// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>

#ifdef __linux__
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#endif

#include "v8.h"

#include "global-handles.h"
#include "snapshot.h"
#include "cctest.h"

using namespace v8::internal;

static v8::Persistent<v8::Context> env;

static void InitializeVM() {
  if (env.IsEmpty()) env = v8::Context::New();
  v8::HandleScope scope;
  env->Enter();
}


TEST(MarkingDeque) {
  int mem_size = 20 * kPointerSize;
  byte* mem = NewArray<byte>(20*kPointerSize);
  Address low = reinterpret_cast<Address>(mem);
  Address high = low + mem_size;
  MarkingDeque s;
  s.Initialize(low, high);

  Address address = NULL;
  while (!s.IsFull()) {
    s.PushBlack(HeapObject::FromAddress(address));
    address += kPointerSize;
  }

  while (!s.IsEmpty()) {
    Address value = s.Pop()->address();
    address -= kPointerSize;
    CHECK_EQ(address, value);
  }

  CHECK_EQ(NULL, address);
  DeleteArray(mem);
}


TEST(Promotion) {
  // This test requires compaction. If compaction is turned off, we
  // skip the entire test.
  if (FLAG_never_compact) return;

  // Ensure that we get a compacting collection so that objects are promoted
  // from new space.
  FLAG_gc_global = true;
  FLAG_always_compact = true;
  HEAP->ConfigureHeap(2*256*KB, 8*MB, 8*MB);

  InitializeVM();

  v8::HandleScope sc;

  // Allocate a fixed array in the new space.
  int array_size =
      (Page::kMaxNonCodeHeapObjectSize - FixedArray::kHeaderSize) /
      (kPointerSize * 4);
  Object* obj = HEAP->AllocateFixedArray(array_size)->ToObjectChecked();

  Handle<FixedArray> array(FixedArray::cast(obj));

  // Array should be in the new space.
  CHECK(HEAP->InSpace(*array, NEW_SPACE));

  // Call the m-c collector, so array becomes an old object.
  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  // Array now sits in the old space
  CHECK(HEAP->InSpace(*array, OLD_POINTER_SPACE));
}


TEST(NoPromotion) {
  HEAP->ConfigureHeap(2*256*KB, 8*MB, 8*MB);

  // Test the situation that some objects in new space are promoted to
  // the old space
  InitializeVM();

  v8::HandleScope sc;

  // Do a mark compact GC to shrink the heap.
  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  // Allocate a big Fixed array in the new space.
  int max_size =
      Min(Page::kMaxNonCodeHeapObjectSize, HEAP->MaxObjectSizeInNewSpace());

  int length = (max_size - FixedArray::kHeaderSize) / (2*kPointerSize);
  Object* obj = i::Isolate::Current()->heap()->AllocateFixedArray(length)->
      ToObjectChecked();

  Handle<FixedArray> array(FixedArray::cast(obj));

  // Array still stays in the new space.
  CHECK(HEAP->InSpace(*array, NEW_SPACE));

  // Allocate objects in the old space until out of memory.
  FixedArray* host = *array;
  while (true) {
    Object* obj;
    { MaybeObject* maybe_obj = HEAP->AllocateFixedArray(100, TENURED);
      if (!maybe_obj->ToObject(&obj)) break;
    }

    host->set(0, obj);
    host = FixedArray::cast(obj);
  }

  // Call mark compact GC, and it should pass.
  HEAP->CollectGarbage(OLD_POINTER_SPACE);
}


TEST(MarkCompactCollector) {
  InitializeVM();

  v8::HandleScope sc;
  // call mark-compact when heap is empty
  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  // keep allocating garbage in new space until it fails
  const int ARRAY_SIZE = 100;
  Object* array;
  MaybeObject* maybe_array;
  do {
    maybe_array = HEAP->AllocateFixedArray(ARRAY_SIZE);
  } while (maybe_array->ToObject(&array));
  HEAP->CollectGarbage(NEW_SPACE);

  array = HEAP->AllocateFixedArray(ARRAY_SIZE)->ToObjectChecked();

