variable = NULL; } ~TargetScope() { *variable_ = previous_; } private: Target** variable_; Target* previous_; }; // ---------------------------------------------------------------------------- // FunctionState and BlockState together implement the parser's scope stack. // The parser's current scope is in top_scope_. The BlockState and // FunctionState constructors push on the scope stack and the destructors // pop. They are also used to hold the parser's per-function and per-block // state. class Parser::BlockState BASE_EMBEDDED { public: BlockState(Parser* parser, Scope* scope) : parser_(parser), outer_scope_(parser->top_scope_) { parser->top_scope_ = scope; } ~BlockState() { parser_->top_scope_ = outer_scope_; } private: Parser* parser_; Scope* outer_scope_; }; Parser::FunctionState::FunctionState(Parser* parser, Scope* scope, Isolate* isolate) : next_materialized_literal_index_(JSFunction::kLiteralsPrefixSize), next_handler_index_(0), expected_property_count_(0), only_simple_this_property_assignments_(false), this_property_assignments_(isolate->factory()->empty_fixed_array()), parser_(parser), outer_function_state_(parser->current_function_state_), outer_scope_(parser->top_scope_), saved_ast_node_id_(isolate->ast_node_id()), factory_(isolate) { parser->top_scope_ = scope; parser->current_function_state_ = this; isolate->set_ast_node_id(AstNode::kDeclarationsId + 1); } Parser::FunctionState::~FunctionState() { parser_->top_scope_ = outer_scope_; parser_->current_function_state_ = outer_function_state_; if (outer_function_state_ != NULL) { parser_->isolate()->set_ast_node_id(saved_ast_node_id_); } } // ---------------------------------------------------------------------------- // The CHECK_OK macro is a convenient macro to enforce error // handling for functions that may fail (by returning !*ok). // // CAUTION: This macro appends extra statements after a call, // thus it must never be used where only a single statement // is correct (e.g. an if statement branch w/o braces)! #define CHECK_OK ok); \ if (!*ok) return NULL; \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY #define CHECK_FAILED /**/); \ if (failed_) return NULL; \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY // ---------------------------------------------------------------------------- // Implementation of Parser Parser::Parser(Handle<Script> script, int parser_flags, v8::Extension* extension, ScriptDataImpl* pre_data) : isolate_(script->GetIsolate()), symbol_cache_(pre_data ? pre_data->symbol_count() : 0), script_(script), scanner_(isolate_->unicode_cache()), reusable_preparser_(NULL), top_scope_(NULL), current_function_state_(NULL), target_stack_(NULL), extension_(extension), pre_data_(pre_data), fni_(NULL), allow_natives_syntax_((parser_flags & kAllowNativesSyntax) != 0), allow_lazy_((parser_flags & kAllowLazy) != 0), allow_modules_((parser_flags & kAllowModules) != 0), stack_overflow_(false), parenthesized_function_(false) { isolate_->set_ast_node_id(0); if ((parser_flags & kLanguageModeMask) == EXTENDED_MODE) { scanner().SetHarmonyScoping(true); } if ((parser_flags & kAllowModules) != 0) { scanner().SetHarmonyModules(true); } } FunctionLiteral* Parser::ParseProgram(CompilationInfo* info) { ZoneScope zone_scope(isolate(), DONT_DELETE_ON_EXIT); HistogramTimerScope timer(isolate()->counters()->parse()); Handle<String> source(String::cast(script_->source())); isolate()->counters()->total_parse_size()->Increment(source->length()); fni_ = new(zone()) FuncNameInferrer(isolate()); // Initialize parser state. source->TryFlatten(); if (source->IsExternalTwoByteString()) { // Notice that the stream is destroyed at the end of the branch block. // The last line of the blocks can't be moved outside, even though they're // identical calls. ExternalTwoByteStringUtf16CharacterStream stream( Handle<ExternalTwoByteString>::cast(source), 0, source->length()); scanner_.Initialize(&stream); return DoParseProgram(info, source, &zone_scope); } else { GenericStringUtf16CharacterStream stream(source, 0, source->length()); scanner_.Initialize(&stream); return DoParseProgram(info, source, &zone_scope); } } FunctionLiteral* Parser::DoParseProgram(CompilationInfo* info, Handle<String> source, ZoneScope* zone_scope) { ASSERT(top_scope_ == NULL); ASSERT(target_stack_ == NULL); if (pre_data_ != NULL) pre_data_->Initialize(); // Compute the parsing mode. mode_ = (FLAG_lazy && allow_lazy_) ? PARSE_LAZILY : PARSE_EAGERLY; if (allow_natives_syntax_ || extension_ != NULL) mode_ = PARSE_EAGERLY; Handle<String> no_name = isolate()->factory()->empty_symbol(); FunctionLiteral* result = NULL; { Scope* scope = NewScope(top_scope_, GLOBAL_SCOPE); info->SetGlobalScope(scope); if (info->is_eval()) { Handle<SharedFunctionInfo> shared = info->shared_info(); if (!info->is_global() && (shared.is_null() || shared->is_function())) { scope = Scope::DeserializeScopeChain(*info->calling_context(), scope); } if (!scope->is_global_scope() || info->language_mode() != CLASSIC_MODE) { scope = NewScope(scope, EVAL_SCOPE); } } scope->set_start_position(0); scope->set_end_position(source->length()); FunctionState function_state(this, scope, isolate()); top_scope_->SetLanguageMode(info->language_mode()); ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16); bool ok = true; int beg_loc = scanner().location().beg_pos; ParseSourceElements(body, Token::EOS, info->is_eval(), &ok); if (ok && !top_scope_->is_classic_mode()) { CheckOctalLiteral(beg_loc, scanner().location().end_pos, &ok); } if (ok && is_extended_mode()) { CheckConflictingVarDeclarations(top_scope_, &ok); } if (ok) { result = factory()->NewFunctionLiteral( no_name, top_scope_, body, function_state.materialized_literal_count(), function_state.expected_property_count(), function_state.handler_count(), function_state.only_simple_this_property_assignments(), function_state.this_property_assignments(), 0, FunctionLiteral::kNoDuplicateParameters, FunctionLiteral::ANONYMOUS_EXPRESSION, FunctionLiteral::kGlobalOrEval); result->set_ast_properties(factory()->visitor()->ast_properties()); } else if (stack_overflow_) { isolate()->StackOverflow(); } } // Make sure the target stack is empty. ASSERT(target_stack_ == NULL); // If there was a syntax error we have to get rid of the AST // and it is not safe to do so before the scope has been deleted. if (result == NULL) zone_scope->DeleteOnExit(); return result; } FunctionLiteral* Parser::ParseLazy(CompilationInfo* info) { ZoneScope zone_scope(isolate(), DONT_DELETE_ON_EXIT); HistogramTimerScope timer(isolate()->counters()->parse_lazy()); Handle<String> source(String::cast(script_->source())); isolate()->counters()->total_parse_size()->Increment(source->length()); Handle<SharedFunctionInfo> shared_info = info->shared_info(); // Initialize parser state. source->TryFlatten(); if (source->IsExternalTwoByteString()) { ExternalTwoByteStringUtf16CharacterStream stream( Handle<ExternalTwoByteString>::cast(source), shared_info->start_position(), shared_info->end_position()); FunctionLiteral* result = ParseLazy(info, &stream, &zone_scope); return result; } else { GenericStringUtf16CharacterStream stream(source, shared_info->start_position(), shared_info->end_position()); FunctionLiteral* result = ParseLazy(info, &stream, &zone_scope); return result; } } FunctionLiteral* Parser::ParseLazy(CompilationInfo* info, Utf16CharacterStream* source, ZoneScope* zone_scope) { Handle<SharedFunctionInfo> shared_info = info->shared_info(); scanner_.Initialize(source); ASSERT(top_scope_ == NULL); ASSERT(target_stack_ == NULL); Handle<String> name(String::cast(shared_info->name())); fni_ = new(zone()) FuncNameInferrer(isolate()); fni_->PushEnclosingName(name); mode_ = PARSE_EAGERLY; // Place holder for the result. FunctionLiteral* result = NULL; { // Parse the function literal. Scope* scope = NewScope(top_scope_, GLOBAL_SCOPE); info->SetGlobalScope(scope); if (!info->closure().is_null()) { scope = Scope::DeserializeScopeChain(info->closure()->context(), scope); } FunctionState function_state(this, scope, isolate()); ASSERT(scope->language_mode() != STRICT_MODE || !info->is_classic_mode()); ASSERT(scope->language_mode() != EXTENDED_MODE || info->is_extended_mode()); ASSERT(info->language_mode() == shared_info->language_mode()); scope->SetLanguageMode(shared_info->language_mode()); FunctionLiteral::Type type = shared_info->is_expression() ? (shared_info->is_anonymous() ? FunctionLiteral::ANONYMOUS_EXPRESSION : FunctionLiteral::NAMED_EXPRESSION) : FunctionLiteral::DECLARATION; bool ok = true; result = ParseFunctionLiteral(name, false, // Strict mode name already checked. RelocInfo::kNoPosition, type, &ok); // Make sure the results agree. ASSERT(ok == (result != NULL)); } // Make sure the target stack is empty. ASSERT(target_stack_ == NULL); // If there was a stack overflow we have to get rid of AST and it is // not safe to do before scope has been deleted. if (result == NULL) { zone_scope->DeleteOnExit(); if (stack_overflow_) isolate()->StackOverflow(); } else { Handle<String> inferred_name(shared_info->inferred_name()); result->set_inferred_name(inferred_name); } return result; } Handle<String> Parser::GetSymbol(bool* ok) { int symbol_id = -1; if (pre_data() != NULL) { symbol_id = pre_data()->GetSymbolIdentifier(); } return LookupSymbol(symbol_id); } void Parser::ReportMessage(const char* type, Vector<const char*> args) { Scanner::Location source_location = scanner().location(); ReportMessageAt(source_location, type, args); } void Parser::ReportMessage(const char* type, Vector<Handle<String> > args) { Scanner::Location source_location = scanner().location(); ReportMessageAt(source_location, type, args); } void Parser::ReportMessageAt(Scanner::Location source_location, const char* type, Vector<const char*> args) { MessageLocation location(script_, source_location.beg_pos, source_location.end_pos); Factory* factory = isolate()->factory(); Handle<FixedArray> elements = factory->NewFixedArray(args.length()); for (int i = 0; i < args.length(); i++) { Handle<String> arg_string = factory->NewStringFromUtf8(CStrVector(args[i])); elements->set(i, *arg_string); } Handle<JSArray> array = factory->NewJSArrayWithElements(elements); Handle<Object> result = factory->NewSyntaxError(type, array); isolate()->Throw(*result, &location); } void Parser::ReportMessageAt(Scanner::Location source_location, const char* type, Vector<Handle<String> > args) { MessageLocation location(script_, source_location.beg_pos, source_location.end_pos); Factory* factory = isolate()->factory(); Handle<FixedArray> elements = factory->NewFixedArray(args.length()); for (int i = 0; i < args.length(); i++) { elements->set(i, *args[i]); } Handle<JSArray> array = factory->NewJSArrayWithElements(elements); Handle<Object> result = factory->NewSyntaxError(type, array); isolate()->Throw(*result, &location); } // Base class containing common code for the different finder classes used by // the parser. class ParserFinder { protected: ParserFinder() {} static Assignment* AsAssignment(Statement* stat) { if (stat == NULL) return NULL; ExpressionStatement* exp_stat = stat->AsExpressionStatement(); if (exp_stat == NULL) return NULL; return exp_stat->expression()->AsAssignment(); } }; // An InitializationBlockFinder finds and marks sequences of statements of the // form expr.a = ...; expr.b = ...; etc. class InitializationBlockFinder : public ParserFinder { public: // We find and mark the initialization blocks in top level // non-looping code only. This is because the optimization prevents // reuse of the map transitions, so it should be used only for code // that will only be run once. InitializationBlockFinder(Scope* top_scope, Target* target) : enabled_(top_scope->DeclarationScope()->is_global_scope() && !IsLoopTarget(target)), first_in_block_(NULL), last_in_block_(NULL), block_size_(0) {} ~InitializationBlockFinder() { if (!enabled_) return; if (InBlock()) EndBlock(); } void Update(Statement* stat) { if (!enabled_) return; Assignment* assignment = AsAssignment(stat); if (InBlock()) { if (BlockContinues(assignment)) { UpdateBlock(assignment); } else { EndBlock(); } } if (!InBlock() && (assignment != NULL) && (assignment->op() == Token::ASSIGN)) { StartBlock(assignment); } } private: // The minimum number of contiguous assignment that will // be treated as an initialization block. Benchmarks show that // the overhead exceeds the savings below this limit. static const int kMinInitializationBlock = 3; static bool IsLoopTarget(Target* target) { while (target != NULL) { if (target->node()->AsIterationStatement() != NULL) return true; target = target->previous(); } return false; } // Returns true if the expressions appear to denote the same object. // In the context of initialization blocks, we only consider expressions // of the form 'expr.x' or expr["x"]. static bool SameObject(Expression* e1, Expression* e2) { VariableProxy* v1 = e1->AsVariableProxy(); VariableProxy* v2 = e2->AsVariableProxy(); if (v1 != NULL && v2 != NULL) { return v1->name()->Equals(*v2->name()); } Property* p1 = e1->AsProperty(); Property* p2 = e2->AsProperty(); if ((p1 == NULL) || (p2 == NULL)) return false; Literal* key1 = p1->key()->AsLiteral(); Literal* key2 = p2->key()->AsLiteral(); if ((key1 == NULL) || (key2 == NULL)) return false; if (!key1->handle()->IsString() || !key2->handle()->IsString()) { return false; } String* name1 = String::cast(*key1->handle()); String* name2 = String::cast(*key2->handle()); if (!name1->Equals(name2)) return false; return SameObject(p1->obj(), p2->obj()); } // Returns true if the expressions appear to denote different properties // of the same object. static bool PropertyOfSameObject(Expression* e1, Expression* e2) { Property* p1 = e1->AsProperty(); Property* p2 = e2->AsProperty(); if ((p1 == NULL) || (p2 == NULL)) return false; return SameObject(p1->obj(), p2->obj()); } bool BlockContinues(Assignment* assignment) { if ((assignment == NULL) || (first_in_block_ == NULL)) return false; if (assignment->op() != Token::ASSIGN) return false; return PropertyOfSameObject(first_in_block_->target(), assignment->target()); } void StartBlock(Assignment* assignment) { first_in_block_ = assignment; last_in_block_ = assignment; block_size_ = 1; } void UpdateBlock(Assignment* assignment) { last_in_block_ = assignment; ++block_size_; } void EndBlock() { if (block_size_ >= kMinInitializationBlock) { first_in_block_->mark_block_start(); last_in_block_->mark_block_end(); } last_in_block_ = first_in_block_ = NULL; block_size_ = 0; } bool InBlock() { return first_in_block_ != NULL; } const bool enabled_; Assignment* first_in_block_; Assignment* last_in_block_; int block_size_; DISALLOW_COPY_AND_ASSIGN(InitializationBlockFinder); }; // A ThisNamedPropertyAssignmentFinder finds and marks statements of the form // this.x = ...;, where x is a named property. It also determines whether a // function contains only assignments of this type. class ThisNamedPropertyAssignmentFinder : public ParserFinder { public: explicit ThisNamedPropertyAssignmentFinder(Isolate* isolate) : isolate_(isolate), only_simple_this_property_assignments_(true), names_(0), assigned_arguments_(0), assigned_constants_(0) { } void Update(Scope* scope, Statement* stat) { // Bail out if function already has property assignment that are // not simple this property assignments. if (!only_simple_this_property_assignments_) { return; } // Check whether this statement is of the form this.x = ...; Assignment* assignment = AsAssignment(stat); if (IsThisPropertyAssignment(assignment)) { HandleThisPropertyAssignment(scope, assignment); } else { only_simple_this_property_assignments_ = false; } } // Returns whether only statements of the form this.x = y; where y is either a // constant or a function argument was encountered. bool only_simple_this_property_assignments() { return only_simple_this_property_assignments_; } // Returns a fixed array containing three elements for each assignment of the // form this.x = y; Handle<FixedArray> GetThisPropertyAssignments() { if (names_.is_empty()) { return isolate_->factory()->empty_fixed_array(); } ASSERT_EQ(names_.length(), assigned_arguments_.length()); ASSERT_EQ(names_.length(), assigned_constants_.length()); Handle<FixedArray> assignments = isolate_->factory()->NewFixedArray(names_.length() * 3); for (int i = 0; i < names_.length(); ++i) { assignments->set(i * 3, *names_[i]); assignments->set(i * 3 + 1, Smi::FromInt(assigned_arguments_[i])); assignments->set(i * 3 + 2, *assigned_constants_[i]); } return assignments; } private: bool IsThisPropertyAssignment(Assignment* assignment) { if (assignment != NULL) { Property* property = assignment->target()->AsProperty(); return assignment->op() == Token::ASSIGN && property != NULL && property->obj()->AsVariableProxy() != NULL && property->obj()->AsVariableProxy()->is_this(); } return false; } void HandleThisPropertyAssignment(Scope* scope, Assignment* assignment) { // Check that the property assigned to is a named property, which is not // __proto__. Property* property = assignment->target()->AsProperty(); ASSERT(property != NULL); Literal* literal = property->key()->AsLiteral(); uint32_t dummy; if (literal != NULL && literal->handle()->IsString() && !String::cast(*(literal->handle()))->Equals( isolate_->heap()->Proto_symbol()) && !