// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for Solaris 10 goes here. For the POSIX comaptible // parts the implementation is in platform-posix.cc. #ifdef __sparc # error "V8 does not support the SPARC CPU architecture." #endif #include <sys/stack.h> // for stack alignment #include <unistd.h> // getpagesize(), usleep() #include <sys/mman.h> // mmap() #include <ucontext.h> // walkstack(), getcontext() #include <dlfcn.h> // dladdr #include <pthread.h> #include <sched.h> // for sched_yield #include <semaphore.h> #include <time.h> #include <sys/time.h> // gettimeofday(), timeradd() #include <errno.h> #include <ieeefp.h> // finite() #include <signal.h> // sigemptyset(), etc #include <sys/regset.h> #undef MAP_TYPE #include "v8.h" #include "platform-posix.h" #include "platform.h" #include "v8threads.h" #include "vm-state-inl.h" // It seems there is a bug in some Solaris distributions (experienced in // SunOS 5.10 Generic_141445-09) which make it difficult or impossible to // access signbit() despite the availability of other C99 math functions. #ifndef signbit // Test sign - usually defined in math.h int signbit(double x) { // We need to take care of the special case of both positive and negative // versions of zero. if (x == 0) { return fpclass(x) & FP_NZERO; } else { // This won't detect negative NaN but that should be okay since we don't // assume that behavior. return x < 0; } } #endif // signbit namespace v8 { namespace internal { // 0 is never a valid thread id on Solaris since the main thread is 1 and // subsequent have their ids incremented from there static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { return ceil(x); } static Mutex* limit_mutex = NULL; void OS::SetUp() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly will cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); srandom(static_cast<unsigned int>(seed)); limit_mutex = CreateMutex(); } void OS::PostSetUp() { // Math functions depend on CPU features therefore they are initialized after // CPU. MathSetup(); } uint64_t OS::CpuFeaturesImpliedByPlatform() { return 0; // Solaris runs on a lot of things. } int OS::ActivationFrameAlignment() { // GCC generates code that requires 16 byte alignment such as movdqa. return Max(STACK_ALIGN, 16); } void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { __asm__ __volatile__("" : : : "memory"); *ptr = value; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast<time_t>(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return tzname[0]; // The location of the timezone string on Solaris. } double OS::LocalTimeOffset() { // On Solaris, struct tm does not contain a tm_gmtoff field. time_t utc = time(NULL); ASSERT(utc != -1); struct tm* loc = localtime(&utc); ASSERT(loc != NULL); return static_cast<double>((mktime(loc) - utc) * msPerSecond); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, i.e., not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); static void* highest_ever_allocated = reinterpret_cast<void*>(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { ASSERT(limit_mutex != NULL); ScopedLock lock(limit_mutex); lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return static_cast<size_t>(getpagesize()); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, getpagesize()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); if (mbase == MAP_FAILED) { LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } void OS::Sleep(int milliseconds) { useconds_t ms = static_cast<useconds_t>(milliseconds); usleep(1000 * ms); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination. abort(); } void OS::DebugBreak() { asm("int $3"); } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) munmap(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { } void OS::SignalCodeMovingGC() { } struct StackWalker { Vector<OS::StackFrame>& frames; int index; }; static int StackWalkCallback(uintptr_t pc, int signo, void* data) { struct StackWalker* walker = static_cast<struct StackWalker*>(data); Dl_info info; int i = walker->index; walker->frames[i].address = reinterpret_cast<void*>(pc); // Make sure line termination is in place. walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0'; Vector<char> text = MutableCStrVector(walker->frames[i].text, OS::kStackWalkMaxTextLen); if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) { OS::SNPrintF(text, "[0x%p]", pc); } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) { // We have symbol info. OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc); } else { // No local symbol info. OS::SNPrintF(text, "%s'0x%p [0x%p]", info.dli_fname, pc - reinterpret_cast<uintptr_t>(info.dli_fbase), pc); } walker->index++; return 0; } int OS::StackWalk(Vector<OS::StackFrame> frames) { ucontext_t ctx; struct StackWalker walker = { frames, 0 }; if (getcontext(&ctx) < 0) return kStackWalkError; if (!walkcontext(&ctx, StackWalkCallback, &walker)) { return kStackWalkError; } return walker.index; } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } VirtualMemory::VirtualMemory(size_t size) { address_ = ReserveRegion(size); size_ = size; } VirtualMemory::VirtualMemory(size_t size, size_t alignment) : address_(NULL), size_(0) { ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); size_t request_size = RoundUp(size + alignment, static_cast<intptr_t>(OS::AllocateAlignment())); void* reservation = mmap(OS::GetRandomMmapAddr(), request_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (reservation == MAP_FAILED) return; Address base = static_cast<Address>(reservation); Address aligned_base = RoundUp(base, alignment); ASSERT_LE(base, aligned_base); // Unmap extra memory reserved before and after the desired block. if (aligned_base != base) { size_t prefix_size = static_cast<size_t>(aligned_base - base); OS::Free(base, prefix_size); request_size -= prefix_size; } size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); ASSERT_LE(aligned_size, request_size); if (aligned_size != request_size) { size_t suffix_size = request_size - aligned_size; OS::Free(aligned_base + aligned_size, suffix_size); request_size -= suffix_size; } ASSERT(aligned_size == request_size); address_ = static_cast<void*>(aligned_base); size_ = aligned_size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { bool result = ReleaseRegion(address(), size()); ASSERT(result); USE(result); } } bool VirtualMemory::IsReserved() { return address_ != NULL; } void VirtualMemory::Reset() { address_ = NULL; size_ = 0; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { return CommitRegion(address, size, is_executable); } bool VirtualMemory::Uncommit(void* address, size_t size) { return UncommitRegion(address, size); } bool VirtualMemory::Guard(void* address) { OS::Guard(address, OS::CommitPageSize()); return true; } void* VirtualMemory::ReserveRegion(size_t size) { void* result = mmap(OS::GetRandomMmapAddr(), size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (result == MAP_FAILED) return NULL; return result; } bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(base, size, prot, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(base, size); return true; } bool VirtualMemory::UncommitRegion(void* base, size_t size) { return mmap(base, size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } bool VirtualMemory::ReleaseRegion(void* base, size_t size) { return munmap(base, size) == 0; } class Thread::PlatformData : public Malloced { public: PlatformData() : thread_(kNoThread) { } pthread_t thread_; // Thread handle for pthread. }; Thread::Thread(const Options& options) : data_(new PlatformData()), stack_size_(options.stack_size()) { set_name(options.name()); } Thread::~Thread() { delete data_; } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast<Thread*>(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->data()->thread_ = pthread_self(); ASSERT(thread->data()->thread_ != kNoThread); thread->Run(); return NULL; } void Thread::set_name(const char* name) { strncpy(name_, name, sizeof(name_)); name_[sizeof(name_) - 1] = '\0'; } void Thread::Start() { pthread_attr_t* attr_ptr = NULL; pthread_attr_t attr; if (stack_size_ > 0) { pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_)); attr_ptr = &attr; } pthread_create(&data_->thread_, NULL, ThreadEntry, this); ASSERT(data_->thread_ != kNoThread); } void Thread::Join() { pthread_join(data_->thread_, NULL); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return static_cast<LocalStorageKey>(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class SolarisMutex : public Mutex { public: SolarisMutex() { pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&mutex_, &attr); } ~SolarisMutex() { pthread_mutex_destroy(&mutex_); } int Lock() { return pthread_mutex_lock(&mutex_); } int Unlock() { return pthread_mutex_unlock(&mutex_); } virtual bool TryLock() { int result = pthread_mutex_trylock(&mutex_); // Return false if the lock is busy and locking failed. if (result == EBUSY) { return false; } ASSERT(result == 0); // Verify no other errors. return true; } private: pthread_mutex_t mutex_; }; Mutex* OS::CreateMutex() { return new SolarisMutex(); } class SolarisSemaphore : public Semaphore { public: explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); } virtual ~SolarisSemaphore() { sem_destroy(&sem_); } virtual void Wait(); virtual bool Wait(int timeout); virtual void Signal() { sem_post(&sem_); } private: sem_t sem_; }; void SolarisSemaphore::Wait() { while (true) { int result = sem_wait(&sem_); if (result == 0) return; // Successfully got semaphore. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } #ifndef TIMEVAL_TO_TIMESPEC #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ (ts)->tv_sec = (tv)->tv_sec; \ (ts)->tv_nsec = (tv)->tv_usec * 1000; \ } while (false) #endif #ifndef timeradd #define timeradd(a, b, result) \ do { \ (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \ (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \ if ((result)->tv_usec >= 1000000) { \ ++(result)->tv_sec; \ (result)->tv_usec -= 1000000; \ } \ } while (0) #endif bool SolarisSemaphore::Wait(int timeout) { const long kOneSecondMicros = 1000000; // NOLINT // Split timeout into second and nanosecond parts. struct timeval delta; delta.tv_usec = timeout % kOneSecondMicros; delta.tv_sec = timeout / kOneSecondMicros; struct timeval current_time; // Get the current time. if (gettimeofday(¤t_time, NULL) == -1) { return false; } // Calculate time for end of timeout. struct timeval end_time; timeradd(¤t_time, &delta, &end_time); struct timespec ts; TIMEVAL_TO_TIMESPEC(&end_time, &ts); // Wait for semaphore signalled or timeout. while (true) { int result = sem_timedwait(&sem_, &ts); if (result == 0) return true; // Successfully got semaphore. if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } Semaphore* OS::CreateSemaphore(int count) { return new SolarisSemaphore(count); } static pthread_t GetThreadID() { return pthread_self(); } static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { USE(info); if (signal != SIGPROF) return; Isolate* isolate = Isolate::UncheckedCurrent(); if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) { // We require a fully initialized and entered isolate. return; } if (v8::Locker::IsActive() && !isolate->thread_manager()->IsLockedByCurrentThread()) { return; } Sampler* sampler = isolate->logger()->sampler(); if (sampler == NULL || !sampler->IsActive()) return; TickSample sample_obj; TickSample* sample = CpuProfiler::TickSampleEvent(isolate); if (sample == NULL) sample = &sample_obj; // Extracting the sample from the context is extremely machine dependent. ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); mcontext_t& mcontext = ucontext->uc_mcontext; sample->state = isolate->current_vm_state(); sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]); sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]); sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]); sampler->SampleStack(sample); sampler->Tick(sample); } class Sampler::PlatformData : public Malloced { public: PlatformData() : vm_tid_(GetThreadID()) {} pthread_t vm_tid() const { return vm_tid_; } private: pthread_t vm_tid_; }; class SignalSender : public Thread { public: enum SleepInterval { HALF_INTERVAL, FULL_INTERVAL }; static const int kSignalSenderStackSize = 64 * KB; explicit SignalSender(int interval) : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)), interval_(interval) {} static void InstallSignalHandler() { struct sigaction sa; sa.sa_sigaction = ProfilerSignalHandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART | SA_SIGINFO; signal_handler_installed_ = (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0); } static void RestoreSignalHandler() { if (signal_handler_installed_) { sigaction(SIGPROF, &old_signal_handler_, 0); signal_handler_installed_ = false; } } static void AddActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_.Pointer()); SamplerRegistry::AddActiveSampler(sampler); if (instance_ == NULL) { // Start a thread that will send SIGPROF signal to VM threads, // when CPU profiling will be enabled. instance_ = new SignalSender(sampler->interval()); instance_->Start(); } else { ASSERT(instance_->interval_ == sampler->interval()); } } static void RemoveActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_.Pointer()); SamplerRegistry::RemoveActiveSampler(sampler); if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); delete instance_; instance_ = NULL; RestoreSignalHandler(); } } // Implement Thread::Run(). virtual void Run() { SamplerRegistry::State state; while ((state = SamplerRegistry::GetState()) != SamplerRegistry::HAS_NO_SAMPLERS) { bool cpu_profiling_enabled = (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); if (cpu_profiling_enabled && !signal_handler_installed_) { InstallSignalHandler(); } else if (!cpu_profiling_enabled && signal_handler_installed_) { RestoreSignalHandler(); } // When CPU profiling is enabled both JavaScript and C++ code is // profiled. We must not suspend. if (!cpu_profiling_enabled) { if (rate_limiter_.SuspendIfNecessary()) continue; } if (cpu_profiling_enabled && runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } Sleep(HALF_INTERVAL); if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } Sleep(HALF_INTERVAL); } else { if (cpu_profiling_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } } if (runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } } Sleep(FULL_INTERVAL); } } } static void DoCpuProfile(Sampler* sampler, void* raw_sender) { if (!sampler->IsProfiling()) return; SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender); sender->SendProfilingSignal(sampler->platform_data()->vm_tid()); } static void DoRuntimeProfile(Sampler* sampler, void* ignored) { if (!sampler->isolate()->IsInitialized()) return; sampler->isolate()->runtime_profiler()->NotifyTick(); } void SendProfilingSignal(pthread_t tid) { if (!signal_handler_installed_) return; pthread_kill(tid, SIGPROF); } void Sleep(SleepInterval full_or_half) { // Convert ms to us and subtract 100 us to compensate delays // occuring during signal delivery. useconds_t interval = interval_ * 1000 - 100; if (full_or_half == HALF_INTERVAL) interval /= 2; int result = usleep(interval); #ifdef DEBUG if (result != 0 && errno != EINTR) { fprintf(stderr, "SignalSender usleep error; interval = %u, errno = %d\n", interval, errno); ASSERT(result == 0 || errno == EINTR); } #endif USE(result); } const int interval_; RuntimeProfilerRateLimiter rate_limiter_; // Protects the process wide state below. static LazyMutex mutex_; static SignalSender* instance_; static bool signal_handler_installed_; static struct sigaction old_signal_handler_; private: DISALLOW_COPY_AND_ASSIGN(SignalSender); }; LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER; SignalSender* SignalSender::instance_ = NULL; struct sigaction SignalSender::old_signal_handler_; bool SignalSender::signal_handler_installed_ = false; Sampler::Sampler(Isolate* isolate, int interval) : isolate_(isolate), interval_(interval), profiling_(false), active_(false), samples_taken_(0) { data_ = new PlatformData; } Sampler::~Sampler() { ASSERT(!IsActive()); delete data_; } void Sampler::Start() { ASSERT(!IsActive()); SetActive(true); SignalSender::AddActiveSampler(this); } void Sampler::Stop() { ASSERT(IsActive()); SignalSender::RemoveActiveSampler(this); SetActive(false); } } } // namespace v8::internal