  // keep allocating maps until it fails
  Object* mapp;
  MaybeObject* maybe_mapp;
  do {
    maybe_mapp = HEAP->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
  } while (maybe_mapp->ToObject(&mapp));
  HEAP->CollectGarbage(MAP_SPACE);
  mapp = HEAP->AllocateMap(JS_OBJECT_TYPE,
                           JSObject::kHeaderSize)->ToObjectChecked();

  // allocate a garbage
  String* func_name =
      String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked());
  SharedFunctionInfo* function_share = SharedFunctionInfo::cast(
      HEAP->AllocateSharedFunctionInfo(func_name)->ToObjectChecked());
  JSFunction* function = JSFunction::cast(
      HEAP->AllocateFunction(*Isolate::Current()->function_map(),
                             function_share,
                             HEAP->undefined_value())->ToObjectChecked());
  Map* initial_map =
      Map::cast(HEAP->AllocateMap(JS_OBJECT_TYPE,
                                  JSObject::kHeaderSize)->ToObjectChecked());
  function->set_initial_map(initial_map);
  Isolate::Current()->context()->global()->SetProperty(
      func_name, function, NONE, kNonStrictMode)->ToObjectChecked();

  JSObject* obj = JSObject::cast(
      HEAP->AllocateJSObject(function)->ToObjectChecked());
  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  func_name =
      String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked());
  CHECK(Isolate::Current()->context()->global()->HasLocalProperty(func_name));
  Object* func_value = Isolate::Current()->context()->global()->
      GetProperty(func_name)->ToObjectChecked();
  CHECK(func_value->IsJSFunction());
  function = JSFunction::cast(func_value);

  obj = JSObject::cast(HEAP->AllocateJSObject(function)->ToObjectChecked());
  String* obj_name =
      String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked());
  Isolate::Current()->context()->global()->SetProperty(
      obj_name, obj, NONE, kNonStrictMode)->ToObjectChecked();
  String* prop_name =
      String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked());
  obj->SetProperty(prop_name,
                   Smi::FromInt(23),
                   NONE,
                   kNonStrictMode)->ToObjectChecked();

  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  obj_name =
      String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked());
  CHECK(Isolate::Current()->context()->global()->HasLocalProperty(obj_name));
  CHECK(Isolate::Current()->context()->global()->
        GetProperty(obj_name)->ToObjectChecked()->IsJSObject());
  obj = JSObject::cast(Isolate::Current()->context()->global()->
                       GetProperty(obj_name)->ToObjectChecked());
  prop_name =
      String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked());
  CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23));
}


// TODO(1600): compaction of map space is temporary removed from GC.
#if 0
static Handle<Map> CreateMap() {
  return FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}


TEST(MapCompact) {
  FLAG_max_map_space_pages = 16;
  InitializeVM();

  {
    v8::HandleScope sc;
    // keep allocating maps while pointers are still encodable and thus
    // mark compact is permitted.
    Handle<JSObject> root = FACTORY->NewJSObjectFromMap(CreateMap());
    do {
      Handle<Map> map = CreateMap();
      map->set_prototype(*root);
      root = FACTORY->NewJSObjectFromMap(map);
    } while (HEAP->map_space()->MapPointersEncodable());
  }
  // Now, as we don't have any handles to just allocated maps, we should
  // be able to trigger map compaction.
  // To give an additional chance to fail, try to force compaction which
  // should be impossible right now.
  HEAP->CollectAllGarbage(Heap::kForceCompactionMask);
  // And now map pointers should be encodable again.
  CHECK(HEAP->map_space()->MapPointersEncodable());
}
#endif

static int gc_starts = 0;
static int gc_ends = 0;

static void GCPrologueCallbackFunc() {
  CHECK(gc_starts == gc_ends);
  gc_starts++;
}


static void GCEpilogueCallbackFunc() {
  CHECK(gc_starts == gc_ends + 1);
  gc_ends++;
}


TEST(GCCallback) {
  InitializeVM();

  HEAP->SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc);
  HEAP->SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc);

  // Scavenge does not call GC callback functions.
  HEAP->PerformScavenge();