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) { Handle<String> key = Handle<String>::cast(literal->handle()); // Check whether the value assigned is either a constant or matches the // name of one of the arguments to the function. if (assignment->value()->AsLiteral() != NULL) { // Constant assigned. Literal* literal = assignment->value()->AsLiteral(); AssignmentFromConstant(key, literal->handle()); return; } else if (assignment->value()->AsVariableProxy() != NULL) { // Variable assigned. Handle<String> name = assignment->value()->AsVariableProxy()->name(); // Check whether the variable assigned matches an argument name. for (int i = 0; i < scope->num_parameters(); i++) { if (*scope->parameter(i)->name() == *name) { // Assigned from function argument. AssignmentFromParameter(key, i); return; } } } } // It is not a simple "this.x = value;" assignment with a constant // or parameter value. AssignmentFromSomethingElse(); } // We will potentially reorder the property assignments, so they must be // simple enough that the ordering does not matter. void AssignmentFromParameter(Handle<String> name, int index) { EnsureInitialized(); for (int i = 0; i < names_.length(); ++i) { if (name->Equals(*names_[i])) { assigned_arguments_[i] = index; assigned_constants_[i] = isolate_->factory()->undefined_value(); return; } } names_.Add(name); assigned_arguments_.Add(index); assigned_constants_.Add(isolate_->factory()->undefined_value()); } void AssignmentFromConstant(Handle<String> name, Handle<Object> value) { EnsureInitialized(); for (int i = 0; i < names_.length(); ++i) { if (name->Equals(*names_[i])) { assigned_arguments_[i] = -1; assigned_constants_[i] = value; return; } } names_.Add(name); assigned_arguments_.Add(-1); assigned_constants_.Add(value); } void AssignmentFromSomethingElse() { // The this assignment is not a simple one. only_simple_this_property_assignments_ = false; } void EnsureInitialized() { if (names_.capacity() == 0) { ASSERT(assigned_arguments_.capacity() == 0); ASSERT(assigned_constants_.capacity() == 0); names_.Initialize(4); assigned_arguments_.Initialize(4); assigned_constants_.Initialize(4); } } Isolate* isolate_; bool only_simple_this_property_assignments_; ZoneStringList names_; ZoneList<int> assigned_arguments_; ZoneObjectList assigned_constants_; }; void* Parser::ParseSourceElements(ZoneList<Statement*>* processor, int end_token, bool is_eval, bool* ok) { // SourceElements :: // (ModuleElement)* <end_token> // Allocate a target stack to use for this set of source // elements. This way, all scripts and functions get their own // target stack thus avoiding illegal breaks and continues across // functions. TargetScope scope(&this->target_stack_); ASSERT(processor != NULL); InitializationBlockFinder block_finder(top_scope_, target_stack_); ThisNamedPropertyAssignmentFinder this_property_assignment_finder(isolate()); bool directive_prologue = true; // Parsing directive prologue. while (peek() != end_token) { if (directive_prologue && peek() != Token::STRING) { directive_prologue = false; } Scanner::Location token_loc = scanner().peek_location(); Statement* stat = ParseModuleElement(NULL, CHECK_OK); if (stat == NULL || stat->IsEmpty()) { directive_prologue = false; // End of directive prologue. continue; } if (directive_prologue) { // A shot at a directive. ExpressionStatement* e_stat; Literal* literal; // Still processing directive prologue? if ((e_stat = stat->AsExpressionStatement()) != NULL && (literal = e_stat->expression()->AsLiteral()) != NULL && literal->handle()->IsString()) { Handle<String> directive = Handle<String>::cast(literal->handle()); // Check "use strict" directive (ES5 14.1). if (top_scope_->is_classic_mode() && directive->Equals(isolate()->heap()->use_strict()) && token_loc.end_pos - token_loc.beg_pos == isolate()->heap()->use_strict()->length() + 2) { // TODO(mstarzinger): Global strict eval calls, need their own scope // as specified in ES5 10.4.2(3). The correct fix would be to always // add this scope in DoParseProgram(), but that requires adaptations // all over the code base, so we go with a quick-fix for now. if (is_eval && !top_scope_->is_eval_scope()) { ASSERT(top_scope_->is_global_scope()); Scope* scope = NewScope(top_scope_, EVAL_SCOPE); scope->set_start_position(top_scope_->start_position()); scope->set_end_position(top_scope_->end_position()); top_scope_ = scope; } // TODO(ES6): Fix entering extended mode, once it is specified. top_scope_->SetLanguageMode(FLAG_harmony_scoping ? EXTENDED_MODE : STRICT_MODE); // "use strict" is the only directive for now. directive_prologue = false; } } else { // End of the directive prologue. directive_prologue = false; } } block_finder.Update(stat); // Find and mark all assignments to named properties in this (this.x =) if (top_scope_->is_function_scope()) { this_property_assignment_finder.Update(top_scope_, stat); } processor->Add(stat); } // Propagate the collected information on this property assignments. if (top_scope_->is_function_scope()) { bool only_simple_this_property_assignments = this_property_assignment_finder.only_simple_this_property_assignments() && top_scope_->declarations()->length() == 0; if (only_simple_this_property_assignments) { current_function_state_->SetThisPropertyAssignmentInfo( only_simple_this_property_assignments, this_property_assignment_finder.GetThisPropertyAssignments()); } } return 0; } Statement* Parser::ParseModuleElement(ZoneStringList* labels, bool* ok) { // (Ecma 262 5th Edition, clause 14): // SourceElement: // Statement // FunctionDeclaration // // In harmony mode we allow additionally the following productions // ModuleElement: // LetDeclaration // ConstDeclaration // ModuleDeclaration // ImportDeclaration // ExportDeclaration switch (peek()) { case Token::FUNCTION: return ParseFunctionDeclaration(NULL, ok); case Token::LET: case Token::CONST: return ParseVariableStatement(kModuleElement, NULL, ok); case Token::IMPORT: return ParseImportDeclaration(ok); case Token::EXPORT: return ParseExportDeclaration(ok); default: { Statement* stmt = ParseStatement(labels, CHECK_OK); // Handle 'module' as a context-sensitive keyword. if (FLAG_harmony_modules && peek() == Token::IDENTIFIER && !scanner().HasAnyLineTerminatorBeforeNext() && stmt != NULL) { ExpressionStatement* estmt = stmt->AsExpressionStatement(); if (estmt != NULL && estmt->expression()->AsVariableProxy() != NULL && estmt->expression()->AsVariableProxy()->name()->Equals( isolate()->heap()->module_symbol()) && !scanner().literal_contains_escapes()) { return ParseModuleDeclaration(NULL, ok); } } return stmt; } } } Block* Parser::ParseModuleDeclaration(ZoneStringList* names, bool* ok) { // ModuleDeclaration: // 'module' Identifier Module // Create new block with one expected declaration. Block* block = factory()->NewBlock(NULL, 1, true); Handle<String> name = ParseIdentifier(CHECK_OK); #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Module %s...\n", name->ToAsciiArray()); #endif Module* module = ParseModule(CHECK_OK); VariableProxy* proxy = NewUnresolved(name, LET, module->interface()); Declaration* declaration = factory()->NewModuleDeclaration(proxy, module, top_scope_); Declare(declaration, true, CHECK_OK); #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Module %s.\n", name->ToAsciiArray()); if (FLAG_print_interfaces) { PrintF("module %s : ", name->ToAsciiArray()); module->interface()->Print(); } #endif // TODO(rossberg): Add initialization statement to block. if (names) names->Add(name); return block; } Module* Parser::ParseModule(bool* ok) { // Module: // '{' ModuleElement '}' // '=' ModulePath ';' // 'at' String ';' switch (peek()) { case Token::LBRACE: return ParseModuleLiteral(ok); case Token::ASSIGN: { Expect(Token::ASSIGN, CHECK_OK); Module* result = ParseModulePath(CHECK_OK); ExpectSemicolon(CHECK_OK); return result; } default: { ExpectContextualKeyword("at", CHECK_OK); Module* result = ParseModuleUrl(CHECK_OK); ExpectSemicolon(CHECK_OK); return result; } } } Module* Parser::ParseModuleLiteral(bool* ok) { // Module: // '{' ModuleElement '}' // Construct block expecting 16 statements. Block* body = factory()->NewBlock(NULL, 16, false); #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Literal "); #endif Scope* scope = NewScope(top_scope_, MODULE_SCOPE); Expect(Token::LBRACE, CHECK_OK); scope->set_start_position(scanner().location().beg_pos); scope->SetLanguageMode(EXTENDED_MODE); { BlockState block_state(this, scope); TargetCollector collector; Target target(&this->target_stack_, &collector); Target target_body(&this->target_stack_, body); InitializationBlockFinder block_finder(top_scope_, target_stack_); while (peek() != Token::RBRACE) { Statement* stat = ParseModuleElement(NULL, CHECK_OK); if (stat && !stat->IsEmpty()) { body->AddStatement(stat); block_finder.Update(stat); } } } Expect(Token::RBRACE, CHECK_OK); scope->set_end_position(scanner().location().end_pos); body->set_block_scope(scope); scope->interface()->Freeze(ok); ASSERT(ok); return factory()->NewModuleLiteral(body, scope->interface()); } Module* Parser::ParseModulePath(bool* ok) { // ModulePath: // Identifier // ModulePath '.' Identifier Module* result = ParseModuleVariable(CHECK_OK); while (Check(Token::PERIOD)) { Handle<String> name = ParseIdentifierName(CHECK_OK); #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Path .%s ", name->ToAsciiArray()); #endif Module* member = factory()->NewModulePath(result, name); result->interface()->Add(name, member->interface(), ok); if (!*ok) { #ifdef DEBUG if (FLAG_print_interfaces) { PrintF("PATH TYPE ERROR at '%s'\n", name->ToAsciiArray()); PrintF("result: "); result->interface()->Print(); PrintF("member: "); member->interface()->Print(); } #endif ReportMessage("invalid_module_path", Vector<Handle<String> >(&name, 1)); return NULL; } result = member; } return result; } Module* Parser::ParseModuleVariable(bool* ok) { // ModulePath: // Identifier Handle<String> name = ParseIdentifier(CHECK_OK); #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Module variable %s ", name->ToAsciiArray()); #endif VariableProxy* proxy = top_scope_->NewUnresolved( factory(), name, scanner().location().beg_pos, Interface::NewModule()); return factory()->NewModuleVariable(proxy); } Module* Parser::ParseModuleUrl(bool* ok) { // Module: // String Expect(Token::STRING, CHECK_OK); Handle<String> symbol = GetSymbol(CHECK_OK); // TODO(ES6): Request JS resource from environment... #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Url "); #endif return factory()->NewModuleUrl(symbol); } Module* Parser::ParseModuleSpecifier(bool* ok) { // ModuleSpecifier: // String // ModulePath if (peek() == Token::STRING) { return ParseModuleUrl(ok); } else { return ParseModulePath(ok); } } Block* Parser::ParseImportDeclaration(bool* ok) { // ImportDeclaration: // 'import' IdentifierName (',' IdentifierName)* 'from' ModuleSpecifier ';' // // TODO(ES6): implement destructuring ImportSpecifiers Expect(Token::IMPORT, CHECK_OK); ZoneStringList names(1); Handle<String> name = ParseIdentifierName(CHECK_OK); names.Add(name); while (peek() == Token::COMMA) { Consume(Token::COMMA); name = ParseIdentifierName(CHECK_OK); names.Add(name); } ExpectContextualKeyword("from", CHECK_OK); Module* module = ParseModuleSpecifier(CHECK_OK); ExpectSemicolon(CHECK_OK); // Generate a separate declaration for each identifier. // TODO(ES6): once we implement destructuring, make that one declaration. Block* block = factory()->NewBlock(NULL, 1, true); for (int i = 0; i < names.length(); ++i) { #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Import %s ", names[i]->ToAsciiArray()); #endif Interface* interface = Interface::NewUnknown(); module->interface()->Add(names[i], interface, ok); if (!*ok) { #ifdef DEBUG if (FLAG_print_interfaces) { PrintF("IMPORT TYPE ERROR at '%s'\n", names[i]->ToAsciiArray()); PrintF("module: "); module->interface()->Print(); } #endif ReportMessage("invalid_module_path", Vector<Handle<String> >(&name, 1)); return NULL; } VariableProxy* proxy = NewUnresolved(names[i], LET, interface); Declaration* declaration = factory()->NewImportDeclaration(proxy, module, top_scope_); Declare(declaration, true, CHECK_OK); // TODO(rossberg): Add initialization statement to block. } return block; } Statement* Parser::ParseExportDeclaration(bool* ok) { // ExportDeclaration: // 'export' Identifier (',' Identifier)* ';' // 'export' VariableDeclaration // 'export' FunctionDeclaration // 'export' ModuleDeclaration // // TODO(ES6): implement structuring ExportSpecifiers Expect(Token::EXPORT, CHECK_OK); Statement* result = NULL; ZoneStringList names(1); switch (peek()) { case Token::IDENTIFIER: { Handle<String> name = ParseIdentifier(CHECK_OK); // Handle 'module' as a context-sensitive keyword. if (!name->IsEqualTo(CStrVector("module"))) { names.Add(name); while (peek() == Token::COMMA) { Consume(Token::COMMA); name = ParseIdentifier(CHECK_OK); names.Add(name); } ExpectSemicolon(CHECK_OK); result = factory()->NewEmptyStatement(); } else { result = ParseModuleDeclaration(&names, CHECK_OK); } break; } case Token::FUNCTION: result = ParseFunctionDeclaration(&names, CHECK_OK); break; case Token::VAR: case Token::LET: case Token::CONST: result = ParseVariableStatement(kModuleElement, &names, CHECK_OK); break; default: *ok = false; ReportUnexpectedToken(scanner().current_token()); return NULL; } // Extract declared names into export declarations and interface. Interface* interface = top_scope_->interface(); for (int i = 0; i < names.length(); ++i) { #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Export %s ", names[i]->ToAsciiArray()); #endif Interface* inner = Interface::NewUnknown(); interface->Add(names[i], inner, CHECK_OK); VariableProxy* proxy = NewUnresolved(names[i], LET, inner); USE(proxy); // TODO(rossberg): Rethink whether we actually need to store export // declarations (for compilation?). // ExportDeclaration* declaration = // factory()->NewExportDeclaration(proxy, top_scope_); // top_scope_->AddDeclaration(declaration); } ASSERT(result != NULL); return result; } Statement* Parser::ParseBlockElement(ZoneStringList* labels, bool* ok) { // (Ecma 262 5th Edition, clause 14): // SourceElement: // Statement // FunctionDeclaration // // In harmony mode we allow additionally the following productions // BlockElement (aka SourceElement): // LetDeclaration // ConstDeclaration switch (peek()) { case Token::FUNCTION: return ParseFunctionDeclaration(NULL, ok); case Token::LET: case Token::CONST: return ParseVariableStatement(kModuleElement, NULL, ok); default: return ParseStatement(labels, ok); } } Statement* Parser::ParseStatement(ZoneStringList* labels, bool* ok) { // Statement :: // Block // VariableStatement // EmptyStatement // ExpressionStatement // IfStatement // IterationStatement // ContinueStatement // BreakStatement // ReturnStatement // WithStatement // LabelledStatement // SwitchStatement // ThrowStatement // TryStatement // DebuggerStatement // Note: Since labels can only be used by 'break' and 'continue' // statements, which themselves are only valid within blocks, // iterations or 'switch' statements (i.e., BreakableStatements), // labels can be simply ignored in all other cases; except for // trivial labeled break statements 'label: break label' which is // parsed into an empty statement. // Keep the source position of the statement int statement_pos = scanner().peek_location().beg_pos; Statement* stmt = NULL; switch (peek()) { case Token::LBRACE: return ParseBlock(labels, ok); case Token::CONST: // fall through case Token::LET: case Token::VAR: stmt = ParseVariableStatement(kStatement, NULL, ok); break; case Token::SEMICOLON: Next(); return factory()->NewEmptyStatement(); case Token::IF: stmt = ParseIfStatement(labels, ok); break; case Token::DO: stmt = ParseDoWhileStatement(labels, ok); break; case Token::WHILE: stmt = ParseWhileStatement(labels, ok); break; case Token::FOR: stmt = ParseForStatement(labels, ok); break; case Token::CONTINUE: stmt = ParseContinueStatement(ok); break; case Token::BREAK: stmt = ParseBreakStatement(labels, ok); break; case Token::RETURN: stmt = ParseReturnStatement(ok); break; case Token::WITH: stmt = ParseWithStatement(labels, ok); break; case Token::SWITCH: stmt = ParseSwitchStatement(labels, ok); break; case Token::THROW: stmt = ParseThrowStatement(ok); break; case Token::TRY: { // NOTE: It is somewhat complicated to have labels on // try-statements. When breaking out of a try-finally statement, // one must take great care not to treat it as a // fall-through. It is much easier just to wrap the entire // try-statement in a statement block and put the labels there Block* result = factory()->NewBlock(labels, 1, false); Target target(&this->target_stack_, result); TryStatement* statement = ParseTryStatement(CHECK_OK); if (statement) { statement->set_statement_pos(statement_pos); } if (result) result->AddStatement(statement); return result; } case Token::FUNCTION: { // FunctionDeclaration is only allowed in the context of SourceElements // (Ecma 262 5th Edition, clause 14): // SourceElement: // Statement // FunctionDeclaration // Common language extension is to allow function declaration in place // of any statement. This language extension is disabled in strict mode. if (!top_scope_->is_classic_mode()) { ReportMessageAt(scanner().peek_location(), "strict_function", Vector<const char*>::empty()); *ok = false; return NULL; } return ParseFunctionDeclaration(NULL, ok); } case Token::DEBUGGER: stmt = ParseDebuggerStatement(ok); break; default: stmt = ParseExpressionOrLabelledStatement(labels, ok); } // Store the source position of the statement if (stmt != NULL) stmt->set_statement_pos(statement_pos); return stmt; } VariableProxy* Parser::NewUnresolved( Handle<String> name, VariableMode mode, Interface* interface) { // If we are inside a function, a declaration of a var/const variable is a // truly local variable, and the scope of the variable is always the function // scope. // Let/const variables in harmony mode are always added to the immediately // enclosing scope. return DeclarationScope(mode)->NewUnresolved( factory(), name, scanner().location().beg_pos, interface); } void Parser::Declare(Declaration* declaration, bool resolve, bool* ok) { VariableProxy* proxy = declaration->proxy(); Handle<String> name = proxy->name(); VariableMode mode = declaration->mode(); Scope* declaration_scope = DeclarationScope(mode); Variable* var = NULL; // If a function scope exists, then we can statically declare this // variable and also set its mode. In any case, a Declaration node // will be added to the scope so that the declaration can be added // to the corresponding activation frame at runtime if necessary. // For instance declarations inside an eval scope need to be added // to the calling function context. // Similarly, strict mode eval scope does not leak variable declarations to // the caller's scope so we declare all locals, too. // Also for block scoped let/const bindings the variable can be // statically declared. if (declaration_scope->is_function_scope() || declaration_scope->is_strict_or_extended_eval_scope() || declaration_scope->is_block_scope() || declaration_scope->is_module_scope() || declaration->AsModuleDeclaration() != NULL) { // Declare the variable in the function scope. var = declaration_scope->LocalLookup(name); if (var == NULL) { // Declare the name. var = declaration_scope->DeclareLocal( name, mode, declaration->initialization(), proxy->interface()); } else { // The name was declared in this scope before; check for conflicting // re-declarations. We have a conflict if either of the declarations is // not a var. There is similar code in runtime.cc in the Declare // functions. The function CheckNonConflictingScope checks for conflicting // var and let bindings from different scopes whereas this is a check for // conflicting declarations within the same scope. This check also covers // // function () { let x; { var x; } } // // because the var declaration is hoisted to the function scope where 'x' // is already bound. if ((mode != VAR) || (var->mode() != VAR)) { // We only have vars, consts and lets in declarations. ASSERT(var->mode() == VAR || var->mode() == CONST || var->mode() == CONST_HARMONY || var->mode() == LET); if (is_extended_mode()) { // In harmony mode we treat re-declarations as early errors. See // ES5 16 for a definition of early errors. SmartArrayPointer<char> c_string = name->ToCString(DISALLOW_NULLS); const char* elms[2] = { "Variable", *c_string }; Vector<const char*> args(elms, 2); ReportMessage("redeclaration", args); *ok = false; return; } const char* type = (var->mode() == VAR) ? "var" : var->is_const_mode() ? "const" : "let"; Handle<String> type_string = isolate()->factory()->NewStringFromUtf8(CStrVector(type), TENURED); Expression* expression = NewThrowTypeError(isolate()->factory()->redeclaration_symbol(), type_string, name); declaration_scope->SetIllegalRedeclaration(expression); } } } // We add a declaration node for every declaration. The compiler // will only generate code if necessary. In particular, declarations // for inner local variables that do not represent functions won't // result in any generated code. // // Note that we always add an unresolved proxy even if it's not // used, simply because we don't know in this method (w/o extra // parameters) if the proxy is needed or not. The proxy will be // bound during variable resolution time unless it was pre-bound // below. // // WARNING: This will lead to multiple declaration nodes for the // same variable if it is declared several times. This is not a // semantic issue as long as we keep the source order, but it may be // a performance issue since it may lead to repeated // Runtime::DeclareContextSlot() calls. declaration_scope->AddDeclaration(declaration); if ((mode == CONST || mode == CONST_HARMONY) && declaration_scope->is_global_scope()) { // For global const variables we bind the proxy to a variable. ASSERT(resolve); // should be set by all callers Variable::Kind kind = Variable::NORMAL; var = new(zone()) Variable(declaration_scope, name, mode, true, kind, kNeedsInitialization); } else if (declaration_scope->is_eval_scope() && declaration_scope->is_classic_mode()) { // For variable declarations in a non-strict eval scope the proxy is bound // to a lookup variable to force a dynamic declaration using the // DeclareContextSlot runtime function. Variable::Kind kind = Variable::NORMAL; var = new(zone()) Variable(declaration_scope, name, mode, true, kind, declaration->initialization()); var->AllocateTo(Variable::LOOKUP, -1); resolve = true; } // If requested and we have a local variable, bind the proxy to the variable // at parse-time. This is used for functions (and consts) declared inside // statements: the corresponding function (or const) variable must be in the // function scope and not a statement-local scope, e.g. as provided with a // 'with' statement: // // with (obj) { // function f() {} // } // // which is translated into: // // with (obj) { // // in this case this is not: 'var f; f = function () {};' // var f = function () {}; // } // // Note that if 'f' is accessed from inside the 'with' statement, it // will be allocated in the context (because we must be able to look // it up dynamically) but it will also be accessed statically, i.e., // with a context slot index and a context chain length for this // initialization code. Thus, inside the 'with' statement, we need // both access to the static and the dynamic context chain; the // runtime needs to provide both. if (resolve && var != NULL) { proxy->BindTo(var); if (FLAG_harmony_modules) { bool ok; #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Declare %s\n", var->name()->ToAsciiArray()); #endif proxy->interface()->Unify(var->interface(), &ok); if (!ok) { #ifdef DEBUG if (FLAG_print_interfaces) { PrintF("DECLARE TYPE ERROR\n"); PrintF("proxy: "); proxy->interface()->Print(); PrintF("var: "); var->interface()->Print(); } #endif ReportMessage("module_type_error", Vector<Handle<String> >(&name, 1)); } } } } // Language extension which is only enabled for source files loaded // through the API's extension mechanism. A native function // declaration is resolved by looking up the function through a // callback provided by the extension. Statement* Parser::ParseNativeDeclaration(bool* ok) { Expect(Token::FUNCTION, CHECK_OK); Handle<String> name = ParseIdentifier(CHECK_OK); Expect(Token::LPAREN, CHECK_OK); bool done = (peek() == Token::RPAREN); while (!done) { ParseIdentifier(CHECK_OK); done = (peek() == Token::RPAREN); if (!done) { Expect(Token::COMMA, CHECK_OK); } } Expect(Token::RPAREN, CHECK_OK); Expect(Token::SEMICOLON, CHECK_OK); // Make sure that the function containing the native declaration // isn't lazily compiled. The extension structures are only // accessible while parsing the first time not when reparsing // because of lazy compilation. DeclarationScope(VAR)->ForceEagerCompilation(); // Compute the function template for the native function. v8::Handle<v8::FunctionTemplate> fun_template = extension_->GetNativeFunction(v8::Utils::ToLocal(name)); ASSERT(!fun_template.IsEmpty()); // Instantiate the function and create a shared function info from it. Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction()); const int literals = fun->NumberOfLiterals(); Handle<Code> code = Handle<Code>(fun->shared()->code()); Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub()); Handle<SharedFunctionInfo> shared = isolate()->factory()->NewSharedFunctionInfo(name, literals, code, Handle<ScopeInfo>(fun->shared()->scope_info())); shared->set_construct_stub(*construct_stub); // Copy the function data to the shared function info. shared->set_function_data(fun->shared()->function_data()); int parameters = fun->shared()->formal_parameter_count(); shared->set_formal_parameter_count(parameters); // TODO(1240846): It's weird that native function declarations are // introduced dynamically when we meet their declarations, whereas // other functions are set up when entering the surrounding scope. VariableProxy* proxy = NewUnresolved(name, VAR); Declaration* declaration = factory()->NewVariableDeclaration(proxy, VAR, top_scope_); Declare(declaration, true, CHECK_OK); SharedFunctionInfoLiteral* lit = factory()->NewSharedFunctionInfoLiteral(shared); return factory()->NewExpressionStatement( factory()->NewAssignment( Token::INIT_VAR, proxy, lit, RelocInfo::kNoPosition)); } Statement* Parser::ParseFunctionDeclaration(ZoneStringList* names, bool* ok) { // FunctionDeclaration :: // 'function' Identifier '(' FormalParameterListopt ')' '{' FunctionBody '}' Expect(Token::FUNCTION, CHECK_OK); int function_token_position = scanner().location().beg_pos; bool is_strict_reserved = false; Handle<String> name = ParseIdentifierOrStrictReservedWord( &is_strict_reserved, CHECK_OK); FunctionLiteral* fun = ParseFunctionLiteral(name, is_strict_reserved, function_token_position, FunctionLiteral::DECLARATION, CHECK_OK); // Even if we're not at the top-level of the global or a function // scope, we treat is as such and introduce the function with it's // initial value upon entering the corresponding scope. VariableMode mode = is_extended_mode() ? LET : VAR; VariableProxy* proxy = NewUnresolved(name, mode); Declaration* declaration = factory()->NewFunctionDeclaration(proxy, mode, fun, top_scope_); Declare(declaration, true, CHECK_OK); if (names) names->Add(name); return factory()->NewEmptyStatement(); } Block* Parser::ParseBlock(ZoneStringList* labels, bool* ok) { if (top_scope_->is_extended_mode()) return ParseScopedBlock(labels, ok); // Block :: // '{' Statement* '}' // Note that a Block does not introduce a new execution scope! // (ECMA-262, 3rd, 12.2) // // Construct block expecting 16 statements. Block* result = factory()->NewBlock(labels, 16, false); Target target(&this->target_stack_, result); Expect(Token::LBRACE, CHECK_OK); InitializationBlockFinder block_finder(top_scope_, target_stack_); while (peek() != Token::RBRACE) { Statement* stat = ParseStatement(NULL, CHECK_OK); if (stat && !stat->IsEmpty()) { result->AddStatement(stat); block_finder.Update(stat); } } Expect(Token::RBRACE, CHECK_OK); return result; } Block* Parser::ParseScopedBlock(ZoneStringList* labels, bool* ok) { // The harmony mode uses block elements instead of statements. // // Block :: // '{' BlockElement* '}' // Construct block expecting 16 statements. Block* body = factory()->NewBlock(labels, 16, false); Scope* block_scope = NewScope(top_scope_, BLOCK_SCOPE); // Parse the statements and collect escaping labels. Expect(Token::LBRACE, CHECK_OK); block_scope->set_start_position(scanner().location().beg_pos); { BlockState block_state(this, block_scope); TargetCollector collector; Target target(&this->target_stack_, &collector); Target target_body(&this->target_stack_, body); InitializationBlockFinder block_finder(top_scope_, target_stack_); while (peek() != Token::RBRACE) { Statement* stat = ParseBlockElement(NULL, CHECK_OK); if (stat && !stat->IsEmpty()) { body->AddStatement(stat); block_finder.Update(stat); } } } Expect(Token::RBRACE, CHECK_OK); block_scope->set_end_position(scanner().location().end_pos); block_scope = block_scope->FinalizeBlockScope(); body->set_block_scope(block_scope); return body; } Block* Parser::ParseVariableStatement(VariableDeclarationContext var_context, ZoneStringList* names, bool* ok) { // VariableStatement :: // VariableDeclarations ';' Handle<String> ignore; Block* result = ParseVariableDeclarations(var_context, NULL, names, &ignore, CHECK_OK); ExpectSemicolon(CHECK_OK); return result; } bool Parser::IsEvalOrArguments(Handle<String> string) { return string.is_identical_to(isolate()->factory()->eval_symbol()) || string.is_identical_to(isolate()->factory()->arguments_symbol()); } // If the variable declaration declares exactly one non-const // variable, then *out is set to that variable. In all other cases, // *out is untouched; in particular, it is the caller's responsibility // to initialize it properly. This mechanism is used for the parsing // of 'for-in' loops. Block* Parser::ParseVariableDeclarations( VariableDeclarationContext var_context, VariableDeclarationProperties* decl_props, ZoneStringList* names, Handle<String>* out, bool* ok) { // VariableDeclarations :: // ('var' | 'const' | 'let') (Identifier ('=' AssignmentExpression)?)+[','] // // The ES6 Draft Rev3 specifies the following grammar for const declarations // // ConstDeclaration :: // const ConstBinding (',' ConstBinding)* ';' // ConstBinding :: // Identifier '=' AssignmentExpression // // TODO(ES6): // ConstBinding :: // BindingPattern '=' AssignmentExpression VariableMode mode = VAR; // True if the binding needs initialization. 'let' and 'const' declared // bindings are created uninitialized by their declaration nodes and // need initialization. 'var' declared bindings are always initialized // immediately by their declaration nodes. bool needs_init = false; bool is_const = false; Token::Value init_op = Token::INIT_VAR; if (peek() == Token::VAR) { Consume(Token::VAR); } else if (peek() == Token::CONST) { // TODO(ES6): The ES6 Draft Rev4 section 12.2.2 reads: // // ConstDeclaration : const ConstBinding (',' ConstBinding)* ';' // // * It is a Syntax Error if the code that matches this production is not // contained in extended code. // // However disallowing const in classic mode will break compatibility with // existing pages. Therefore we keep allowing const with the old // non-harmony semantics in classic mode. Consume(Token::CONST); switch (top_scope_->language_mode()) { case CLASSIC_MODE: mode = CONST; init_op = Token::INIT_CONST; break; case STRICT_MODE: ReportMessage("strict_const", Vector<const char*>::empty()); *ok = false; return NULL; case EXTENDED_MODE: if (var_context == kStatement) { // In extended mode 'const' declarations are only allowed in source // element positions. ReportMessage("unprotected_const", Vector<const char*>::empty()); *ok = false; return NULL; } mode = CONST_HARMONY; init_op = Token::INIT_CONST_HARMONY; } is_const = true; needs_init = true; } else if (peek() == Token::LET) { // ES6 Draft Rev4 section 12.2.1: // // LetDeclaration : let LetBindingList ; // // * It is a Syntax Error if the code that matches this production is not // contained in extended code. if (!is_extended_mode()) { ReportMessage("illegal_let", Vector<const char*>::empty()); *ok = false; return NULL; } Consume(Token::LET); if (var_context == kStatement) { // Let declarations are only allowed in source element positions. ReportMessage("unprotected_let", Vector<const char*>::empty()); *ok = false; return NULL; } mode = LET; needs_init = true; init_op = Token::INIT_LET; } else { UNREACHABLE(); // by current callers } Scope* declaration_scope = DeclarationScope(mode); // The scope of a var/const declared variable anywhere inside a function // is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). Thus we can // transform a source-level var/const declaration into a (Function) // Scope declaration, and rewrite the source-level initialization into an // assignment statement. We use a block to collect multiple assignments. // // We mark the block as initializer block because we don't want the // rewriter to add a '.result' assignment to such a block (to get compliant // behavior for code such as print(eval('var x = 7')), and for cosmetic // reasons when pretty-printing. Also, unless an assignment (initialization) // is inside an initializer block, it is ignored. // // Create new block with one expected declaration. Block* block = factory()->NewBlock(NULL, 1, true); int nvars = 0; // the number of variables declared Handle<String> name; do { if (fni_ != NULL) fni_->Enter(); // Parse variable name. if (nvars > 0) Consume(Token::COMMA); name = ParseIdentifier(CHECK_OK); if (fni_ != NULL) fni_->PushVariableName(name); // Strict mode variables may not be named eval or arguments if (!declaration_scope->is_classic_mode() && IsEvalOrArguments(name)) { ReportMessage("strict_var_name", Vector<const char*>::empty()); *ok = false; return NULL; } // Declare variable. // Note that we *always* must treat the initial value via a separate init // assignment for variables and constants because the value must be assigned // when the variable is encountered in the source. But the variable/constant // is declared (and set to 'undefined') upon entering the function within // which the variable or constant is declared. Only function variables have // an initial value in the declaration (because they are initialized upon // entering the function). // // If we have a const declaration, in an inner scope, the proxy is always // bound to the declared variable (independent of possibly surrounding with // statements). // For let/const declarations in harmony mode, we can also immediately // pre-resolve the proxy because it resides in the same scope as the // declaration. VariableProxy* proxy = NewUnresolved(name, mode); Declaration* declaration = factory()->NewVariableDeclaration(proxy, mode, top_scope_); Declare(declaration, mode != VAR, CHECK_OK); nvars++; if (declaration_scope->num_var_or_const() > kMaxNumFunctionLocals) { ReportMessageAt(scanner().location(), "too_many_variables", Vector<const char*>::empty()); *ok = false; return NULL; } if (names) names->Add(name); // Parse initialization expression if present and/or needed. A // declaration of the form: // // var v = x; // // is syntactic sugar for: // // var v; v = x; // // In particular, we need to re-lookup 'v' (in top_scope_, not // declaration_scope) as it may be a different 'v' than the 'v' in the // declaration (e.g., if we are inside a 'with' statement or 'catch' // block). // // However, note that const declarations are different! A const // declaration of the form: // // const c = x; // // is *not* syntactic sugar for: // // const c; c = x; // // The "variable" c initialized to x is the same as the declared // one - there is no re-lookup (see the last parameter of the // Declare() call above). Scope* initialization_scope = is_const ? declaration_scope : top_scope_; Expression* value = NULL; int position = -1; // Harmony consts have non-optional initializers. if (peek() == Token::ASSIGN || mode == CONST_HARMONY) { Expect(Token::ASSIGN, CHECK_OK); position = scanner().location().beg_pos; value = ParseAssignmentExpression(var_context != kForStatement, CHECK_OK); // Don't infer if it is "a = function(){...}();"-like expression. if (fni_ != NULL && value->AsCall() == NULL && value->AsCallNew() == NULL) { fni_->Infer(); } else { fni_->RemoveLastFunction(); } if (decl_props != NULL) *decl_props = kHasInitializers; } // Record the end position of the initializer. if (proxy->var() != NULL) { proxy->var()->set_initializer_position(scanner().location().end_pos); } // Make sure that 'const x' and 'let x' initialize 'x' to undefined. if (value == NULL && needs_init) { value = GetLiteralUndefined(); } // Global variable declarations must be compiled in a specific // way. When the script containing the global variable declaration // is entered, the global variable must be declared, so that if it // doesn't exist (not even in a prototype of the global object) it // gets created with an initial undefined value. This is handled // by the declarations part of the function representing the // top-level global code; see Runtime::DeclareGlobalVariable. If // it already exists (in the object or in a prototype), it is // *not* touched until the variable declaration statement is // executed. // // Executing the variable declaration statement will always // guarantee to give the global object a "local" variable; a // variable defined in the global object and not in any // prototype. This way, global variable declarations can shadow // properties in the prototype chain, but only after the variable // declaration statement has been executed. This is important in // browsers where the global object (window) has lots of // properties defined in prototype objects. if (initialization_scope->is_global_scope()) { // Compute the arguments for the runtime call. ZoneList<Expression*>* arguments = new(zone()) ZoneList<Expression*>(3); // We have at least 1 parameter. arguments->Add(factory()->NewLiteral(name)); CallRuntime* initialize; if (is_const) { arguments->Add(value); value = NULL; // zap the value to avoid the unnecessary assignment // Construct the call to Runtime_InitializeConstGlobal // and add it to the initialization statement block. // Note that the function does different things depending on // the number of arguments (1 or 2). initialize = factory()->NewCallRuntime( isolate()->factory()->InitializeConstGlobal_symbol(), Runtime::FunctionForId(Runtime::kInitializeConstGlobal), arguments); } else { // Add strict mode. // We may want to pass singleton to avoid Literal allocations. LanguageMode language_mode = initialization_scope->language_mode(); arguments->Add(factory()->NewNumberLiteral(language_mode)); // Be careful not to assign a value to the global variable if // we're in a with. The initialization value should not // necessarily be stored in the global object in that case, // which is why we need to generate a separate assignment node. if (value != NULL && !inside_with()) { arguments->Add(value); value = NULL; // zap the value to avoid the unnecessary assignment } // Construct the call to Runtime_InitializeVarGlobal // and add it to the initialization statement block. // Note that the function does different things depending on // the number of arguments (2 or 3). initialize = factory()->NewCallRuntime( isolate()->factory()->InitializeVarGlobal_symbol(), Runtime::FunctionForId(Runtime::kInitializeVarGlobal), arguments); } block->AddStatement(factory()->NewExpressionStatement(initialize)); } else if (needs_init) { // Constant initializations always assign to the declared constant which // is always at the function scope level. This is only relevant for // dynamically looked-up variables and constants (the start context for // constant lookups is always the function context, while it is the top // context for var declared variables). Sigh... // For 'let' and 'const' declared variables in harmony mode the // initialization also always assigns to the declared variable. ASSERT(proxy != NULL); ASSERT(proxy->var() != NULL); ASSERT(value != NULL); Assignment* assignment = factory()->NewAssignment(init_op, proxy, value, position); block->AddStatement(factory()->NewExpressionStatement(assignment)); value = NULL; } // Add an assignment node to the initialization statement block if we still // have a pending initialization value. if (value != NULL) { ASSERT(mode == VAR); // 'var' initializations are simply assignments (with all the consequences // if they are inside a 'with' statement - they may change a 'with' object // property). VariableProxy* proxy = initialization_scope->NewUnresolved(factory(), name); Assignment* assignment = factory()->NewAssignment(init_op, proxy, value, position); block->AddStatement(factory()->NewExpressionStatement(assignment)); } if (fni_ != NULL) fni_->Leave(); } while (peek() == Token::COMMA); // If there was a single non-const declaration, return it in the output // parameter for possible use by for/in. if (nvars == 1 && !is_const) { *out = name; } return block; } static bool ContainsLabel(ZoneStringList* labels, Handle<String> label) { ASSERT(!label.is_null()); if (labels != NULL) for (int i = labels->length(); i-- > 0; ) if (labels->at(i).is_identical_to(label)) return true; return false; } Statement* Parser::ParseExpressionOrLabelledStatement(ZoneStringList* labels, bool* ok) { // ExpressionStatement | LabelledStatement :: // Expression ';' // Identifier ':' Statement bool starts_with_idenfifier = peek_any_identifier(); Expression* expr = ParseExpression(true, CHECK_OK); if (peek() == Token::COLON && starts_with_idenfifier && expr != NULL && expr->AsVariableProxy() != NULL && !expr->AsVariableProxy()->is_this()) { // Expression is a single identifier, and not, e.g., a parenthesized // identifier. VariableProxy* var = expr->AsVariableProxy(); Handle<String> label = var->name(); // TODO(1240780): We don't check for redeclaration of labels // during preparsing since keeping track of the set of active // labels requires nontrivial changes to the way scopes are // structured. However, these are probably changes we want to // make later anyway so we should go back and fix this then. if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) { SmartArrayPointer<char> c_string = label->ToCString(DISALLOW_NULLS); const char* elms[2] = { "Label", *c_string }; Vector<const char*> args(elms, 2); ReportMessage("redeclaration", args); *ok = false; return NULL; } if (labels == NULL) labels = new(zone()) ZoneStringList(4); labels->Add(label); // Remove the "ghost" variable that turned out to be a label // from the top scope. This way, we don't try to resolve it // during the scope processing. top_scope_->RemoveUnresolved(var); Expect(Token::COLON, CHECK_OK); return ParseStatement(labels, ok); } // If we have an extension, we allow a native function declaration. // A native function declaration starts with "native function" with // no line-terminator between the two words. if (extension_ != NULL && peek() == Token::FUNCTION && !scanner().HasAnyLineTerminatorBeforeNext() && expr != NULL && expr->AsVariableProxy() != NULL && expr->AsVariableProxy()->name()->Equals( isolate()->heap()->native_symbol()) && !scanner().literal_contains_escapes()) { return ParseNativeDeclaration(ok); } // Parsed expression statement, or the context-sensitive 'module' keyword. // Only expect semicolon in the former case. if (!FLAG_harmony_modules || peek() != Token::IDENTIFIER || scanner().HasAnyLineTerminatorBeforeNext() || expr->AsVariableProxy() == NULL || !expr->AsVariableProxy()->name()->Equals( isolate()->heap()->module_symbol()) || scanner().literal_contains_escapes()) { ExpectSemicolon(CHECK_OK); } return factory()->NewExpressionStatement(expr); } IfStatement* Parser::ParseIfStatement(ZoneStringList* labels, bool* ok) { // IfStatement :: // 'if' '(' Expression ')' Statement ('else' Statement)? Expect(Token::IF, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* condition = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* then_statement = ParseStatement(labels, CHECK_OK); Statement* else_statement = NULL; if (peek() == Token::ELSE) { Next(); else_statement = ParseStatement(labels, CHECK_OK); } else { else_statement = factory()->NewEmptyStatement(); } return factory()->NewIfStatement(condition, then_statement, else_statement); } Statement* Parser::ParseContinueStatement(bool* ok) { // ContinueStatement :: // 'continue' Identifier? ';' Expect(Token::CONTINUE, CHECK_OK); Handle<String> label = Handle<String>::null(); Token::Value tok = peek(); if (!scanner().HasAnyLineTerminatorBeforeNext() && tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) { label = ParseIdentifier(CHECK_OK); } IterationStatement* target = NULL; target = LookupContinueTarget(label, CHECK_OK); if (target == NULL) { // Illegal continue statement. const char* message = "illegal_continue"; Vector<Handle<String> > args; if (!label.is_null()) { message = "unknown_label"; args = Vector<Handle<String> >(&label, 1); } ReportMessageAt(scanner().location(), message, args); *ok = false; return NULL; } ExpectSemicolon(CHECK_OK); return factory()->NewContinueStatement(target); } Statement* Parser::ParseBreakStatement(ZoneStringList* labels, bool* ok) { // BreakStatement :: // 'break' Identifier? ';' Expect(Token::BREAK, CHECK_OK); Handle<String> label; Token::Value tok = peek(); if (!scanner().HasAnyLineTerminatorBeforeNext() && tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) { label = ParseIdentifier(CHECK_OK); } // Parse labeled break statements that target themselves into // empty statements, e.g. 