/*---------------------------------------------------------------*/ /*--- begin test_main.c ---*/ /*---------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2004-2011 OpenWorks LLP info@open-works.net This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The GNU General Public License is contained in the file COPYING. Neither the names of the U.S. Department of Energy nor the University of California nor the names of its contributors may be used to endorse or promote products derived from this software without prior written permission. */ #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <string.h> #include "libvex_basictypes.h" #include "libvex.h" #include "test_main.h" /*---------------------------------------------------------------*/ /*--- Test ---*/ /*---------------------------------------------------------------*/ __attribute__ ((noreturn)) static void failure_exit ( void ) { fprintf(stdout, "VEX did failure_exit. Bye.\n"); exit(1); } static void log_bytes ( HChar* bytes, Int nbytes ) { fwrite ( bytes, 1, nbytes, stdout ); } #define N_LINEBUF 10000 static HChar linebuf[N_LINEBUF]; #define N_ORIGBUF 10000 #define N_TRANSBUF 5000 static UChar origbuf[N_ORIGBUF]; static UChar transbuf[N_TRANSBUF]; static Bool verbose = True; /* Forwards */ #if 1 /* UNUSED */ //static IRSB* ac_instrument ( IRSB*, VexGuestLayout*, IRType ); static IRSB* mc_instrument ( void* closureV, IRSB* bb_in, VexGuestLayout* layout, VexGuestExtents* vge, IRType gWordTy, IRType hWordTy ); #endif static Bool chase_into_not_ok ( void* opaque, Addr64 dst ) { return False; } static UInt needs_self_check ( void* opaque, VexGuestExtents* vge ) { return 0; } int main ( int argc, char** argv ) { FILE* f; Int i; UInt u, sum; Addr32 orig_addr; Int bb_number, n_bbs_done = 0; Int orig_nbytes, trans_used; VexTranslateResult tres; VexControl vcon; VexGuestExtents vge; VexArchInfo vai_x86, vai_amd64, vai_ppc32; VexAbiInfo vbi; VexTranslateArgs vta; if (argc != 2) { fprintf(stderr, "usage: vex file.org\n"); exit(1); } f = fopen(argv[1], "r"); if (!f) { fprintf(stderr, "can't open `%s'\n", argv[1]); exit(1); } /* Run with default params. However, we can't allow bb chasing since that causes the front end to get segfaults when it tries to read code outside the initial BB we hand it. So when calling LibVEX_Translate, send in a chase-into predicate that always returns False. */ LibVEX_default_VexControl ( &vcon ); vcon.iropt_level = 2; vcon.guest_max_insns = 50; LibVEX_Init ( &failure_exit, &log_bytes, 1, /* debug_paranoia */ TEST_VSUPPORT, /* valgrind support */ &vcon ); while (!feof(f)) { __attribute__((unused)) char* unused1 = fgets(linebuf, N_LINEBUF,f); if (linebuf[0] == 0) continue; if (linebuf[0] != '.') continue; if (n_bbs_done == TEST_N_BBS) break; n_bbs_done++; /* first line is: . bb-number bb-addr n-bytes */ assert(3 == sscanf(&linebuf[1], " %d %x %d\n", & bb_number, & orig_addr, & orig_nbytes )); assert(orig_nbytes >= 1); assert(!feof(f)); __attribute__((unused)) char* unused2 = fgets(linebuf, N_LINEBUF,f); assert(linebuf[0] == '.'); /* second line is: . byte byte byte etc */ if (verbose) printf("============ Basic Block %d, Done %d, " "Start %x, nbytes %2d ============", bb_number, n_bbs_done-1, orig_addr, orig_nbytes); assert(orig_nbytes >= 1 && orig_nbytes <= N_ORIGBUF); for (i = 0; i < orig_nbytes; i++) { assert(1 == sscanf(&linebuf[2 + 3*i], "%x", &u)); origbuf[i] = (UChar)u; } /* FIXME: put sensible values into the .hwcaps fields */ LibVEX_default_VexArchInfo(&vai_x86); vai_x86.hwcaps = VEX_HWCAPS_X86_SSE1 | VEX_HWCAPS_X86_SSE2 | VEX_HWCAPS_X86_SSE3; LibVEX_default_VexArchInfo(&vai_amd64); vai_amd64.hwcaps = 0; LibVEX_default_VexArchInfo(&vai_ppc32); vai_ppc32.hwcaps = 0; vai_ppc32.ppc_cache_line_szB = 128; LibVEX_default_VexAbiInfo(&vbi); /* ----- Set up args for LibVEX_Translate ----- */ #if 0 /* ppc32 -> ppc32 */ vta.arch_guest = VexArchPPC32; vta.archinfo_guest = vai_ppc32; vta.arch_host = VexArchPPC32; vta.archinfo_host = vai_ppc32; #endif #if 0 /* amd64 -> amd64 */ vta.arch_guest = VexArchAMD64; vta.archinfo_guest = vai_amd64; vta.arch_host = VexArchAMD64; vta.archinfo_host = vai_amd64; #endif #if 1 /* x86 -> x86 */ vta.arch_guest = VexArchX86; vta.archinfo_guest = vai_x86; vta.arch_host = VexArchX86; vta.archinfo_host = vai_x86; #endif vta.abiinfo_both = vbi; vta.guest_bytes = origbuf; vta.guest_bytes_addr = (Addr64)orig_addr; vta.callback_opaque = NULL; vta.chase_into_ok = chase_into_not_ok; vta.guest_extents = &vge; vta.host_bytes = transbuf; vta.host_bytes_size = N_TRANSBUF; vta.host_bytes_used = &trans_used; #if 0 /* no instrumentation */ vta.instrument1 = NULL; vta.instrument2 = NULL; #endif #if 0 /* addrcheck */ vta.instrument1 = ac_instrument; vta.instrument2 = NULL; #endif #if 1 /* memcheck */ vta.instrument1 = mc_instrument; vta.instrument2 = NULL; #endif vta.needs_self_check = needs_self_check; vta.preamble_function = NULL; vta.traceflags = TEST_FLAGS; #if 1 /* x86, amd64 hosts */ vta.dispatch_unassisted = (void*)0x12345678; vta.dispatch_assisted = (void*)0x12345678; #else /* ppc32, ppc64 hosts */ vta.dispatch = NULL; #endif vta.finaltidy = NULL; for (i = 0; i < TEST_N_ITERS; i++) tres = LibVEX_Translate ( &vta ); if (tres.status != VexTransOK) printf("\ntres = %d\n", (Int)tres.status); assert(tres.status == VexTransOK); assert(tres.n_sc_extents == 0); assert(vge.n_used == 1); assert((UInt)(vge.len[0]) == orig_nbytes); sum = 0; for (i = 0; i < trans_used; i++) sum += (UInt)transbuf[i]; printf ( " %6.2f ... %u\n", (double)trans_used / (double)vge.len[0], sum ); } fclose(f); printf("\n"); LibVEX_ShowAllocStats(); return 0; } ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// #if 0 /* UNUSED */ static __attribute((noreturn)) void panic ( HChar* s ) { printf("\npanic: %s\n", s); failure_exit(); } static IRSB* ac_instrument (IRSB* bb_in, VexGuestLayout* layout, IRType hWordTy ) { /* Use this rather than eg. -1 because it's a UInt. */ #define INVALID_DATA_SIZE 999999 Int i; Int sz; IRCallee* helper; IRStmt* st; IRExpr* data; IRExpr* addr; Bool needSz; /* Set up BB */ IRSB* bb = emptyIRSB(); bb->tyenv = dopyIRTypeEnv(bb_in->tyenv); bb->next = dopyIRExpr(bb_in->next); bb->jumpkind = bb_in->jumpkind; /* No loads to consider in ->next. */ assert(isIRAtom(bb_in->next)); for (i = 0; i < bb_in->stmts_used; i++) { st = bb_in->stmts[i]; if (!st) continue; switch (st->tag) { case Ist_Tmp: data = st->Ist.Tmp.data; if (data->tag == Iex_LDle) { addr = data->Iex.LDle.addr; sz = sizeofIRType(data->Iex.LDle.ty); needSz = False; switch (sz) { case 4: helper = mkIRCallee(1, "ac_helperc_LOAD4", (void*)0x12345601); break; case 2: helper = mkIRCallee(0, "ac_helperc_LOAD2", (void*)0x12345602); break; case 1: helper = mkIRCallee(1, "ac_helperc_LOAD1", (void*)0x12345603); break; default: helper = mkIRCallee(0, "ac_helperc_LOADN", (void*)0x12345604); needSz = True; break; } if (needSz) { addStmtToIRSB( bb, IRStmt_Dirty( unsafeIRDirty_0_N( helper->regparms, helper->name, helper->addr, mkIRExprVec_2(addr, mkIRExpr_HWord(sz))) )); } else { addStmtToIRSB( bb, IRStmt_Dirty( unsafeIRDirty_0_N( helper->regparms, helper->name, helper->addr, mkIRExprVec_1(addr) ) )); } } break; case Ist_STle: data = st->Ist.STle.data; addr = st->Ist.STle.addr; assert(isIRAtom(data)); assert(isIRAtom(addr)); sz = sizeofIRType(typeOfIRExpr(bb_in->tyenv, data)); needSz = False; switch (sz) { case 4: helper = mkIRCallee(1, "ac_helperc_STORE4", (void*)0x12345605); break; case 2: helper = mkIRCallee(0, "ac_helperc_STORE2", (void*)0x12345606); break; case 1: helper = mkIRCallee(1, "ac_helperc_STORE1", (void*)0x12345607); break; default: helper = mkIRCallee(0, "ac_helperc_STOREN", (void*)0x12345608); needSz = True; break; } if (needSz) { addStmtToIRSB( bb, IRStmt_Dirty( unsafeIRDirty_0_N( helper->regparms, helper->name, helper->addr, mkIRExprVec_2(addr, mkIRExpr_HWord(sz))) )); } else { addStmtToIRSB( bb, IRStmt_Dirty( unsafeIRDirty_0_N( helper->regparms, helper->name, helper->addr, mkIRExprVec_1(addr) ) )); } break; case Ist_Put: assert(isIRAtom(st->Ist.Put.data)); break; case Ist_PutI: assert(isIRAtom(st->Ist.PutI.ix)); assert(isIRAtom(st->Ist.PutI.data)); break; case Ist_Exit: assert(isIRAtom(st->Ist.Exit.guard)); break; case Ist_Dirty: /* If the call doesn't interact with memory, we ain't interested. */ if (st->Ist.Dirty.details->mFx == Ifx_None) break; goto unhandled; default: unhandled: printf("\n"); ppIRStmt(st); printf("\n"); panic("addrcheck: unhandled IRStmt"); } addStmtToIRSB( bb, dopyIRStmt(st)); } return bb; } #endif /* UNUSED */ ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// #if 1 /* UNUSED */ static __attribute((noreturn)) void panic ( HChar* s ) { printf("\npanic: %s\n", s); failure_exit(); } #define tl_assert(xxx) assert(xxx) #define VG_(xxxx) xxxx #define tool_panic(zzz) panic(zzz) #define MC_(zzzz) MC_##zzzz #define TL_(zzzz) SK_##zzzz static void MC_helperc_complain_undef ( void ); static void MC_helperc_LOADV8 ( void ); static void MC_helperc_LOADV4 ( void ); static void MC_helperc_LOADV2 ( void ); static void MC_helperc_LOADV1 ( void ); static void MC_helperc_STOREV8( void ); static void MC_helperc_STOREV4( void ); static void MC_helperc_STOREV2( void ); static void MC_helperc_STOREV1( void ); static void MC_helperc_value_check0_fail( void ); static void MC_helperc_value_check1_fail( void ); static void MC_helperc_value_check4_fail( void ); static void MC_helperc_complain_undef ( void ) { } static void MC_helperc_LOADV8 ( void ) { } static void MC_helperc_LOADV4 ( void ) { } static void MC_helperc_LOADV2 ( void ) { } static void MC_helperc_LOADV1 ( void ) { } static void MC_helperc_STOREV8( void ) { } static void MC_helperc_STOREV4( void ) { } static void MC_helperc_STOREV2( void ) { } static void MC_helperc_STOREV1( void ) { } static void MC_helperc_value_check0_fail( void ) { } static void MC_helperc_value_check1_fail( void ) { } static void MC_helperc_value_check4_fail( void ) { } /*--------------------------------------------------------------------*/ /*--- Instrument IR to perform memory checking operations. ---*/ /*--- mc_translate.