  CHECK_EQ(0, gc_starts);
  CHECK_EQ(gc_ends, gc_starts);

  HEAP->CollectGarbage(OLD_POINTER_SPACE);
  CHECK_EQ(1, gc_starts);
  CHECK_EQ(gc_ends, gc_starts);
}


static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) {
  ASSERT(id == reinterpret_cast<void*>(1234));
  NumberOfWeakCalls++;
  handle.Dispose();
}

TEST(ObjectGroups) {
  InitializeVM();
  GlobalHandles* global_handles = Isolate::Current()->global_handles();

  NumberOfWeakCalls = 0;
  v8::HandleScope handle_scope;

  Handle<Object> g1s1 =
      global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
  Handle<Object> g1s2 =
      global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
  Handle<Object> g1c1 =
      global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
  global_handles->MakeWeak(g1s1.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);
  global_handles->MakeWeak(g1s2.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);
  global_handles->MakeWeak(g1c1.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);

  Handle<Object> g2s1 =
      global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
  Handle<Object> g2s2 =
    global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
  Handle<Object> g2c1 =
    global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
  global_handles->MakeWeak(g2s1.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);
  global_handles->MakeWeak(g2s2.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);
  global_handles->MakeWeak(g2c1.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);

  Handle<Object> root = global_handles->Create(*g1s1);  // make a root.

  // Connect group 1 and 2, make a cycle.
  Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
  Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);

  {
    Object** g1_objects[] = { g1s1.location(), g1s2.location() };
    Object** g1_children[] = { g1c1.location() };
    Object** g2_objects[] = { g2s1.location(), g2s2.location() };
    Object** g2_children[] = { g2c1.location() };
    global_handles->AddObjectGroup(g1_objects, 2, NULL);
    global_handles->AddImplicitReferences(
        Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
    global_handles->AddObjectGroup(g2_objects, 2, NULL);
    global_handles->AddImplicitReferences(
        Handle<HeapObject>::cast(g2s2).location(), g2_children, 1);
  }
  // Do a full GC
  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  // All object should be alive.
  CHECK_EQ(0, NumberOfWeakCalls);

  // Weaken the root.
  global_handles->MakeWeak(root.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);
  // But make children strong roots---all the objects (except for children)
  // should be collectable now.
  global_handles->ClearWeakness(g1c1.location());
  global_handles->ClearWeakness(g2c1.location());

  // Groups are deleted, rebuild groups.
  {
    Object** g1_objects[] = { g1s1.location(), g1s2.location() };
    Object** g1_children[] = { g1c1.location() };
    Object** g2_objects[] = { g2s1.location(), g2s2.location() };
    Object** g2_children[] = { g2c1.location() };
    global_handles->AddObjectGroup(g1_objects, 2, NULL);
    global_handles->AddImplicitReferences(
        Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
    global_handles->AddObjectGroup(g2_objects, 2, NULL);
    global_handles->AddImplicitReferences(
        Handle<HeapObject>::cast(g2s2).location(), g2_children, 1);
  }

  HEAP->CollectGarbage(OLD_POINTER_SPACE);

  // All objects should be gone. 5 global handles in total.
  CHECK_EQ(5, NumberOfWeakCalls);

  // And now make children weak again and collect them.
  global_handles->MakeWeak(g1c1.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);
  global_handles->MakeWeak(g2c1.location(),
                           reinterpret_cast<void*>(1234),
                           &WeakPointerCallback);

  HEAP->CollectGarbage(OLD_POINTER_SPACE);
  CHECK_EQ(7, NumberOfWeakCalls);
}


class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
 public:
  TestRetainedObjectInfo() : has_been_disposed_(false) {}

  bool has_been_disposed() { return has_been_disposed_; }

  virtual void Dispose() {
    ASSERT(!has_been_disposed_);
    has_been_disposed_ = true;
  }

  virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
    return other == this;
  }

  virtual intptr_t GetHash() { return 0; }

  virtual const char* GetLabel() { return "whatever"; }

 private:
  bool has_been_disposed_;
};


TEST(EmptyObjectGroups) {
  InitializeVM();
  GlobalHandles* global_handles = Isolate::Current()->global_handles();

  v8::HandleScope handle_scope;