'l1: l2: l3: break l2;' if (!label.is_null() && ContainsLabel(labels, label)) { ExpectSemicolon(CHECK_OK); return factory()->NewEmptyStatement(); } BreakableStatement* target = NULL; target = LookupBreakTarget(label, CHECK_OK); if (target == NULL) { // Illegal break statement. const char* message = "illegal_break"; Vector<Handle<String> > args; if (!label.is_null()) { message = "unknown_label"; args = Vector<Handle<String> >(&label, 1); } ReportMessageAt(scanner().location(), message, args); *ok = false; return NULL; } ExpectSemicolon(CHECK_OK); return factory()->NewBreakStatement(target); } Statement* Parser::ParseReturnStatement(bool* ok) { // ReturnStatement :: // 'return' Expression? ';' // Consume the return token. It is necessary to do the before // reporting any errors on it, because of the way errors are // reported (underlining). Expect(Token::RETURN, CHECK_OK); Token::Value tok = peek(); Statement* result; if (scanner().HasAnyLineTerminatorBeforeNext() || tok == Token::SEMICOLON || tok == Token::RBRACE || tok == Token::EOS) { ExpectSemicolon(CHECK_OK); result = factory()->NewReturnStatement(GetLiteralUndefined()); } else { Expression* expr = ParseExpression(true, CHECK_OK); ExpectSemicolon(CHECK_OK); result = factory()->NewReturnStatement(expr); } // An ECMAScript program is considered syntactically incorrect if it // contains a return statement that is not within the body of a // function. See ECMA-262, section 12.9, page 67. // // To be consistent with KJS we report the syntax error at runtime. Scope* declaration_scope = top_scope_->DeclarationScope(); if (declaration_scope->is_global_scope() || declaration_scope->is_eval_scope()) { Handle<String> type = isolate()->factory()->illegal_return_symbol(); Expression* throw_error = NewThrowSyntaxError(type, Handle<Object>::null()); return factory()->NewExpressionStatement(throw_error); } return result; } Statement* Parser::ParseWithStatement(ZoneStringList* labels, bool* ok) { // WithStatement :: // 'with' '(' Expression ')' Statement Expect(Token::WITH, CHECK_OK); if (!top_scope_->is_classic_mode()) { ReportMessage("strict_mode_with", Vector<const char*>::empty()); *ok = false; return NULL; } Expect(Token::LPAREN, CHECK_OK); Expression* expr = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); top_scope_->DeclarationScope()->RecordWithStatement(); Scope* with_scope = NewScope(top_scope_, WITH_SCOPE); Statement* stmt; { BlockState block_state(this, with_scope); with_scope->set_start_position(scanner().peek_location().beg_pos); stmt = ParseStatement(labels, CHECK_OK); with_scope->set_end_position(scanner().location().end_pos); } return factory()->NewWithStatement(expr, stmt); } CaseClause* Parser::ParseCaseClause(bool* default_seen_ptr, bool* ok) { // CaseClause :: // 'case' Expression ':' Statement* // 'default' ':' Statement* Expression* label = NULL; // NULL expression indicates default case if (peek() == Token::CASE) { Expect(Token::CASE, CHECK_OK); label = ParseExpression(true, CHECK_OK); } else { Expect(Token::DEFAULT, CHECK_OK); if (*default_seen_ptr) { ReportMessage("multiple_defaults_in_switch", Vector<const char*>::empty()); *ok = false; return NULL; } *default_seen_ptr = true; } Expect(Token::COLON, CHECK_OK); int pos = scanner().location().beg_pos; ZoneList<Statement*>* statements = new(zone()) ZoneList<Statement*>(5); while (peek() != Token::CASE && peek() != Token::DEFAULT && peek() != Token::RBRACE) { Statement* stat = ParseStatement(NULL, CHECK_OK); statements->Add(stat); } return new(zone()) CaseClause(isolate(), label, statements, pos); } SwitchStatement* Parser::ParseSwitchStatement(ZoneStringList* labels, bool* ok) { // SwitchStatement :: // 'switch' '(' Expression ')' '{' CaseClause* '}' SwitchStatement* statement = factory()->NewSwitchStatement(labels); Target target(&this->target_stack_, statement); Expect(Token::SWITCH, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* tag = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); bool default_seen = false; ZoneList<CaseClause*>* cases = new(zone()) ZoneList<CaseClause*>(4); Expect(Token::LBRACE, CHECK_OK); while (peek() != Token::RBRACE) { CaseClause* clause = ParseCaseClause(&default_seen, CHECK_OK); cases->Add(clause); } Expect(Token::RBRACE, CHECK_OK); if (statement) statement->Initialize(tag, cases); return statement; } Statement* Parser::ParseThrowStatement(bool* ok) { // ThrowStatement :: // 'throw' Expression ';' Expect(Token::THROW, CHECK_OK); int pos = scanner().location().beg_pos; if (scanner().HasAnyLineTerminatorBeforeNext()) { ReportMessage("newline_after_throw", Vector<const char*>::empty()); *ok = false; return NULL; } Expression* exception = ParseExpression(true, CHECK_OK); ExpectSemicolon(CHECK_OK); return factory()->NewExpressionStatement(factory()->NewThrow(exception, pos)); } TryStatement* Parser::ParseTryStatement(bool* ok) { // TryStatement :: // 'try' Block Catch // 'try' Block Finally // 'try' Block Catch Finally // // Catch :: // 'catch' '(' Identifier ')' Block // // Finally :: // 'finally' Block Expect(Token::TRY, CHECK_OK); TargetCollector try_collector; Block* try_block; { Target target(&this->target_stack_, &try_collector); try_block = ParseBlock(NULL, CHECK_OK); } Token::Value tok = peek(); if (tok != Token::CATCH && tok != Token::FINALLY) { ReportMessage("no_catch_or_finally", Vector<const char*>::empty()); *ok = false; return NULL; } // If we can break out from the catch block and there is a finally block, // then we will need to collect escaping targets from the catch // block. Since we don't know yet if there will be a finally block, we // always collect the targets. TargetCollector catch_collector; Scope* catch_scope = NULL; Variable* catch_variable = NULL; Block* catch_block = NULL; Handle<String> name; if (tok == Token::CATCH) { Consume(Token::CATCH); Expect(Token::LPAREN, CHECK_OK); catch_scope = NewScope(top_scope_, CATCH_SCOPE); catch_scope->set_start_position(scanner().location().beg_pos); name = ParseIdentifier(CHECK_OK); if (!top_scope_->is_classic_mode() && IsEvalOrArguments(name)) { ReportMessage("strict_catch_variable", Vector<const char*>::empty()); *ok = false; return NULL; } Expect(Token::RPAREN, CHECK_OK); if (peek() == Token::LBRACE) { Target target(&this->target_stack_, &catch_collector); VariableMode mode = is_extended_mode() ? LET : VAR; catch_variable = catch_scope->DeclareLocal(name, mode, kCreatedInitialized); BlockState block_state(this, catch_scope); catch_block = ParseBlock(NULL, CHECK_OK); } else { Expect(Token::LBRACE, CHECK_OK); } catch_scope->set_end_position(scanner().location().end_pos); tok = peek(); } Block* finally_block = NULL; if (tok == Token::FINALLY || catch_block == NULL) { Consume(Token::FINALLY); finally_block = ParseBlock(NULL, CHECK_OK); } // Simplify the AST nodes by converting: // 'try B0 catch B1 finally B2' // to: // 'try { try B0 catch B1 } finally B2' if (catch_block != NULL && finally_block != NULL) { // If we have both, create an inner try/catch. ASSERT(catch_scope != NULL && catch_variable != NULL); int index = current_function_state_->NextHandlerIndex(); TryCatchStatement* statement = factory()->NewTryCatchStatement( index, try_block, catch_scope, catch_variable, catch_block); statement->set_escaping_targets(try_collector.targets()); try_block = factory()->NewBlock(NULL, 1, false); try_block->AddStatement(statement); catch_block = NULL; // Clear to indicate it's been handled. } TryStatement* result = NULL; if (catch_block != NULL) { ASSERT(finally_block == NULL); ASSERT(catch_scope != NULL && catch_variable != NULL); int index = current_function_state_->NextHandlerIndex(); result = factory()->NewTryCatchStatement( index, try_block, catch_scope, catch_variable, catch_block); } else { ASSERT(finally_block != NULL); int index = current_function_state_->NextHandlerIndex(); result = factory()->NewTryFinallyStatement(index, try_block, finally_block); // Combine the jump targets of the try block and the possible catch block. try_collector.targets()->AddAll(*catch_collector.targets()); } result->set_escaping_targets(try_collector.targets()); return result; } DoWhileStatement* Parser::ParseDoWhileStatement(ZoneStringList* labels, bool* ok) { // DoStatement :: // 'do' Statement 'while' '(' Expression ')' ';' DoWhileStatement* loop = factory()->NewDoWhileStatement(labels); Target target(&this->target_stack_, loop); Expect(Token::DO, CHECK_OK); Statement* body = ParseStatement(NULL, CHECK_OK); Expect(Token::WHILE, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); if (loop != NULL) { int position = scanner().location().beg_pos; loop->set_condition_position(position); } Expression* cond = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); // Allow do-statements to be terminated with and without // semi-colons. This allows code such as 'do;while(0)return' to // parse, which would not be the case if we had used the // ExpectSemicolon() functionality here. if (peek() == Token::SEMICOLON) Consume(Token::SEMICOLON); if (loop != NULL) loop->Initialize(cond, body); return loop; } WhileStatement* Parser::ParseWhileStatement(ZoneStringList* labels, bool* ok) { // WhileStatement :: // 'while' '(' Expression ')' Statement WhileStatement* loop = factory()->NewWhileStatement(labels); Target target(&this->target_stack_, loop); Expect(Token::WHILE, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* cond = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* body = ParseStatement(NULL, CHECK_OK); if (loop != NULL) loop->Initialize(cond, body); return loop; } Statement* Parser::ParseForStatement(ZoneStringList* labels, bool* ok) { // ForStatement :: // 'for' '(' Expression? ';' Expression? ';' Expression? ')' Statement Statement* init = NULL; // Create an in-between scope for let-bound iteration variables. Scope* saved_scope = top_scope_; Scope* for_scope = NewScope(top_scope_, BLOCK_SCOPE); top_scope_ = for_scope; Expect(Token::FOR, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); for_scope->set_start_position(scanner().location().beg_pos); if (peek() != Token::SEMICOLON) { if (peek() == Token::VAR || peek() == Token::CONST) { Handle<String> name; Block* variable_statement = ParseVariableDeclarations(kForStatement, NULL, NULL, &name, CHECK_OK); if (peek() == Token::IN && !name.is_null()) { VariableProxy* each = top_scope_->NewUnresolved(factory(), name); ForInStatement* loop = factory()->NewForInStatement(labels); Target target(&this->target_stack_, loop); Expect(Token::IN, CHECK_OK); Expression* enumerable = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* body = ParseStatement(NULL, CHECK_OK); loop->Initialize(each, enumerable, body); Block* result = factory()->NewBlock(NULL, 2, false); result->AddStatement(variable_statement); result->AddStatement(loop); top_scope_ = saved_scope; for_scope->set_end_position(scanner().location().end_pos); for_scope = for_scope->FinalizeBlockScope(); ASSERT(for_scope == NULL); // Parsed for-in loop w/ variable/const declaration. return result; } else { init = variable_statement; } } else if (peek() == Token::LET) { Handle<String> name; VariableDeclarationProperties decl_props = kHasNoInitializers; Block* variable_statement = ParseVariableDeclarations(kForStatement, &decl_props, NULL, &name, CHECK_OK); bool accept_IN = !name.is_null() && decl_props != kHasInitializers; if (peek() == Token::IN && accept_IN) { // Rewrite a for-in statement of the form // // for (let x in e) b // // into // // <let x' be a temporary variable> // for (x' in e) { // let x; // x = x'; // b; // } // TODO(keuchel): Move the temporary variable to the block scope, after // implementing stack allocated block scoped variables. Variable* temp = top_scope_->DeclarationScope()->NewTemporary(name); VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); VariableProxy* each = top_scope_->NewUnresolved(factory(), name); ForInStatement* loop = factory()->NewForInStatement(labels); Target target(&this->target_stack_, loop); Expect(Token::IN, CHECK_OK); Expression* enumerable = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* body = ParseStatement(NULL, CHECK_OK); Block* body_block = factory()->NewBlock(NULL, 3, false); Assignment* assignment = factory()->NewAssignment( Token::ASSIGN, each, temp_proxy, RelocInfo::kNoPosition); Statement* assignment_statement = factory()->NewExpressionStatement(assignment); body_block->AddStatement(variable_statement); body_block->AddStatement(assignment_statement); body_block->AddStatement(body); loop->Initialize(temp_proxy, enumerable, body_block); top_scope_ = saved_scope; for_scope->set_end_position(scanner().location().end_pos); for_scope = for_scope->FinalizeBlockScope(); body_block->set_block_scope(for_scope); // Parsed for-in loop w/ let declaration. return loop; } else { init = variable_statement; } } else { Expression* expression = ParseExpression(false, CHECK_OK); if (peek() == Token::IN) { // Signal a reference error if the expression is an invalid // left-hand side expression. We could report this as a syntax // error here but for compatibility with JSC we choose to report // the error at runtime. if (expression == NULL || !expression->IsValidLeftHandSide()) { Handle<String> type = isolate()->factory()->invalid_lhs_in_for_in_symbol(); expression = NewThrowReferenceError(type); } ForInStatement* loop = factory()->NewForInStatement(labels); Target target(&this->target_stack_, loop); Expect(Token::IN, CHECK_OK); Expression* enumerable = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* body = ParseStatement(NULL, CHECK_OK); if (loop) loop->Initialize(expression, enumerable, body); top_scope_ = saved_scope; for_scope->set_end_position(scanner().location().end_pos); for_scope = for_scope->FinalizeBlockScope(); ASSERT(for_scope == NULL); // Parsed for-in loop. return loop; } else { init = factory()->NewExpressionStatement(expression); } } } // Standard 'for' loop ForStatement* loop = factory()->NewForStatement(labels); Target target(&this->target_stack_, loop); // Parsed initializer at this point. Expect(Token::SEMICOLON, CHECK_OK); Expression* cond = NULL; if (peek() != Token::SEMICOLON) { cond = ParseExpression(true, CHECK_OK); } Expect(Token::SEMICOLON, CHECK_OK); Statement* next = NULL; if (peek() != Token::RPAREN) { Expression* exp = ParseExpression(true, CHECK_OK); next = factory()->NewExpressionStatement(exp); } Expect(Token::RPAREN, CHECK_OK); Statement* body = ParseStatement(NULL, CHECK_OK); top_scope_ = saved_scope; for_scope->set_end_position(scanner().location().end_pos); for_scope = for_scope->FinalizeBlockScope(); if (for_scope != NULL) { // Rewrite a for statement of the form // // for (let x = i; c; n) b // // into // // { // let x = i; // for (; c; n) b // } ASSERT(init != NULL); Block* result = factory()->NewBlock(NULL, 2, false); result->AddStatement(init); result->AddStatement(loop); result->set_block_scope(for_scope); if (loop) loop->Initialize(NULL, cond, next, body); return result; } else { if (loop) loop->Initialize(init, cond, next, body); return loop; } } // Precedence = 1 Expression* Parser::ParseExpression(bool accept_IN, bool* ok) { // Expression :: // AssignmentExpression // Expression ',' AssignmentExpression Expression* result = ParseAssignmentExpression(accept_IN, CHECK_OK); while (peek() == Token::COMMA) { Expect(Token::COMMA, CHECK_OK); int position = scanner().location().beg_pos; Expression* right = ParseAssignmentExpression(accept_IN, CHECK_OK); result = factory()->NewBinaryOperation(Token::COMMA, result, right, position); } return result; } // Precedence = 2 Expression* Parser::ParseAssignmentExpression(bool accept_IN, bool* ok) { // AssignmentExpression :: // ConditionalExpression // LeftHandSideExpression AssignmentOperator AssignmentExpression if (fni_ != NULL) fni_->Enter(); Expression* expression = ParseConditionalExpression(accept_IN, CHECK_OK); if (!Token::IsAssignmentOp(peek())) { if (fni_ != NULL) fni_->Leave(); // Parsed conditional expression only (no assignment). return expression; } // Signal a reference error if the expression is an invalid left-hand // side expression. We could report this as a syntax error here but // for compatibility with JSC we choose to report the error at // runtime. if (expression == NULL || !expression->IsValidLeftHandSide()) { Handle<String> type = isolate()->factory()->invalid_lhs_in_assignment_symbol(); expression = NewThrowReferenceError(type); } if (!top_scope_->is_classic_mode()) { // Assignment to eval or arguments is disallowed in strict mode. CheckStrictModeLValue(expression, "strict_lhs_assignment", CHECK_OK); } MarkAsLValue(expression); Token::Value op = Next(); // Get assignment operator. int pos = scanner().location().beg_pos; Expression* right = ParseAssignmentExpression(accept_IN, CHECK_OK); // TODO(1231235): We try to estimate the set of properties set by // constructors. We define a new property whenever there is an // assignment to a property of 'this'. We should probably only add // properties if we haven't seen them before. Otherwise we'll // probably overestimate the number of properties. Property* property = expression ? expression->AsProperty() : NULL; if (op == Token::ASSIGN && property != NULL && property->obj()->AsVariableProxy() != NULL && property->obj()->AsVariableProxy()->is_this()) { current_function_state_->AddProperty(); } // If we assign a function literal to a property we pretenure the // literal so it can be added as a constant function property. if (property != NULL && right->AsFunctionLiteral() != NULL) { right->AsFunctionLiteral()->set_pretenure(); } if (fni_ != NULL) { // Check if the right hand side is a call to avoid inferring a // name if we're dealing with "a = function(){...}();"-like // expression. if ((op == Token::INIT_VAR || op == Token::INIT_CONST || op == Token::ASSIGN) && (right->AsCall() == NULL && right->AsCallNew() == NULL)) { fni_->Infer(); } else { fni_->RemoveLastFunction(); } fni_->Leave(); } return factory()->NewAssignment(op, expression, right, pos); } // Precedence = 3 Expression* Parser::ParseConditionalExpression(bool accept_IN, bool* ok) { // ConditionalExpression :: // LogicalOrExpression // LogicalOrExpression '?' AssignmentExpression ':' AssignmentExpression // We start using the binary expression parser for prec >= 4 only! Expression* expression = ParseBinaryExpression(4, accept_IN, CHECK_OK); if (peek() != Token::CONDITIONAL) return expression; Consume(Token::CONDITIONAL); // In parsing the first assignment expression in conditional // expressions we always accept the 'in' keyword; see ECMA-262, // section 11.12, page 58. int left_position = scanner().peek_location().beg_pos; Expression* left = ParseAssignmentExpression(true, CHECK_OK); Expect(Token::COLON, CHECK_OK); int right_position = scanner().peek_location().beg_pos; Expression* right = ParseAssignmentExpression(accept_IN, CHECK_OK); return factory()->NewConditional( expression, left, right, left_position, right_position); } static int Precedence(Token::Value tok, bool accept_IN) { if (tok == Token::IN && !accept_IN) return 0; // 0 precedence will terminate binary expression parsing return Token::Precedence(tok); } // Precedence >= 4 Expression* Parser::ParseBinaryExpression(int prec, bool accept_IN, bool* ok) { ASSERT(prec >= 4); Expression* x = ParseUnaryExpression(CHECK_OK); for (int prec1 = Precedence(peek(), accept_IN); prec1 >= prec; prec1--) { // prec1 >= 4 while (Precedence(peek(), accept_IN) == prec1) { Token::Value op = Next(); int position = scanner().location().beg_pos; Expression* y = ParseBinaryExpression(prec1 + 1, accept_IN, CHECK_OK); // Compute some expressions involving only number literals. if (x && x->AsLiteral() && x->AsLiteral()->handle()->IsNumber() && y && y->AsLiteral() && y->AsLiteral()->handle()->IsNumber()) { double x_val = x->AsLiteral()->handle()->Number(); double y_val = y->AsLiteral()->handle()->Number(); switch (op) { case Token::ADD: x = factory()->NewNumberLiteral(x_val + y_val); continue; case Token::SUB: x = factory()->NewNumberLiteral(x_val - y_val); continue; case Token::MUL: x = factory()->NewNumberLiteral(x_val * y_val); continue; case Token::DIV: x = factory()->NewNumberLiteral(x_val / y_val); continue; case Token::BIT_OR: { int value = DoubleToInt32(x_val) | DoubleToInt32(y_val); x = factory()->NewNumberLiteral(value); continue; } case Token::BIT_AND: { int value = DoubleToInt32(x_val) & DoubleToInt32(y_val); x = factory()->NewNumberLiteral(value); continue; } case Token::BIT_XOR: { int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val); x = factory()->NewNumberLiteral(value); continue; } case Token::SHL: { int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1f); x = factory()->NewNumberLiteral(value); continue; } case Token::SHR: { uint32_t shift = DoubleToInt32(y_val) & 0x1f; uint32_t value = DoubleToUint32(x_val) >> shift; x = factory()->NewNumberLiteral(value); continue; } case Token::SAR: { uint32_t shift = DoubleToInt32(y_val) & 0x1f; int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift); x = factory()->NewNumberLiteral(value); continue; } default: break; } } // For now we distinguish between comparisons and other binary // operations. (We could combine the two and get rid of this // code and AST node eventually.) if (Token::IsCompareOp(op)) { // We have a comparison. Token::Value cmp = op; switch (op) { case Token::NE: cmp = Token::EQ; break; case Token::NE_STRICT: cmp = Token::EQ_STRICT; break; default: break; } x = factory()->NewCompareOperation(cmp, x, y, position); if (cmp != op) { // The comparison was negated - add a NOT. x = factory()->NewUnaryOperation(Token::NOT, x, position); } } else { // We have a "normal" binary operation. x = factory()->NewBinaryOperation(op, x, y, position); } } } return x; } Expression* Parser::ParseUnaryExpression(bool* ok) { // UnaryExpression :: // PostfixExpression // 'delete' UnaryExpression // 'void' UnaryExpression // 'typeof' UnaryExpression // '++' UnaryExpression // '--' UnaryExpression // '+' UnaryExpression // '-' UnaryExpression // '~' UnaryExpression // '!' UnaryExpression Token::Value op = peek(); if (Token::IsUnaryOp(op)) { op = Next(); int position = scanner().location().beg_pos; Expression* expression = ParseUnaryExpression(CHECK_OK); if (expression != NULL && (expression->AsLiteral() != NULL)) { Handle<Object> literal = expression->AsLiteral()->handle(); if (op == Token::NOT) { // Convert the literal to a boolean condition and negate it. bool condition = literal->ToBoolean()->IsTrue(); Handle<Object> result(isolate()->heap()->ToBoolean(!condition)); return factory()->NewLiteral(result); } else if (literal->IsNumber()) { // Compute some expressions involving only number literals. double value = literal->Number(); switch (op) { case Token::ADD: return expression; case Token::SUB: return factory()->NewNumberLiteral(-value); case Token::BIT_NOT: return factory()->NewNumberLiteral(~DoubleToInt32(value)); default: break; } } } // "delete identifier" is a syntax error in strict mode. if (op == Token::DELETE && !top_scope_->is_classic_mode()) { VariableProxy* operand = expression->AsVariableProxy(); if (operand != NULL && !operand->is_this()) { ReportMessage("strict_delete", Vector<const char*>::empty()); *ok = false; return NULL; } } return factory()->NewUnaryOperation(op, expression, position); } else if (Token::IsCountOp(op)) { op = Next(); Expression* expression = ParseUnaryExpression(CHECK_OK); // Signal a reference error if the expression is an invalid // left-hand side expression. We could report this as a syntax // error here but for compatibility with JSC we choose to report the // error at runtime. if (expression == NULL || !expression->IsValidLeftHandSide()) { Handle<String> type = isolate()->factory()->invalid_lhs_in_prefix_op_symbol(); expression = NewThrowReferenceError(type); } if (!top_scope_->is_classic_mode()) { // Prefix expression operand in strict mode may not be eval or arguments. CheckStrictModeLValue(expression, "strict_lhs_prefix", CHECK_OK); } MarkAsLValue(expression); int position = scanner().location().beg_pos; return factory()->NewCountOperation(op, true /* prefix */, expression, position); } else { return ParsePostfixExpression(ok); } } Expression* Parser::ParsePostfixExpression(bool* ok) { // PostfixExpression :: // LeftHandSideExpression ('++' | '--')? Expression* expression = ParseLeftHandSideExpression(CHECK_OK); if (!scanner().HasAnyLineTerminatorBeforeNext() && Token::IsCountOp(peek())) { // Signal a reference error if the expression is an invalid // left-hand side expression. We could report this as a syntax // error here but for compatibility with JSC we choose to report the // error at runtime. if (expression == NULL || !expression->IsValidLeftHandSide()) { Handle<String> type = isolate()->factory()->invalid_lhs_in_postfix_op_symbol(); expression = NewThrowReferenceError(type); } if (!top_scope_->is_classic_mode()) { // Postfix expression operand in strict mode may not be eval or arguments. CheckStrictModeLValue(expression, "strict_lhs_prefix", CHECK_OK); } MarkAsLValue(expression); Token::Value next = Next(); int position = scanner().location().beg_pos; expression = factory()->NewCountOperation(next, false /* postfix */, expression, position); } return expression; } Expression* Parser::ParseLeftHandSideExpression(bool* ok) { // LeftHandSideExpression :: // (NewExpression | MemberExpression) ... Expression* result; if (peek() == Token::NEW) { result = ParseNewExpression(CHECK_OK); } else { result = ParseMemberExpression(CHECK_OK); } while (true) { switch (peek()) { case Token::LBRACK: { Consume(Token::LBRACK); int pos = scanner().location().beg_pos; Expression* index = ParseExpression(true, CHECK_OK); result = factory()->NewProperty(result, index, pos); Expect(Token::RBRACK, CHECK_OK); break; } case Token::LPAREN: { int pos; if (scanner().current_token() == Token::IDENTIFIER) { // For call of an identifier we want to report position of // the identifier as position of the call in the stack trace. pos = scanner().location().beg_pos; } else { // For other kinds of calls we record position of the parenthesis as // position of the call. Note that this is extremely important for // expressions of the form function(){...}() for which call position // should not point to the closing brace otherwise it will intersect // with positions recorded for function literal and confuse debugger. pos = scanner().peek_location().beg_pos; } ZoneList<Expression*>* args = ParseArguments(CHECK_OK); // Keep track of eval() calls since they disable all local variable // optimizations. // The calls that need special treatment are the // direct eval calls. These calls are all of the form eval(...), with // no explicit receiver. // These calls are marked as potentially direct eval calls. Whether // they are actually direct calls to eval is determined at run time. VariableProxy* callee = result->AsVariableProxy(); if (callee != NULL && callee->IsVariable(isolate()->factory()->eval_symbol())) { top_scope_->DeclarationScope()->RecordEvalCall(); } result = factory()->NewCall(result, args, pos); break; } case Token::PERIOD: { Consume(Token::PERIOD); int pos = scanner().location().beg_pos; Handle<String> name = ParseIdentifierName(CHECK_OK); result = factory()->NewProperty(result, factory()->NewLiteral(name), pos); if (fni_ != NULL) fni_->PushLiteralName(name); break; } default: return result; } } } Expression* Parser::ParseNewPrefix(PositionStack* stack, bool* ok) { // NewExpression :: // ('new')+ MemberExpression // The grammar for new expressions is pretty warped. The keyword // 'new' can either be a part of the new expression (where it isn't // followed by an argument list) or a part of the member expression, // where it must be followed by an argument list. To accommodate // this, we parse the 'new' keywords greedily and keep track of how // many we have parsed. This information is then passed on to the // member expression parser, which is only allowed to match argument // lists as long as it has 'new' prefixes left Expect(Token::NEW, CHECK_OK); PositionStack::Element pos(stack, scanner().location().beg_pos); Expression* result; if (peek() == Token::NEW) { result = ParseNewPrefix(stack, CHECK_OK); } else { result = ParseMemberWithNewPrefixesExpression(stack, CHECK_OK); } if (!stack->is_empty()) { int last = stack->pop(); result = factory()->NewCallNew( result, new(zone()) ZoneList<Expression*>(0), last); } return result; } Expression* Parser::ParseNewExpression(bool* ok) { PositionStack stack(ok); return ParseNewPrefix(&stack, ok); } Expression* Parser::ParseMemberExpression(bool* ok) { return ParseMemberWithNewPrefixesExpression(NULL, ok); } Expression* Parser::ParseMemberWithNewPrefixesExpression(PositionStack* stack, bool* ok) { // MemberExpression :: // (PrimaryExpression | FunctionLiteral) // ('[' Expression ']' | '.' Identifier | Arguments)* // Parse the initial primary or function expression. Expression* result = NULL; if (peek() == Token::FUNCTION) { Expect(Token::FUNCTION, CHECK_OK); int function_token_position = scanner().location().beg_pos; Handle<String> name; bool is_strict_reserved_name = false; if (peek_any_identifier()) { name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved_name, CHECK_OK); } FunctionLiteral::Type type = name.is_null() ? FunctionLiteral::ANONYMOUS_EXPRESSION : FunctionLiteral::NAMED_EXPRESSION; result = ParseFunctionLiteral(name, is_strict_reserved_name, function_token_position, type, CHECK_OK); } else { result = ParsePrimaryExpression(CHECK_OK); } while (true) { switch (peek()) { case Token::LBRACK: { Consume(Token::LBRACK); int pos = scanner().location().beg_pos; Expression* index = ParseExpression(true, CHECK_OK); result = factory()->NewProperty(result, index, pos); if (fni_ != NULL) { if (index->IsPropertyName()) { fni_->PushLiteralName(index->AsLiteral()->AsPropertyName()); } else { fni_->PushLiteralName( isolate()->factory()->anonymous_function_symbol()); } } Expect(Token::RBRACK, CHECK_OK); break; } case Token::PERIOD: { Consume(Token::PERIOD); int pos = scanner().location().beg_pos; Handle<String> name = ParseIdentifierName(CHECK_OK); result = factory()->NewProperty(result, factory()->NewLiteral(name), pos); if (fni_ != NULL) fni_->PushLiteralName(name); break; } case Token::LPAREN: { if ((stack == NULL) || stack->is_empty()) return result; // Consume one of the new prefixes (already parsed). ZoneList<Expression*>* args = ParseArguments(CHECK_OK); int last = stack->pop(); result = factory()->NewCallNew(result, args, last); break; } default: return result; } } } DebuggerStatement* Parser::ParseDebuggerStatement(bool* ok) { // In ECMA-262 'debugger' is defined as a reserved keyword. In some browser // contexts this is used as a statement which invokes the debugger as i a // break point is present. // DebuggerStatement :: // 'debugger' ';' Expect(Token::DEBUGGER, CHECK_OK); ExpectSemicolon(CHECK_OK); return factory()->NewDebuggerStatement(); } void Parser::ReportUnexpectedToken(Token::Value token) { // We don't report stack overflows here, to avoid increasing the // stack depth even further. Instead we report it after parsing is // over, in ParseProgram/ParseJson. if (token == Token::ILLEGAL && stack_overflow_) return; // Four of the tokens are treated specially switch (token) { case Token::EOS: return ReportMessage("unexpected_eos", Vector<const char*>::empty()); case Token::NUMBER: return ReportMessage("unexpected_token_number", Vector<const char*>::empty()); case Token::STRING: return ReportMessage("unexpected_token_string", Vector<const char*>::empty()); case Token::IDENTIFIER: return ReportMessage("unexpected_token_identifier", Vector<const char*>::empty()); case Token::FUTURE_RESERVED_WORD: return ReportMessage("unexpected_reserved", Vector<const char*>::empty()); case Token::FUTURE_STRICT_RESERVED_WORD: return ReportMessage(top_scope_->is_classic_mode() ? "unexpected_token_identifier" : "unexpected_strict_reserved", Vector<const char*>::empty()); default: const char* name = Token::String(token); ASSERT(name != NULL); ReportMessage("unexpected_token", Vector<const char*>(&name, 1)); } } void Parser::ReportInvalidPreparseData(Handle<String> name, bool* ok) { SmartArrayPointer<char> name_string = name->ToCString(DISALLOW_NULLS); const char* element[1] = { *name_string }; ReportMessage("invalid_preparser_data", Vector<const char*>(element, 1)); *ok = false; } Expression* Parser::ParsePrimaryExpression(bool* ok) { // PrimaryExpression :: // 'this' // 'null' // 'true' // 'false' // Identifier // Number // String // ArrayLiteral // ObjectLiteral // RegExpLiteral // '(' Expression ')' Expression* result = NULL; switch (peek()) { case Token::THIS: { Consume(Token::THIS); result = factory()->NewVariableProxy(top_scope_->receiver()); break; } case Token::NULL_LITERAL: Consume(Token::NULL_LITERAL); result = factory()->NewLiteral(isolate()->factory()->null_value()); break; case Token::TRUE_LITERAL: Consume(Token::TRUE_LITERAL); result = factory()->NewLiteral(isolate()->factory()->true_value()); break; case Token::FALSE_LITERAL: Consume(Token::FALSE_LITERAL); result = factory()->NewLiteral(isolate()->factory()->false_value()); break; case Token::IDENTIFIER: case Token::FUTURE_STRICT_RESERVED_WORD: { Handle<String> name = ParseIdentifier(CHECK_OK); if (fni_ != NULL) fni_->PushVariableName(name); // The name may refer to a module instance object, so its type is unknown. #ifdef DEBUG if (FLAG_print_interface_details) PrintF("# Variable %s ", name->ToAsciiArray()); #endif Interface* interface = Interface::NewUnknown(); result = top_scope_->NewUnresolved( factory(), name, scanner().location().beg_pos, interface); break; } case Token::NUMBER: { Consume(Token::NUMBER); ASSERT(scanner().is_literal_ascii()); double value = StringToDouble(isolate()->unicode_cache(), scanner().literal_ascii_string(), ALLOW_HEX | ALLOW_OCTALS); result = factory()->NewNumberLiteral(value); break; } case Token::STRING: { Consume(Token::STRING); Handle<String> symbol = GetSymbol(CHECK_OK); result = factory()->NewLiteral(symbol); if (fni_ != NULL) fni_->PushLiteralName(symbol); break; } case Token::ASSIGN_DIV: result = ParseRegExpLiteral(true, CHECK_OK); break; case Token::DIV: result = ParseRegExpLiteral(false, CHECK_OK); break; case Token::LBRACK: result = ParseArrayLiteral(CHECK_OK); break; case Token::LBRACE: result = ParseObjectLiteral(CHECK_OK); break; case Token::LPAREN: Consume(Token::LPAREN); // Heuristically try to detect immediately called functions before // seeing the call parentheses. parenthesized_function_ = (peek() == Token::FUNCTION); result = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); break; case Token::MOD: if (allow_natives_syntax_ || extension_ != NULL) { result = ParseV8Intrinsic(CHECK_OK); break; } // If we're not allowing special syntax we fall-through to the // default case. default: { Token::Value tok = Next(); ReportUnexpectedToken(tok); *ok = false; return NULL; } } return result; } void Parser::BuildArrayLiteralBoilerplateLiterals(ZoneList<Expression*>* values, Handle<FixedArray> literals, bool* is_simple, int* depth) { // Fill in the literals. // Accumulate output values in local variables. bool is_simple_acc = true; int depth_acc = 1; for (int i = 0; i < values->length(); i++) { MaterializedLiteral* m_literal = values->at(i)->AsMaterializedLiteral(); if (m_literal != NULL && m_literal->depth() >= depth_acc) { depth_acc = m_literal->depth() + 1; } Handle<Object> boilerplate_value = GetBoilerplateValue(values->at(i)); if (boilerplate_value->IsUndefined()) { literals->set_the_hole(i); is_simple_acc = false; } else { literals->set(i, *boilerplate_value); } } *is_simple = is_simple_acc; *depth = depth_acc; } Expression* Parser::ParseArrayLiteral(bool* ok) { // ArrayLiteral :: // '[' Expression? (',' Expression?)