  Handle<Object> object =
      global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());

  TestRetainedObjectInfo info;
  global_handles->AddObjectGroup(NULL, 0, &info);
  ASSERT(info.has_been_disposed());

  global_handles->AddImplicitReferences(
        Handle<HeapObject>::cast(object).location(), NULL, 0);
}


// Here is a memory use test that uses /proc, and is therefore Linux-only.  We
// do not care how much memory the simulator uses, since it is only there for
// debugging purposes.
#if defined(__linux__) && !defined(USE_SIMULATOR)


static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
  char* end_address = buffer + *position;
  uintptr_t result = strtoul(buffer + *position, &end_address, base);
  CHECK(result != ULONG_MAX || errno != ERANGE);
  CHECK(end_address > buffer + *position);
  *position = end_address - buffer;
  return result;
}


static intptr_t MemoryInUse() {
  intptr_t memory_use = 0;

  int fd = open("/proc/self/maps", O_RDONLY);
  if (fd < 0) return -1;

  const int kBufSize = 10000;
  char buffer[kBufSize];
  int length = read(fd, buffer, kBufSize);
  intptr_t line_start = 0;
  CHECK_LT(length, kBufSize);  // Make the buffer bigger.
  CHECK_GT(length, 0);  // We have to find some data in the file.
  while (line_start < length) {
    if (buffer[line_start] == '\n') {
      line_start++;
      continue;
    }
    intptr_t position = line_start;
    uintptr_t start = ReadLong(buffer, &position, 16);
    CHECK_EQ(buffer[position++], '-');
    uintptr_t end = ReadLong(buffer, &position, 16);
    CHECK_EQ(buffer[position++], ' ');
    CHECK(buffer[position] == '-' || buffer[position] == 'r');
    bool read_permission = (buffer[position++] == 'r');
    CHECK(buffer[position] == '-' || buffer[position] == 'w');
    bool write_permission = (buffer[position++] == 'w');
    CHECK(buffer[position] == '-' || buffer[position] == 'x');
    bool execute_permission = (buffer[position++] == 'x');
    CHECK(buffer[position] == '-' || buffer[position] == 'p');
    bool private_mapping = (buffer[position++] == 'p');
    CHECK_EQ(buffer[position++], ' ');
    uintptr_t offset = ReadLong(buffer, &position, 16);
    USE(offset);
    CHECK_EQ(buffer[position++], ' ');
    uintptr_t major = ReadLong(buffer, &position, 16);
    USE(major);
    CHECK_EQ(buffer[position++], ':');
    uintptr_t minor = ReadLong(buffer, &position, 16);
    USE(minor);
    CHECK_EQ(buffer[position++], ' ');
    uintptr_t inode = ReadLong(buffer, &position, 10);
    while (position < length && buffer[position] != '\n') position++;
    if ((read_permission || write_permission || execute_permission) &&
        private_mapping && inode == 0) {
      memory_use += (end - start);
    }

    line_start = position;
  }
  close(fd);
  return memory_use;
}


TEST(BootUpMemoryUse) {
  intptr_t initial_memory = MemoryInUse();
  FLAG_crankshaft = false;  // Avoid flakiness.
  // Only Linux has the proc filesystem and only if it is mapped.  If it's not
  // there we just skip the test.
  if (initial_memory >= 0) {
    InitializeVM();
    intptr_t booted_memory = MemoryInUse();
    if (sizeof(initial_memory) == 8) {
      if (v8::internal::Snapshot::IsEnabled()) {
        CHECK_LE(booted_memory - initial_memory, 6686 * 1024);  // 6476.
      } else {
        CHECK_LE(booted_memory - initial_memory, 6809 * 1024);  // 6628.
      }
    } else {
      if (v8::internal::Snapshot::IsEnabled()) {
        CHECK_LE(booted_memory - initial_memory, 6532 * 1024);  // 6388.
      } else {
        CHECK_LE(booted_memory - initial_memory, 6940 * 1024);  // 6456
      }
    }
  }
}

#endif  // __linux__ and !USE_SIMULATOR