* ']' ZoneList<Expression*>* values = new(zone()) ZoneList<Expression*>(4); Expect(Token::LBRACK, CHECK_OK); while (peek() != Token::RBRACK) { Expression* elem; if (peek() == Token::COMMA) { elem = GetLiteralTheHole(); } else { elem = ParseAssignmentExpression(true, CHECK_OK); } values->Add(elem); if (peek() != Token::RBRACK) { Expect(Token::COMMA, CHECK_OK); } } Expect(Token::RBRACK, CHECK_OK); // Update the scope information before the pre-parsing bailout. int literal_index = current_function_state_->NextMaterializedLiteralIndex(); // Allocate a fixed array to hold all the object literals. Handle<FixedArray> object_literals = isolate()->factory()->NewFixedArray(values->length(), TENURED); Handle<FixedDoubleArray> double_literals; ElementsKind elements_kind = FAST_SMI_ONLY_ELEMENTS; bool has_only_undefined_values = true; // Fill in the literals. bool is_simple = true; int depth = 1; for (int i = 0, n = values->length(); i < n; i++) { MaterializedLiteral* m_literal = values->at(i)->AsMaterializedLiteral(); if (m_literal != NULL && m_literal->depth() + 1 > depth) { depth = m_literal->depth() + 1; } Handle<Object> boilerplate_value = GetBoilerplateValue(values->at(i)); if (boilerplate_value->IsUndefined()) { object_literals->set_the_hole(i); if (elements_kind == FAST_DOUBLE_ELEMENTS) { double_literals->set_the_hole(i); } is_simple = false; } else { // Examine each literal element, and adjust the ElementsKind if the // literal element is not of a type that can be stored in the current // ElementsKind. Start with FAST_SMI_ONLY_ELEMENTS, and transition to // FAST_DOUBLE_ELEMENTS and FAST_ELEMENTS as necessary. Always remember // the tagged value, no matter what the ElementsKind is in case we // ultimately end up in FAST_ELEMENTS. has_only_undefined_values = false; object_literals->set(i, *boilerplate_value); if (elements_kind == FAST_SMI_ONLY_ELEMENTS) { // Smi only elements. Notice if a transition to FAST_DOUBLE_ELEMENTS or // FAST_ELEMENTS is required. if (!boilerplate_value->IsSmi()) { if (boilerplate_value->IsNumber() && FLAG_smi_only_arrays) { // Allocate a double array on the FAST_DOUBLE_ELEMENTS transition to // avoid over-allocating in TENURED space. double_literals = isolate()->factory()->NewFixedDoubleArray( values->length(), TENURED); // Copy the contents of the FAST_SMI_ONLY_ELEMENT array to the // FAST_DOUBLE_ELEMENTS array so that they are in sync. for (int j = 0; j < i; ++j) { Object* smi_value = object_literals->get(j); if (smi_value->IsTheHole()) { double_literals->set_the_hole(j); } else { double_literals->set(j, Smi::cast(smi_value)->value()); } } double_literals->set(i, boilerplate_value->Number()); elements_kind = FAST_DOUBLE_ELEMENTS; } else { elements_kind = FAST_ELEMENTS; } } } else if (elements_kind == FAST_DOUBLE_ELEMENTS) { // Continue to store double values in to FAST_DOUBLE_ELEMENTS arrays // until the first value is seen that can't be stored as a double. if (boilerplate_value->IsNumber()) { double_literals->set(i, boilerplate_value->Number()); } else { elements_kind = FAST_ELEMENTS; } } } } // Very small array literals that don't have a concrete hint about their type // from a constant value should default to the slow case to avoid lots of // elements transitions on really small objects. if (has_only_undefined_values && values->length() <= 2) { elements_kind = FAST_ELEMENTS; } // Simple and shallow arrays can be lazily copied, we transform the // elements array to a copy-on-write array. if (is_simple && depth == 1 && values->length() > 0 && elements_kind != FAST_DOUBLE_ELEMENTS) { object_literals->set_map(isolate()->heap()->fixed_cow_array_map()); } Handle<FixedArrayBase> element_values = elements_kind == FAST_DOUBLE_ELEMENTS ? Handle<FixedArrayBase>(double_literals) : Handle<FixedArrayBase>(object_literals); // Remember both the literal's constant values as well as the ElementsKind // in a 2-element FixedArray. Handle<FixedArray> literals = isolate()->factory()->NewFixedArray(2, TENURED); literals->set(0, Smi::FromInt(elements_kind)); literals->set(1, *element_values); return factory()->NewArrayLiteral( literals, values, literal_index, is_simple, depth); } bool Parser::IsBoilerplateProperty(ObjectLiteral::Property* property) { return property != NULL && property->kind() != ObjectLiteral::Property::PROTOTYPE; } bool CompileTimeValue::IsCompileTimeValue(Expression* expression) { if (expression->AsLiteral() != NULL) return true; MaterializedLiteral* lit = expression->AsMaterializedLiteral(); return lit != NULL && lit->is_simple(); } bool CompileTimeValue::ArrayLiteralElementNeedsInitialization( Expression* value) { // If value is a literal the property value is already set in the // boilerplate object. if (value->AsLiteral() != NULL) return false; // If value is a materialized literal the property value is already set // in the boilerplate object if it is simple. if (CompileTimeValue::IsCompileTimeValue(value)) return false; return true; } Handle<FixedArray> CompileTimeValue::GetValue(Expression* expression) { ASSERT(IsCompileTimeValue(expression)); Handle<FixedArray> result = FACTORY->NewFixedArray(2, TENURED); ObjectLiteral* object_literal = expression->AsObjectLiteral(); if (object_literal != NULL) { ASSERT(object_literal->is_simple()); if (object_literal->fast_elements()) { result->set(kTypeSlot, Smi::FromInt(OBJECT_LITERAL_FAST_ELEMENTS)); } else { result->set(kTypeSlot, Smi::FromInt(OBJECT_LITERAL_SLOW_ELEMENTS)); } result->set(kElementsSlot, *object_literal->constant_properties()); } else { ArrayLiteral* array_literal = expression->AsArrayLiteral(); ASSERT(array_literal != NULL && array_literal->is_simple()); result->set(kTypeSlot, Smi::FromInt(ARRAY_LITERAL)); result->set(kElementsSlot, *array_literal->constant_elements()); } return result; } CompileTimeValue::Type CompileTimeValue::GetType(Handle<FixedArray> value) { Smi* type_value = Smi::cast(value->get(kTypeSlot)); return static_cast<Type>(type_value->value()); } Handle<FixedArray> CompileTimeValue::GetElements(Handle<FixedArray> value) { return Handle<FixedArray>(FixedArray::cast(value->get(kElementsSlot))); } Handle<Object> Parser::GetBoilerplateValue(Expression* expression) { if (expression->AsLiteral() != NULL) { return expression->AsLiteral()->handle(); } if (CompileTimeValue::IsCompileTimeValue(expression)) { return CompileTimeValue::GetValue(expression); } return isolate()->factory()->undefined_value(); } // Validation per 11.1.5 Object Initialiser class ObjectLiteralPropertyChecker { public: ObjectLiteralPropertyChecker(Parser* parser, LanguageMode language_mode) : props_(Literal::Match), parser_(parser), language_mode_(language_mode) { } void CheckProperty( ObjectLiteral::Property* property, Scanner::Location loc, bool* ok); private: enum PropertyKind { kGetAccessor = 0x01, kSetAccessor = 0x02, kAccessor = kGetAccessor | kSetAccessor, kData = 0x04 }; static intptr_t GetPropertyKind(ObjectLiteral::Property* property) { switch (property->kind()) { case ObjectLiteral::Property::GETTER: return kGetAccessor; case ObjectLiteral::Property::SETTER: return kSetAccessor; default: return kData; } } HashMap props_; Parser* parser_; LanguageMode language_mode_; }; void ObjectLiteralPropertyChecker::CheckProperty( ObjectLiteral::Property* property, Scanner::Location loc, bool* ok) { ASSERT(property != NULL); Literal* literal = property->key(); HashMap::Entry* entry = props_.Lookup(literal, literal->Hash(), true); intptr_t prev = reinterpret_cast<intptr_t> (entry->value); intptr_t curr = GetPropertyKind(property); // Duplicate data properties are illegal in strict or extended mode. if (language_mode_ != CLASSIC_MODE && (curr & prev & kData) != 0) { parser_->ReportMessageAt(loc, "strict_duplicate_property", Vector<const char*>::empty()); *ok = false; return; } // Data property conflicting with an accessor. if (((curr & kData) && (prev & kAccessor)) || ((prev & kData) && (curr & kAccessor))) { parser_->ReportMessageAt(loc, "accessor_data_property", Vector<const char*>::empty()); *ok = false; return; } // Two accessors of the same type conflicting if ((curr & prev & kAccessor) != 0) { parser_->ReportMessageAt(loc, "accessor_get_set", Vector<const char*>::empty()); *ok = false; return; } // Update map entry->value = reinterpret_cast<void*> (prev | curr); *ok = true; } void Parser::BuildObjectLiteralConstantProperties( ZoneList<ObjectLiteral::Property*>* properties, Handle<FixedArray> constant_properties, bool* is_simple, bool* fast_elements, int* depth) { int position = 0; // Accumulate the value in local variables and store it at the end. bool is_simple_acc = true; int depth_acc = 1; uint32_t max_element_index = 0; uint32_t elements = 0; for (int i = 0; i < properties->length(); i++) { ObjectLiteral::Property* property = properties->at(i); if (!IsBoilerplateProperty(property)) { is_simple_acc = false; continue; } MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral(); if (m_literal != NULL && m_literal->depth() >= depth_acc) { depth_acc = m_literal->depth() + 1; } // Add CONSTANT and COMPUTED properties to boilerplate. Use undefined // value for COMPUTED properties, the real value is filled in at // runtime. The enumeration order is maintained. Handle<Object> key = property->key()->handle(); Handle<Object> value = GetBoilerplateValue(property->value()); is_simple_acc = is_simple_acc && !value->IsUndefined(); // Keep track of the number of elements in the object literal and // the largest element index. If the largest element index is // much larger than the number of elements, creating an object // literal with fast elements will be a waste of space. uint32_t element_index = 0; if (key->IsString() && Handle<String>::cast(key)->AsArrayIndex(&element_index) && element_index > max_element_index) { max_element_index = element_index; elements++; } else if (key->IsSmi()) { int key_value = Smi::cast(*key)->value(); if (key_value > 0 && static_cast<uint32_t>(key_value) > max_element_index) { max_element_index = key_value; } elements++; } // Add name, value pair to the fixed array. constant_properties->set(position++, *key); constant_properties->set(position++, *value); } *fast_elements = (max_element_index <= 32) || ((2 * elements) >= max_element_index); *is_simple = is_simple_acc; *depth = depth_acc; } ObjectLiteral::Property* Parser::ParseObjectLiteralGetSet(bool is_getter, bool* ok) { // Special handling of getter and setter syntax: // { ... , get foo() { ... }, ... , set foo(v) { ... v ... } , ... } // We have already read the "get" or "set" keyword. Token::Value next = Next(); bool is_keyword = Token::IsKeyword(next); if (next == Token::IDENTIFIER || next == Token::NUMBER || next == Token::FUTURE_RESERVED_WORD || next == Token::FUTURE_STRICT_RESERVED_WORD || next == Token::STRING || is_keyword) { Handle<String> name; if (is_keyword) { name = isolate_->factory()->LookupAsciiSymbol(Token::String(next)); } else { name = GetSymbol(CHECK_OK); } FunctionLiteral* value = ParseFunctionLiteral(name, false, // reserved words are allowed here RelocInfo::kNoPosition, FunctionLiteral::ANONYMOUS_EXPRESSION, CHECK_OK); // Allow any number of parameters for compatibilty with JSC. // Specification only allows zero parameters for get and one for set. return factory()->NewObjectLiteralProperty(is_getter, value); } else { ReportUnexpectedToken(next); *ok = false; return NULL; } } Expression* Parser::ParseObjectLiteral(bool* ok) { // ObjectLiteral :: // '{' ( // ((IdentifierName | String | Number) ':' AssignmentExpression) // | (('get' | 'set') (IdentifierName | String | Number) FunctionLiteral) // )*[','] '}' ZoneList<ObjectLiteral::Property*>* properties = new(zone()) ZoneList<ObjectLiteral::Property*>(4); int number_of_boilerplate_properties = 0; bool has_function = false; ObjectLiteralPropertyChecker checker(this, top_scope_->language_mode()); Expect(Token::LBRACE, CHECK_OK); while (peek() != Token::RBRACE) { if (fni_ != NULL) fni_->Enter(); Literal* key = NULL; Token::Value next = peek(); // Location of the property name token Scanner::Location loc = scanner().peek_location(); switch (next) { case Token::FUTURE_RESERVED_WORD: case Token::FUTURE_STRICT_RESERVED_WORD: case Token::IDENTIFIER: { bool is_getter = false; bool is_setter = false; Handle<String> id = ParseIdentifierNameOrGetOrSet(&is_getter, &is_setter, CHECK_OK); if (fni_ != NULL) fni_->PushLiteralName(id); if ((is_getter || is_setter) && peek() != Token::COLON) { // Update loc to point to the identifier loc = scanner().peek_location(); ObjectLiteral::Property* property = ParseObjectLiteralGetSet(is_getter, CHECK_OK); if (IsBoilerplateProperty(property)) { number_of_boilerplate_properties++; } // Validate the property. checker.CheckProperty(property, loc, CHECK_OK); properties->Add(property); if (peek() != Token::RBRACE) Expect(Token::COMMA, CHECK_OK); if (fni_ != NULL) { fni_->Infer(); fni_->Leave(); } continue; // restart the while } // Failed to parse as get/set property, so it's just a property // called "get" or "set". key = factory()->NewLiteral(id); break; } case Token::STRING: { Consume(Token::STRING); Handle<String> string = GetSymbol(CHECK_OK); if (fni_ != NULL) fni_->PushLiteralName(string); uint32_t index; if (!string.is_null() && string->AsArrayIndex(&index)) { key = factory()->NewNumberLiteral(index); break; } key = factory()->NewLiteral(string); break; } case Token::NUMBER: { Consume(Token::NUMBER); ASSERT(scanner().is_literal_ascii()); double value = StringToDouble(isolate()->unicode_cache(), scanner().literal_ascii_string(), ALLOW_HEX | ALLOW_OCTALS); key = factory()->NewNumberLiteral(value); break; } default: if (Token::IsKeyword(next)) { Consume(next); Handle<String> string = GetSymbol(CHECK_OK); key = factory()->NewLiteral(string); } else { // Unexpected token. Token::Value next = Next(); ReportUnexpectedToken(next); *ok = false; return NULL; } } Expect(Token::COLON, CHECK_OK); Expression* value = ParseAssignmentExpression(true, CHECK_OK); ObjectLiteral::Property* property = new(zone()) ObjectLiteral::Property(key, value, isolate()); // Mark top-level object literals that contain function literals and // pretenure the literal so it can be added as a constant function // property. if (top_scope_->DeclarationScope()->is_global_scope() && value->AsFunctionLiteral() != NULL) { has_function = true; value->AsFunctionLiteral()->set_pretenure(); } // Count CONSTANT or COMPUTED properties to maintain the enumeration order. if (IsBoilerplateProperty(property)) number_of_boilerplate_properties++; // Validate the property checker.CheckProperty(property, loc, CHECK_OK); properties->Add(property); // TODO(1240767): Consider allowing trailing comma. if (peek() != Token::RBRACE) Expect(Token::COMMA, CHECK_OK); if (fni_ != NULL) { fni_->Infer(); fni_->Leave(); } } Expect(Token::RBRACE, CHECK_OK); // Computation of literal_index must happen before pre parse bailout. int literal_index = current_function_state_->NextMaterializedLiteralIndex(); Handle<FixedArray> constant_properties = isolate()->factory()->NewFixedArray( number_of_boilerplate_properties * 2, TENURED); bool is_simple = true; bool fast_elements = true; int depth = 1; BuildObjectLiteralConstantProperties(properties, constant_properties, &is_simple, &fast_elements, &depth); return factory()->NewObjectLiteral(constant_properties, properties, literal_index, is_simple, fast_elements, depth, has_function); } Expression* Parser::ParseRegExpLiteral(bool seen_equal, bool* ok) { if (!scanner().ScanRegExpPattern(seen_equal)) { Next(); ReportMessage("unterminated_regexp", Vector<const char*>::empty()); *ok = false; return NULL; } int literal_index = current_function_state_->NextMaterializedLiteralIndex(); Handle<String> js_pattern = NextLiteralString(TENURED); scanner().ScanRegExpFlags(); Handle<String> js_flags = NextLiteralString(TENURED); Next(); return factory()->NewRegExpLiteral(js_pattern, js_flags, literal_index); } ZoneList<Expression*>* Parser::ParseArguments(bool* ok) { // Arguments :: // '(' (AssignmentExpression)*[','] ')' ZoneList<Expression*>* result = new(zone()) ZoneList<Expression*>(4); Expect(Token::LPAREN, CHECK_OK); bool done = (peek() == Token::RPAREN); while (!done) { Expression* argument = ParseAssignmentExpression(true, CHECK_OK); result->Add(argument); if (result->length() > kMaxNumFunctionParameters) { ReportMessageAt(scanner().location(), "too_many_arguments", Vector<const char*>::empty()); *ok = false; return NULL; } done = (peek() == Token::RPAREN); if (!done) Expect(Token::COMMA, CHECK_OK); } Expect(Token::RPAREN, CHECK_OK); return result; } class SingletonLogger : public ParserRecorder { public: SingletonLogger() : has_error_(false), start_(-1), end_(-1) { } virtual ~SingletonLogger() { } void Reset() { has_error_ = false; } virtual void LogFunction(int start, int end, int literals, int properties, LanguageMode mode) { ASSERT(!has_error_); start_ = start; end_ = end; literals_ = literals; properties_ = properties; mode_ = mode; }; // Logs a symbol creation of a literal or identifier. virtual void LogAsciiSymbol(int start, Vector<const char> literal) { } virtual void LogUtf16Symbol(int start, Vector<const uc16> literal) { } // Logs an error message and marks the log as containing an error. // Further logging will be ignored, and ExtractData will return a vector // representing the error only. virtual void LogMessage(int start, int end, const char* message, const char* argument_opt) { has_error_ = true; start_ = start; end_ = end; message_ = message; argument_opt_ = argument_opt; } virtual int function_position() { return 0; } virtual int symbol_position() { return 0; } virtual int symbol_ids() { return -1; } virtual Vector<unsigned> ExtractData() { UNREACHABLE(); return Vector<unsigned>(); } virtual void PauseRecording() { } virtual void ResumeRecording() { } bool has_error() { return has_error_; } int start() { return start_; } int end() { return end_; } int literals() { ASSERT(!has_error_); return literals_; } int properties() { ASSERT(!has_error_); return properties_; } LanguageMode language_mode() { ASSERT(!has_error_); return mode_; } const char* message() { ASSERT(has_error_); return message_; } const char* argument_opt() { ASSERT(has_error_); return argument_opt_; } private: bool has_error_; int start_; int end_; // For function entries. int literals_; int properties_; LanguageMode mode_; // For error messages. const char* message_; const char* argument_opt_; }; FunctionLiteral* Parser::ParseFunctionLiteral(Handle<String> function_name, bool name_is_strict_reserved, int function_token_position, FunctionLiteral::Type type, bool* ok) { // Function :: // '(' FormalParameterList? ')' '{' FunctionBody '}' // Anonymous functions were passed either the empty symbol or a null // handle as the function name. Remember if we were passed a non-empty // handle to decide whether to invoke function name inference. bool should_infer_name = function_name.is_null(); // We want a non-null handle as the function name. if (should_infer_name) { function_name = isolate()->factory()->empty_symbol(); } int num_parameters = 0; // Function declarations are function scoped in normal mode, so they are // hoisted. In harmony block scoping mode they are block scoped, so they // are not hoisted. Scope* scope = (type == FunctionLiteral::DECLARATION && !is_extended_mode()) ? NewScope(top_scope_->DeclarationScope(), FUNCTION_SCOPE) : NewScope(top_scope_, FUNCTION_SCOPE); ZoneList<Statement*>* body = NULL; int materialized_literal_count = -1; int expected_property_count = -1; int handler_count = 0; bool only_simple_this_property_assignments; Handle<FixedArray> this_property_assignments; FunctionLiteral::ParameterFlag duplicate_parameters = FunctionLiteral::kNoDuplicateParameters; AstProperties ast_properties; // Parse function body. { FunctionState function_state(this, scope, isolate()); top_scope_->SetScopeName(function_name); // FormalParameterList :: // '(' (Identifier)*[','] ')' Expect(Token::LPAREN, CHECK_OK); scope->set_start_position(scanner().location().beg_pos); Scanner::Location name_loc = Scanner::Location::invalid(); Scanner::Location dupe_loc = Scanner::Location::invalid(); Scanner::Location reserved_loc = Scanner::Location::invalid(); bool done = (peek() == Token::RPAREN); while (!done) { bool is_strict_reserved = false; Handle<String> param_name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK); // Store locations for possible future error reports. if (!name_loc.IsValid() && IsEvalOrArguments(param_name)) { name_loc = scanner().location(); } if (!dupe_loc.IsValid() && top_scope_->IsDeclared(param_name)) { duplicate_parameters = FunctionLiteral::kHasDuplicateParameters; dupe_loc = scanner().location(); } if (!reserved_loc.IsValid() && is_strict_reserved) { reserved_loc = scanner().location(); } top_scope_->DeclareParameter(param_name, VAR); num_parameters++; if (num_parameters > kMaxNumFunctionParameters) { ReportMessageAt(scanner().location(), "too_many_parameters", Vector<const char*>::empty()); *ok = false; return NULL; } done = (peek() == Token::RPAREN); if (!done) Expect(Token::COMMA, CHECK_OK); } Expect(Token::RPAREN, CHECK_OK); Expect(Token::LBRACE, CHECK_OK); // If we have a named function expression, we add a local variable // declaration to the body of the function with the name of the // function and let it refer to the function itself (closure). // NOTE: We create a proxy and resolve it here so that in the // future we can change the AST to only refer to VariableProxies // instead of Variables and Proxis as is the case now. Variable* fvar = NULL; Token::Value fvar_init_op = Token::INIT_CONST; if (type == FunctionLiteral::NAMED_EXPRESSION) { VariableMode fvar_mode; if (is_extended_mode()) { fvar_mode = CONST_HARMONY; fvar_init_op = Token::INIT_CONST_HARMONY; } else { fvar_mode = CONST; } fvar = top_scope_->DeclareFunctionVar(function_name, fvar_mode, factory()); } // Determine whether the function will be lazily compiled. // The heuristics are: // - It must not have been prohibited by the caller to Parse (some callers // need a full AST). // - The outer scope must be trivial (only global variables in scope). // - The function mustn't be a function expression with an open parenthesis // before; we consider that a hint that the function will be called // immediately, and it would be a waste of time to make it lazily // compiled. // These are all things we can know at this point, without looking at the // function itself. bool is_lazily_compiled = (mode() == PARSE_LAZILY && top_scope_->outer_scope()->is_global_scope() && top_scope_->HasTrivialOuterContext() && !parenthesized_function_); parenthesized_function_ = false; // The bit was set for this function only. if (is_lazily_compiled) { int function_block_pos = scanner().location().beg_pos; FunctionEntry entry; if (pre_data_ != NULL) { // If we have pre_data_, we use it to skip parsing the function body. // the preparser data contains the information we need to construct the // lazy function. entry = pre_data()->GetFunctionEntry(function_block_pos); if (entry.is_valid()) { if (entry.end_pos() <= function_block_pos) { // End position greater than end of stream is safe, and hard // to check. ReportInvalidPreparseData(function_name, CHECK_OK); } scanner().SeekForward(entry.end_pos() - 1); scope->set_end_position(entry.end_pos()); Expect(Token::RBRACE, CHECK_OK); isolate()->counters()->total_preparse_skipped()->Increment( scope->end_position() - function_block_pos); materialized_literal_count = entry.literal_count(); expected_property_count = entry.property_count(); top_scope_->SetLanguageMode(entry.language_mode()); only_simple_this_property_assignments = false; this_property_assignments = isolate()->factory()->empty_fixed_array(); } else { is_lazily_compiled = false; } } else { // With no preparser data, we partially parse the function, without // building an AST. This gathers the data needed to build a lazy // function. SingletonLogger logger; preparser::PreParser::PreParseResult result = LazyParseFunctionLiteral(&logger); if (result == preparser::PreParser::kPreParseStackOverflow) { // Propagate stack overflow. stack_overflow_ = true; *ok = false; return NULL; } if (logger.has_error()) { const char* arg = logger.argument_opt(); Vector<const char*> args; if (arg != NULL) { args = Vector<const char*>(&arg, 1); } ReportMessageAt(Scanner::Location(logger.start(), logger.end()), logger.message(), args); *ok = false; return NULL; } scope->set_end_position(logger.end()); Expect(Token::RBRACE, CHECK_OK); isolate()->counters()->total_preparse_skipped()->Increment( scope->end_position() - function_block_pos); materialized_literal_count = logger.literals(); expected_property_count = logger.properties(); top_scope_->SetLanguageMode(logger.language_mode()); only_simple_this_property_assignments = false; this_property_assignments = isolate()->factory()->empty_fixed_array(); } } if (!is_lazily_compiled) { body = new(zone()) ZoneList<Statement*>(8); if (fvar != NULL) { VariableProxy* fproxy = top_scope_->NewUnresolved(factory(), function_name); fproxy->BindTo(fvar); body->Add(factory()->NewExpressionStatement( factory()->NewAssignment(fvar_init_op, fproxy, factory()->NewThisFunction(), RelocInfo::kNoPosition))); } ParseSourceElements(body, Token::RBRACE, false, CHECK_OK); materialized_literal_count = function_state.materialized_literal_count(); expected_property_count = function_state.expected_property_count(); handler_count = function_state.handler_count(); only_simple_this_property_assignments = function_state.only_simple_this_property_assignments(); this_property_assignments = function_state.this_property_assignments(); Expect(Token::RBRACE, CHECK_OK); scope->set_end_position(scanner().location().end_pos); } // Validate strict mode. if (!top_scope_->is_classic_mode()) { if (IsEvalOrArguments(function_name)) { int start_pos = scope->start_position(); int position = function_token_position != RelocInfo::kNoPosition ? function_token_position : (start_pos > 0 ? start_pos - 1 : start_pos); Scanner::Location location = Scanner::Location(position, start_pos); ReportMessageAt(location, "strict_function_name", Vector<const char*>::empty()); *ok = false; return NULL; } if (name_loc.IsValid()) { ReportMessageAt(name_loc, "strict_param_name", Vector<const char*>::empty()); *ok = false; return NULL; } if (dupe_loc.IsValid()) { ReportMessageAt(dupe_loc, "strict_param_dupe", Vector<const char*>::empty()); *ok = false; return NULL; } if (name_is_strict_reserved) { int start_pos = scope->start_position(); int position = function_token_position != RelocInfo::kNoPosition ? function_token_position : (start_pos > 0 ? start_pos - 1 : start_pos); Scanner::Location location = Scanner::Location(position, start_pos); ReportMessageAt(location, "strict_reserved_word", Vector<const char*>::empty()); *ok = false; return NULL; } if (reserved_loc.IsValid()) { ReportMessageAt(reserved_loc, "strict_reserved_word", Vector<const char*>::empty()); *ok = false; return NULL; } CheckOctalLiteral(scope->start_position(), scope->end_position(), CHECK_OK); } ast_properties = *factory()->visitor()->ast_properties(); } if (is_extended_mode()) { CheckConflictingVarDeclarations(scope, CHECK_OK); } FunctionLiteral* function_literal = factory()->NewFunctionLiteral(function_name, scope, body, materialized_literal_count, expected_property_count, handler_count, only_simple_this_property_assignments, this_property_assignments, num_parameters, duplicate_parameters, type, FunctionLiteral::kIsFunction); function_literal->set_function_token_position(function_token_position); function_literal->set_ast_properties(&ast_properties); if (fni_ != NULL && should_infer_name) fni_->AddFunction(function_literal); return function_literal; } preparser::PreParser::PreParseResult Parser::LazyParseFunctionLiteral( SingletonLogger* logger) { HistogramTimerScope preparse_scope(isolate()->counters()->pre_parse()); ASSERT_EQ(Token::LBRACE, scanner().current_token()); if (reusable_preparser_ == NULL) { intptr_t stack_limit = isolate()->stack_guard()->real_climit(); bool do_allow_lazy = true; reusable_preparser_ = new preparser::PreParser(&scanner_, NULL, stack_limit, do_allow_lazy, allow_natives_syntax_, allow_modules_); } preparser::PreParser::PreParseResult result = reusable_preparser_->PreParseLazyFunction(top_scope_->language_mode(), logger); return result; } Expression* Parser::ParseV8Intrinsic(bool* ok) { // CallRuntime :: // '%' Identifier Arguments Expect(Token::MOD, CHECK_OK); Handle<String> name = ParseIdentifier(CHECK_OK); ZoneList<Expression*>* args = ParseArguments(CHECK_OK); if (extension_ != NULL) { // The extension structures are only accessible while parsing the // very first time not when reparsing because of lazy compilation. top_scope_->DeclarationScope()->ForceEagerCompilation(); } const Runtime::Function* function = Runtime::FunctionForSymbol(name); // Check for built-in IS_VAR macro. if (function != NULL && function->intrinsic_type == Runtime::RUNTIME && function->function_id == Runtime::kIS_VAR) { // %IS_VAR(x) evaluates to x if x is a variable, // leads to a parse error otherwise. Could be implemented as an // inline function %_IS_VAR(x) to eliminate this special case. if (args->length() == 1 && args->at(0)->AsVariableProxy() != NULL) { return args->at(0); } else { ReportMessage("unable_to_parse", Vector<const char*>::empty()); *ok = false; return NULL; } } // Check that the expected number of arguments are being passed. if (function != NULL && function->nargs != -1 && function->nargs != args->length()) { ReportMessage("illegal_access", Vector<const char*>::empty()); *ok = false; return NULL; } // We have a valid intrinsics call or a call to a builtin. return factory()->NewCallRuntime(name, function, args); } bool Parser::peek_any_identifier() { Token::Value next = peek(); return next == Token::IDENTIFIER || next == Token::FUTURE_RESERVED_WORD || next == Token::FUTURE_STRICT_RESERVED_WORD; } void Parser::Consume(Token::Value token) { Token::Value next = Next(); USE(next); USE(token); ASSERT(next == token); } void Parser::Expect(Token::Value token, bool* ok) { Token::Value next = Next(); if (next == token) return; ReportUnexpectedToken(next); *ok = false; } bool Parser::Check(Token::Value token) { Token::Value next = peek(); if (next == token) { Consume(next); return true; } return false; } void Parser::ExpectSemicolon(bool* ok) { // Check for automatic semicolon insertion according to // the rules given in ECMA-262, section 7.9, page 21. Token::Value tok = peek(); if (tok == Token::SEMICOLON) { Next(); return; } if (scanner().HasAnyLineTerminatorBeforeNext() || tok == Token::RBRACE || tok == Token::EOS) { return; } Expect(Token::SEMICOLON, ok); } void Parser::ExpectContextualKeyword(const char* keyword, bool* ok) { Expect(Token::IDENTIFIER, ok); if (!*ok) return; Handle<String> symbol = GetSymbol(ok); if (!*ok) return; if (!symbol->IsEqualTo(CStrVector(keyword))) { *ok = false; ReportUnexpectedToken(scanner().current_token()); } } Literal* Parser::GetLiteralUndefined() { return factory()->NewLiteral(isolate()->factory()->undefined_value()); } Literal* Parser::GetLiteralTheHole() { return factory()->NewLiteral(isolate()->factory()->the_hole_value()); } // Parses an identifier that is valid for the current scope, in particular it // fails on strict mode future reserved keywords in a strict scope. Handle<String> Parser::ParseIdentifier(bool* ok) { if (!top_scope_->is_classic_mode()) { Expect(Token::IDENTIFIER, ok); } else if (!Check(Token::IDENTIFIER)) { Expect(Token::FUTURE_STRICT_RESERVED_WORD, ok); } if (!*ok) return Handle<String>(); return GetSymbol(ok); } // Parses and identifier or a strict mode future reserved word, and indicate // whether it is strict mode future reserved. Handle<String> Parser::ParseIdentifierOrStrictReservedWord( bool* is_strict_reserved, bool* ok) { *is_strict_reserved = false; if (!Check(Token::IDENTIFIER)) { Expect(Token::FUTURE_STRICT_RESERVED_WORD, ok); *is_strict_reserved = true; } if (!*ok) return Handle<String>(); return GetSymbol(ok); } Handle<String> Parser::ParseIdentifierName(bool* ok) { Token::Value next = Next(); if (next != Token::IDENTIFIER && next != Token::FUTURE_RESERVED_WORD && next != Token::FUTURE_STRICT_RESERVED_WORD && !Token::IsKeyword(next)) { ReportUnexpectedToken(next); *ok = false; return Handle<String>(); } return GetSymbol(ok); } void Parser::MarkAsLValue(Expression* expression) { VariableProxy* proxy = expression != NULL ? expression->AsVariableProxy() : NULL; if (proxy != NULL) proxy->MarkAsLValue(); } // Checks LHS expression for assignment and prefix/postfix increment/decrement // in strict mode. void Parser::CheckStrictModeLValue(Expression* expression, const char* error, bool* ok) { ASSERT(!top_scope_->is_classic_mode()); VariableProxy* lhs = expression != NULL ? expression->AsVariableProxy() : NULL; if (lhs != NULL && !lhs->is_this() && IsEvalOrArguments(lhs->name())) { ReportMessage(error, Vector<const char*>::empty()); *ok = false; } } // Checks whether an octal literal was last seen between beg_pos and end_pos. // If so, reports an error. Only called for strict mode. void Parser::CheckOctalLiteral(int beg_pos, int end_pos, bool* ok) { Scanner::Location octal = scanner().octal_position(); if (octal.IsValid() && beg_pos <= octal.beg_pos && octal.end_pos <= end_pos) { ReportMessageAt(octal, "strict_octal_literal", Vector<const char*>::empty()); scanner().clear_octal_position(); *ok = false; } } void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) { Declaration* decl = scope->CheckConflictingVarDeclarations(); if (decl != NULL) { // In harmony mode we treat conflicting variable bindinds as early // errors. See ES5 16 for a definition of early errors. Handle<String> name = decl->proxy()->name(); SmartArrayPointer<char> c_string = name->ToCString(DISALLOW_NULLS); const char* elms[2] = { "Variable", *c_string }; Vector<const char*> args(elms, 2); int position = decl->proxy()->position(); Scanner::Location location = position == RelocInfo::kNoPosition ? Scanner::Location::invalid() : Scanner::Location(position, position + 1); ReportMessageAt(location, "redeclaration", args); *ok = false; } } // This function reads an identifier name and determines whether or not it // is 'get' or 'set'. Handle<String> Parser::ParseIdentifierNameOrGetOrSet(bool* is_get, bool* is_set, bool* ok) { Handle<String> result = ParseIdentifierName(ok); if (!*ok) return Handle<String>(); if (scanner().is_literal_ascii() && scanner().literal_length() == 3) { const char* token = scanner().literal_ascii_string().start(); *is_get = strncmp(token, "get", 3) == 0; *is_set = !*is_get && strncmp(token, "set", 3) == 0; } return result; } // ---------------------------------------------------------------------------- // Parser support bool Parser::TargetStackContainsLabel(Handle<String> label) { for (Target* t = target_stack_; t != NULL; t = t->previous()) { BreakableStatement* stat = t->node()->AsBreakableStatement(); if (stat != NULL && ContainsLabel(stat->labels(), label)) return true; } return false; } BreakableStatement* Parser::LookupBreakTarget(Handle<String> label, bool* ok) { bool anonymous = label.is_null(); for (Target* t = target_stack_; t != NULL; t = t->previous()) { BreakableStatement* stat = t->node()->AsBreakableStatement(); if (stat == NULL) continue; if ((anonymous && stat->is_target_for_anonymous()) || (!anonymous && ContainsLabel(stat->labels(), label))) { RegisterTargetUse(stat->break_target(), t->previous()); return stat; } } return NULL; } IterationStatement* Parser::LookupContinueTarget(Handle<String> label, bool* ok) { bool anonymous = label.is_null(); for (Target* t = target_stack_; t != NULL; t = t->previous()) { IterationStatement* stat = t->node()->AsIterationStatement(); if (stat == NULL) continue; ASSERT(stat->is_target_for_anonymous()); if (anonymous || ContainsLabel(stat->labels(), label)) { RegisterTargetUse(stat->continue_target(), t->previous()); return stat; } } return NULL; } void Parser::RegisterTargetUse(Label* target, Target* stop) { // Register that a break target found at the given stop in the // target stack has been used from the top of the target stack. Add // the break target to any TargetCollectors passed on the stack. for (Target* t = target_stack_; t != stop; t = t->previous()) { TargetCollector* collector = t->node()->AsTargetCollector(); if (collector != NULL) collector->AddTarget(target); } } Expression* Parser::NewThrowReferenceError(Handle<String> type) { return NewThrowError(isolate()->factory()->MakeReferenceError_symbol(), type, HandleVector<Object>(NULL, 0)); } Expression* Parser::NewThrowSyntaxError(Handle<String> type, Handle<Object> first) { int argc = first.is_null() ? 0 : 1; Vector< Handle<Object> > arguments = HandleVector<Object>(&first, argc); return NewThrowError( isolate()->factory()->MakeSyntaxError_symbol(), type, arguments); } Expression* Parser::NewThrowTypeError(Handle<String> type, Handle<Object> first, Handle<Object> second) { ASSERT(!first.is_null() && !second.is_null()); Handle<Object> elements[] = { first, second }; Vector< Handle<Object> > arguments = HandleVector<Object>(elements, ARRAY_SIZE(elements)); return NewThrowError( isolate()->factory()->MakeTypeError_symbol(), type, arguments); } Expression* Parser::NewThrowError(Handle<String> constructor, Handle<String> type, Vector< Handle<Object> > arguments) { int argc = arguments.length(); Handle<FixedArray> elements = isolate()->factory()->NewFixedArray(argc, TENURED); for (int i = 0; i < argc; i++) { Handle<Object> element = arguments[i]; if (!element.is_null()) { elements->set(i, *element); } } Handle<JSArray> array = isolate()->factory()->NewJSArrayWithElements( elements, FAST_ELEMENTS, TENURED); ZoneList<Expression*>* args = new(zone()) ZoneList<Expression*>(2); args->Add(factory()->NewLiteral(type)); args->Add(factory()->NewLiteral(array)); CallRuntime* call_constructor = factory()->NewCallRuntime(constructor, NULL, args); return factory()->NewThrow(call_constructor, scanner().location().beg_pos); } // ---------------------------------------------------------------------------- // Regular expressions RegExpParser::RegExpParser(FlatStringReader* in, Handle<String>* error, bool multiline) : isolate_(Isolate::Current()), error_(error), captures_(NULL), in_(in), current_(kEndMarker), next_pos_(0), capture_count_(0), has_more_(true), multiline_(multiline), simple_(false), contains_anchor_(false), is_scanned_for_captures_(false), failed_(false) { Advance(); } uc32 RegExpParser::Next() { if (has_next()) { return in()->Get(next_pos_); } else { return kEndMarker; } } void RegExpParser::Advance() { if (next_pos_ < in()->length()) { StackLimitCheck check(isolate()); if (check.HasOverflowed()) { ReportError(CStrVector(Isolate::kStackOverflowMessage)); } else if (isolate()->zone()->excess_allocation()) { ReportError(CStrVector("Regular expression too large")); } else { current_ = in()->Get(next_pos_); next_pos_++; } } else { current_ = kEndMarker; has_more_ = false; } } void RegExpParser::Reset(int pos) { next_pos_ = pos; Advance(); } void RegExpParser::Advance(int dist) { next_pos_ += dist - 1; Advance(); } bool RegExpParser::simple() { return simple_; } RegExpTree* RegExpParser::ReportError(Vector<const char> message) { failed_ = true; *error_ = isolate()->factory()->NewStringFromAscii(message, NOT_TENURED); // Zip to the end to make sure the no more input is read. current_ = kEndMarker; next_pos_ = in()->length(); return NULL; } // Pattern :: // Disjunction RegExpTree* RegExpParser::ParsePattern() { RegExpTree* result = ParseDisjunction(CHECK_FAILED); ASSERT(!has_more()); // If the result of parsing is a literal string atom, and it has the // same length as the input, then the atom is identical to the input. if (result->IsAtom() && result->AsAtom()->length() == in()->length()) { simple_ = true; } return result; } // Disjunction :: // Alternative // Alternative | Disjunction // Alternative :: // [empty] // Term Alternative // Term :: // Assertion // Atom // Atom Quantifier RegExpTree* RegExpParser::ParseDisjunction() { // Used to store current state while parsing subexpressions. RegExpParserState initial_state(NULL, INITIAL, 0); RegExpParserState* stored_state = &initial_state; // Cache the builder in a local variable for quick access. RegExpBuilder* builder = initial_state.builder(); while (true) { switch (current()) { case kEndMarker: if (stored_state->IsSubexpression()) { // Inside a parenthesized group when hitting end of input. ReportError(CStrVector("Unterminated group") CHECK_FAILED); } ASSERT_EQ(INITIAL, stored_state->group_type()); // Parsing completed successfully. return builder->ToRegExp(); case ')': { if (!stored_state->IsSubexpression()) { ReportError(CStrVector("Unmatched ')'") CHECK_FAILED); } ASSERT_NE(INITIAL, stored_state->group_type()); Advance(); // End disjunction parsing and convert builder content to new single // regexp atom. RegExpTree* body = builder->ToRegExp(); int end_capture_index = captures_started(); int capture_index = stored_state->capture_index(); SubexpressionType type = stored_state->group_type(); // Restore previous state. stored_state = stored_state->previous_state(); builder = stored_state->builder(); // Build result of subexpression. if (type == CAPTURE) { RegExpCapture* capture = new(zone()) RegExpCapture(body, capture_index); captures_->at(capture_index - 1) = capture; body = capture; } else if (type != GROUPING) { ASSERT(type == POSITIVE_LOOKAHEAD || type == NEGATIVE_LOOKAHEAD); bool is_positive = (type == POSITIVE_LOOKAHEAD); body = new(zone()) RegExpLookahead(body, is_positive, end_capture_index - capture_index, capture_index); } builder->AddAtom(body); // For compatability with JSC and ES3, we allow quantifiers after // lookaheads, and break in all cases. break; } case '|': { Advance(); builder->NewAlternative(); continue; } case '*': case '+': case '?': return ReportError(CStrVector("Nothing to repeat")); case '^': { Advance(); if (multiline_) { builder->AddAssertion( new(zone()) RegExpAssertion(RegExpAssertion::START_OF_LINE)); } else { builder->AddAssertion( new(zone()) RegExpAssertion(RegExpAssertion::START_OF_INPUT)); set_contains_anchor(); } continue; } case '$': { Advance(); RegExpAssertion::Type type = multiline_ ? RegExpAssertion::END_OF_LINE : RegExpAssertion::END_OF_INPUT; builder->AddAssertion(new(zone()) RegExpAssertion(type)); continue; } case '.': { Advance(); // everything except \x0a, \x0d, \u2028 and \u2029 ZoneList<CharacterRange>* ranges = new(zone()) ZoneList<CharacterRange>(2); CharacterRange::AddClassEscape('.', ranges); RegExpTree* atom = new(zone()) RegExpCharacterClass(ranges, false); builder->AddAtom(atom); break; } case '(': { SubexpressionType type = CAPTURE; Advance(); if (current() == '?') { switch (Next()) { case ':': type = GROUPING; break; case '=': type = POSITIVE_LOOKAHEAD; break; case '!': type = NEGATIVE_LOOKAHEAD; break; default: ReportError(CStrVector("Invalid group") CHECK_FAILED); break; } Advance(2); } else { if (captures_ == NULL) { captures_ = new(zone()) ZoneList<RegExpCapture*>(2); } if (captures_started() >= kMaxCaptures) { ReportError(CStrVector("Too many captures") CHECK_FAILED); } captures_->Add(NULL); } // Store current state and begin new disjunction parsing. stored_state = new(zone()) RegExpParserState(stored_state, type, captures_started()); builder = stored_state->builder(); continue; } case '[': { RegExpTree* atom = ParseCharacterClass(CHECK_FAILED); builder->AddAtom(atom); break; } // Atom :: // \ AtomEscape case '\\': switch (Next()) { case kEndMarker: return ReportError(CStrVector("\\ at end of pattern")); case 'b': Advance(2); builder->AddAssertion( new(zone()) RegExpAssertion(RegExpAssertion::BOUNDARY)); continue; case 'B': Advance(2); builder->AddAssertion( new(zone()) RegExpAssertion(RegExpAssertion::NON_BOUNDARY)); continue; // AtomEscape :: // CharacterClassEscape // // CharacterClassEscape :: one of // d D s S w W case 'd': case 'D': case 's': case 'S': case 'w': case 'W': { uc32 c = Next(); Advance(2); ZoneList<CharacterRange>* ranges = new(zone()) ZoneList<CharacterRange>(2); CharacterRange::AddClassEscape(c, ranges); RegExpTree* atom = new(zone()) RegExpCharacterClass(ranges, false); builder->AddAtom(atom); break; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int index = 0; if (ParseBackReferenceIndex(&index)) { RegExpCapture* capture = NULL; if (captures_ != NULL && index <= captures_->length()) { capture = captures_->at(index - 1); } if (capture == NULL) { builder->AddEmpty(); break; } RegExpTree* atom = new(zone()) RegExpBackReference(capture); builder->AddAtom(atom); break; } uc32 first_digit = Next(); if (first_digit == '8' || first_digit == '9') { // Treat as identity escape builder->AddCharacter(first_digit); Advance(2); break; } } // FALLTHROUGH case '0': { Advance(); uc32 octal = ParseOctalLiteral(); builder->AddCharacter(octal); break; } // ControlEscape :: one of // f n r t v case 'f': Advance(2); builder->AddCharacter('\f'); break; case 'n': Advance(2); builder->AddCharacter('\n'); break; case 'r': Advance(2); builder->AddCharacter('\r'); break; case 't': Advance(2); builder->AddCharacter('\t'); break; case 'v': Advance(2); builder->AddCharacter('\v'); break; case 'c': { Advance(); uc32 controlLetter = Next(); // Special case if it is an ASCII letter. // Convert lower case letters to uppercase. uc32 letter = controlLetter & ~('a' ^ 'A'); if (letter < 'A' || 'Z' < letter) { // controlLetter is not in range 'A'-'Z' or 'a'-'z'. // This is outside the specification. We match JSC in // reading the backslash as a literal character instead // of as starting an escape. builder->AddCharacter('\\'); } else { Advance(2); builder->AddCharacter(controlLetter & 0x1f); } break; } case 'x': { Advance(2); uc32 value; if (ParseHexEscape(2, &value)) { builder->AddCharacter(value); } else { builder->AddCharacter('x'); } break; } case 'u': { Advance(2); uc32 value; if (ParseHexEscape(4, &value)) { builder->AddCharacter(value); } else { builder->AddCharacter('u'); } break; } default: // Identity escape. builder->AddCharacter(Next()); Advance(2); break; } break; case '{': { int dummy; if (ParseIntervalQuantifier(&dummy, &dummy)) { ReportError(CStrVector("Nothing to repeat") CHECK_FAILED); } // fallthrough } default: builder->AddCharacter(current()); Advance(); break; } // end switch(current()) int min; int max; switch (current()) { // QuantifierPrefix :: // * // + // ? // { case '*': min = 0; max = RegExpTree::kInfinity; Advance(); break; case '+': min = 1; max = RegExpTree::kInfinity; Advance(); break; case '?': min = 0; max = 1; Advance(); break; case '{': if (ParseIntervalQuantifier(&min, &max)) { if (max < min) { ReportError(CStrVector("numbers out of order in {} quantifier.") CHECK_FAILED); } break; } else { continue; } default: continue; } RegExpQuantifier::Type type = RegExpQuantifier::GREEDY; if (current() == '?') { type = RegExpQuantifier::NON_GREEDY; Advance(); } else if (FLAG_regexp_possessive_quantifier && current() == '+') { // FLAG_regexp_possessive_quantifier is a debug-only flag. type = RegExpQuantifier::POSSESSIVE; Advance(); } builder->AddQuantifierToAtom(min, max, type); } } #ifdef DEBUG // Currently only used in an ASSERT. static bool IsSpecialClassEscape(uc32 c) { switch (c) { case 'd': case 'D': case 's': case 'S': case 'w': case 'W': return true; default: return false; } } #endif // In order to know whether an escape is a backreference or not we have to scan // the entire regexp and find the number of capturing parentheses. However we // don't want to scan the regexp twice unless it is necessary. This mini-parser // is called when needed. It can see the difference between capturing and // noncapturing parentheses and can skip character classes and backslash-escaped // characters. void RegExpParser::ScanForCaptures() { // Start with captures started previous to current position int capture_count = captures_started(); // Add count of captures after this position. int n; while ((n = current()) != kEndMarker) { Advance(); switch (n) { case '\\': Advance(); break; case '[': { int c; while ((c = current()) != kEndMarker) { Advance(); if (c == '\\') { Advance(); } else { if (c == ']') break; } } break; } case '(': if (current() != '?') capture_count++; break; } } capture_count_ = capture_count; is_scanned_for_captures_ = true; } bool RegExpParser::ParseBackReferenceIndex(int* index_out) { ASSERT_EQ('\\', current()); ASSERT('1' <= Next() && Next() <= '9'); // Try to parse a decimal literal that is no greater than the total number // of left capturing parentheses in the input. int start = position(); int value = Next() - '0'; Advance(2); while (true) { uc32 c = current(); if (IsDecimalDigit(c)) { value = 10 * value + (c - '0'); if (value > kMaxCaptures) { Reset(start); return false; } Advance(); } else { break; } } if (value > captures_started()) { if (!is_scanned_for_captures_) { int saved_position = position(); ScanForCaptures(); Reset(saved_position); } if (value > capture_count_) { Reset(start); return false; } } *index_out = value; return true; } // QuantifierPrefix :: // { DecimalDigits } // { DecimalDigits , } // { DecimalDigits , DecimalDigits } // // Returns true if parsing succeeds, and set the min_out and max_out // values. Values are truncated to RegExpTree::kInfinity if they overflow. bool RegExpParser::ParseIntervalQuantifier(int* min_out, int* max_out) { ASSERT_EQ(current(), '{'); int start = position(); Advance(); int min = 0; if (!IsDecimalDigit(current())) { Reset(start); return false; } while (IsDecimalDigit(current())) { int next = current() - '0'; if (min > (RegExpTree::kInfinity - next) / 10) { // Overflow. Skip past remaining decimal digits and return -1. do { Advance(); } while (IsDecimalDigit(current())); min = RegExpTree::kInfinity; break; } min = 10 * min + next; Advance(); } int max = 0; if (current() == '}') { max = min; Advance(); } else if (current() == ',') { Advance(); if (current() == '}') { max = RegExpTree::kInfinity; Advance(); } else { while (IsDecimalDigit(current())) { int next = current() - '0'; if (max > (RegExpTree::kInfinity - next) / 10) { do { Advance(); } while (IsDecimalDigit(current())); max = RegExpTree::kInfinity; break; } max = 10 * max + next; Advance(); } if (current() != '}') { Reset(start); return false; } Advance(); } } else { Reset(start); return false; } *min_out = min; *max_out = max; return true; } uc32 RegExpParser::ParseOctalLiteral() { ASSERT('0' <= current() && current() <= '7'); // For compatibility with some other browsers (not all), we parse // up to three octal digits with a value below 256. uc32 value = current() - '0'; Advance(); if ('0' <= current() && current() <= '7') { value = value * 8 + current() - '0'; Advance(); if (value < 32 && '0' <= current() && current() <= '7') { value = value * 8 + current() - '0'; Advance(); } } return value; } bool RegExpParser::ParseHexEscape(int length, uc32 *value) { int start = position(); uc32 val = 0; bool done = false; for (int i = 0; !done; i++) { uc32 c = current(); int d = HexValue(c); if (d < 0) { Reset(start); return false; } val = val * 16 + d; Advance(); if (i == length - 1) { done = true; } } *value = val; return true; } uc32 RegExpParser::ParseClassCharacterEscape() { ASSERT(current() == '\\'); ASSERT(has_next() && !IsSpecialClassEscape(Next())); Advance(); switch (current()) { case 'b': Advance(); return '\b'; // ControlEscape :: one of // f n r t v case 'f': Advance(); return '\f'; case 'n': Advance(); return '\n'; case 'r': Advance(); return '\r'; case 't': Advance(); return '\t'; case 'v': Advance(); return '\v'; case 'c': { uc32 controlLetter = Next(); uc32 letter = controlLetter & ~('A' ^ 'a'); // For compatibility with JSC, inside a character class // we also accept digits and underscore as control characters. if ((controlLetter >= '0' && controlLetter <= '9') || controlLetter == '_' || (letter >= 'A' && letter <= 'Z')) { Advance(2); // Control letters mapped to ASCII control characters in the range // 0x00-0x1f. return controlLetter & 0x1f; } // We match JSC in reading the backslash as a literal // character instead of as starting an escape. return '\\'; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': // For compatibility, we interpret a decimal escape that isn't // a back reference (and therefore either \0 or not valid according // to the specification) as a 1..3 digit octal character code. return ParseOctalLiteral(); case 'x': { Advance(); uc32 value; if (ParseHexEscape(2, &value)) { return value; } // If \x is not followed by a two-digit hexadecimal, treat it // as an identity escape. return 'x'; } case 'u': { Advance(); uc32 value; if (ParseHexEscape(4, &value)) { return value; } // If \u is not followed by a four-digit hexadecimal, treat it // as an identity escape. return 'u'; } default: { // Extended identity escape. We accept any character that hasn't // been matched by a more specific case, not just the subset required // by the ECMAScript specification. uc32 result = current(); Advance(); return result; } } return 0; } CharacterRange RegExpParser::ParseClassAtom(uc16* char_class) { ASSERT_EQ(0, *char_class); uc32 first = current(); if (first == '\\') { switch (Next()) { case 'w': case 'W': case 'd': case 'D': case 's': case 'S': { *char_class = Next(); Advance(2); return CharacterRange::Singleton(0); // Return dummy value. } case kEndMarker: return ReportError(CStrVector("\\ at end of pattern")); default: uc32 c = ParseClassCharacterEscape(CHECK_FAILED); return CharacterRange::Singleton(c); } } else { Advance(); return CharacterRange::Singleton(first); } } static const uc16 kNoCharClass = 0; // Adds range or pre-defined character class to character ranges. // If char_class is not kInvalidClass, it's interpreted as a class // escape (i.e., 's' means whitespace, from '\s'). static inline void AddRangeOrEscape(ZoneList<CharacterRange>* ranges, uc16 char_class, CharacterRange range) { if (char_class != kNoCharClass) { CharacterRange::AddClassEscape(char_class, ranges); } else { ranges->Add(range); } } RegExpTree* RegExpParser::ParseCharacterClass() { static const char* kUnterminated = "Unterminated character class"; static const char* kRangeOutOfOrder = "Range out of order in character class"; ASSERT_EQ(current(), '['); Advance(); bool is_negated = false; if (current() == '^') { is_negated = true; Advance(); } ZoneList<CharacterRange>* ranges = new(zone()) ZoneList<CharacterRange>(2); while (has_more() && current() != ']') { uc16 char_class = kNoCharClass; CharacterRange first = ParseClassAtom(&char_class CHECK_FAILED); if (current() == '-') { Advance(); if (current() == kEndMarker) { // If we reach the end we break out of the loop and let the // following code report an error. break; } else if (current() == ']') { AddRangeOrEscape(ranges, char_class, first); ranges->Add(CharacterRange::Singleton('-')); break; } uc16 char_class_2 = kNoCharClass; CharacterRange next = ParseClassAtom(&char_class_2 CHECK_FAILED); if (char_class != kNoCharClass || char_class_2 != kNoCharClass) { // Either end is an escaped character class. Treat the '-' verbatim. AddRangeOrEscape(ranges, char_class, first); ranges->Add(CharacterRange::Singleton('-')); AddRangeOrEscape(ranges, char_class_2, next); continue; } if (first.from() > next.to()) { return ReportError(CStrVector(kRangeOutOfOrder) CHECK_FAILED); } ranges->Add(CharacterRange::Range(first.from(), next.to())); } else { AddRangeOrEscape(ranges, char_class, first); } } if (!has_more()) { return ReportError(CStrVector(kUnterminated) CHECK_FAILED); } Advance(); if (ranges->length() == 0) { ranges->Add(CharacterRange::Everything()); is_negated = !is_negated; } return new(zone()) RegExpCharacterClass(ranges, is_negated); } // ---------------------------------------------------------------------------- // The Parser interface. ParserMessage::~ParserMessage() { for (int i = 0; i < args().length(); i++) DeleteArray(args()[i]); DeleteArray(args().start()); } ScriptDataImpl::~ScriptDataImpl() { if (owns_store_) store_.Dispose(); } int ScriptDataImpl::Length() { return store_.length() * sizeof(unsigned); } const char* ScriptDataImpl::Data() { return reinterpret_cast<const char*>(store_.start()); } bool ScriptDataImpl::HasError() { return has_error(); } void ScriptDataImpl::Initialize() { // Prepares state for use. if (store_.length() >= PreparseDataConstants::kHeaderSize) { function_index_ = PreparseDataConstants::kHeaderSize; int symbol_data_offset = PreparseDataConstants::kHeaderSize + store_[PreparseDataConstants::kFunctionsSizeOffset]; if (store_.length() > symbol_data_offset) { symbol_data_ = reinterpret_cast<byte*>(&store_[symbol_data_offset]); } else { // Partial preparse causes no symbol information. symbol_data_ = reinterpret_cast<byte*>(&store_[0] + store_.length()); } symbol_data_end_ = reinterpret_cast<byte*>(&store_[0] + store_.length()); } } int ScriptDataImpl::ReadNumber(byte** source) { // Reads a number from symbol_data_ in base 128. The most significant // bit marks that there are more digits. // If the first byte is 0x80 (kNumberTerminator), it would normally // represent a leading zero. Since that is useless, and therefore won't // appear as the first digit of any actual value, it is used to // mark the end of the input stream. byte* data = *source; if (data >= symbol_data_end_) return -1; byte input = *data; if (input == PreparseDataConstants::kNumberTerminator) { // End of stream marker. return -1; } int result = input & 0x7f; data++; while ((input & 0x80u) != 0) { if (data >= symbol_data_end_) return -1; input = *data; result = (result << 7) | (input & 0x7f); data++; } *source = data; return result; } // Create a Scanner for the preparser to use as input, and preparse the source. static ScriptDataImpl* DoPreParse(Utf16CharacterStream* source, int flags, ParserRecorder* recorder) { Isolate* isolate = Isolate::Current(); HistogramTimerScope timer(isolate->counters()->pre_parse()); Scanner scanner(isolate->unicode_cache()); scanner.SetHarmonyScoping(FLAG_harmony_scoping); scanner.Initialize(source); intptr_t stack_limit = isolate->stack_guard()->real_climit(); preparser::PreParser::PreParseResult result = preparser::PreParser::PreParseProgram(&scanner, recorder, flags, stack_limit); if (result == preparser::PreParser::kPreParseStackOverflow) { isolate->StackOverflow(); return NULL; } // Extract the accumulated data from the recorder as a single // contiguous vector that we are responsible for disposing. Vector<unsigned> store = recorder->ExtractData(); return new ScriptDataImpl(store); } // Preparse, but only collect data that is immediately useful, // even if the preparser data is only used once. ScriptDataImpl* ParserApi::PartialPreParse(Handle<String> source, v8::Extension* extension, int flags) { bool allow_lazy = FLAG_lazy && (extension == NULL); if (!allow_lazy) { // Partial preparsing is only about lazily compiled functions. // If we don't allow lazy compilation, the log data will be empty. return NULL; } flags |= kAllowLazy; PartialParserRecorder recorder; int source_length = source->length(); if (source->IsExternalTwoByteString()) { ExternalTwoByteStringUtf16CharacterStream stream( Handle<ExternalTwoByteString>::cast(source), 0, source_length); return DoPreParse(&stream, flags, &recorder); } else { GenericStringUtf16CharacterStream stream(source, 0, source_length); return DoPreParse(&stream, flags, &recorder); } } ScriptDataImpl* ParserApi::PreParse(Utf16CharacterStream* source, v8::Extension* extension, int flags) { Handle<Script> no_script; if (FLAG_lazy && (extension == NULL)) { flags |= kAllowLazy; } CompleteParserRecorder recorder; return DoPreParse(source, flags, &recorder); } bool RegExpParser::ParseRegExp(FlatStringReader* input, bool multiline, RegExpCompileData* result) { ASSERT(result != NULL); RegExpParser parser(input, &result->error, multiline); RegExpTree* tree = parser.ParsePattern(); if (parser.failed()) { ASSERT(tree == NULL); ASSERT(!result->error.is_null()); } else { ASSERT(tree != NULL); ASSERT(result->error.is_null()); result->tree = tree; int capture_count = parser.captures_started(); result->simple = tree->IsAtom() && parser.simple() && capture_count == 0; result->contains_anchor = parser.contains_anchor(); result->capture_count = capture_count; } return !parser.failed(); } bool ParserApi::Parse(CompilationInfo* info, int parsing_flags) { ASSERT(info->function() == NULL); FunctionLiteral* result = NULL; Handle<Script> script = info->script(); ASSERT((parsing_flags & kLanguageModeMask) == CLASSIC_MODE); if (!info->is_native() && FLAG_harmony_scoping) { // Harmony scoping is requested. parsing_flags |= EXTENDED_MODE; } if (!info->is_native() && FLAG_harmony_modules) { parsing_flags |= kAllowModules; } if (FLAG_allow_natives_syntax || info->is_native()) { // We require %identifier(..) syntax. parsing_flags |= kAllowNativesSyntax; } if (info->is_lazy()) { ASSERT(!info->is_eval()); Parser parser(script, parsing_flags, NULL, NULL); if (info->shared_info()->is_function()) { result = parser.ParseLazy(info); } else { result = parser.ParseProgram(info); } } else { ScriptDataImpl* pre_data = info->pre_parse_data(); Parser parser(script, parsing_flags, info->extension(), pre_data); if (pre_data != NULL && pre_data->has_error()) { Scanner::Location loc = pre_data->MessageLocation(); const char* message = pre_data->BuildMessage(); Vector<const char*> args = pre_data->BuildArgs(); parser.ReportMessageAt(loc, message, args); DeleteArray(message); for (int i = 0; i < args.length(); i++) { DeleteArray(args[i]); } DeleteArray(args.start()); ASSERT(info->isolate()->has_pending_exception()); } else { result = parser.ParseProgram(info); } } info->SetFunction(result); return (result != NULL); } } } // namespace v8::internal