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of MemCheck, a heavyweight Valgrind tool for detecting memory errors. Copyright (C) 2000-2011 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ //#include "mc_include.h" /*------------------------------------------------------------*/ /*--- Forward decls ---*/ /*------------------------------------------------------------*/ struct _MCEnv; static IRType shadowType ( IRType ty ); static IRExpr* expr2vbits ( struct _MCEnv* mce, IRExpr* e ); /*------------------------------------------------------------*/ /*--- Memcheck running state, and tmp management. ---*/ /*------------------------------------------------------------*/ /* Carries around state during memcheck instrumentation. */ typedef struct _MCEnv { /* MODIFIED: the bb being constructed. IRStmts are added. */ IRSB* bb; /* MODIFIED: a table [0 .. #temps_in_original_bb-1] which maps original temps to their current their current shadow temp. Initially all entries are IRTemp_INVALID. Entries are added lazily since many original temps are not used due to optimisation prior to instrumentation. Note that floating point original tmps are shadowed by integer tmps of the same size, and Bit-typed original tmps are shadowed by the type Ity_I8. See comment below. */ IRTemp* tmpMap; Int n_originalTmps; /* for range checking */ /* READONLY: the guest layout. This indicates which parts of the guest state should be regarded as 'always defined'. */ VexGuestLayout* layout; /* READONLY: the host word type. Needed for constructing arguments of type 'HWord' to be passed to helper functions. Ity_I32 or Ity_I64 only. */ IRType hWordTy; } MCEnv; /* SHADOW TMP MANAGEMENT. Shadow tmps are allocated lazily (on demand), as they are encountered. This is for two reasons. (1) (less important reason): Many original tmps are unused due to initial IR optimisation, and we do not want to spaces in tables tracking them. Shadow IRTemps are therefore allocated on demand. mce.tmpMap is a table indexed [0 .. n_types-1], which gives the current shadow for each original tmp, or INVALID_IRTEMP if none is so far assigned. It is necessary to support making multiple assignments to a shadow -- specifically, after testing a shadow for definedness, it needs to be made defined. But IR's SSA property disallows this. (2) (more important reason): Therefore, when a shadow needs to get a new value, a new temporary is created, the value is assigned to that, and the tmpMap is updated to reflect the new binding. A corollary is that if the tmpMap maps a given tmp to INVALID_IRTEMP and we are hoping to read that shadow tmp, it means there's a read-before-write error in the original tmps. The IR sanity checker should catch all such anomalies, however. */ /* Find the tmp currently shadowing the given original tmp. If none so far exists, allocate one. */ static IRTemp findShadowTmp ( MCEnv* mce, IRTemp orig ) { tl_assert(orig < mce->n_originalTmps); if (mce->tmpMap[orig] == IRTemp_INVALID) { mce->tmpMap[orig] = newIRTemp(mce->bb->tyenv, shadowType(mce->bb->tyenv->types[orig])); } return mce->tmpMap[orig]; } /* Allocate a new shadow for the given original tmp. This means any previous shadow is abandoned. This is needed because it is necessary to give a new value to a shadow once it has been tested for undefinedness, but unfortunately IR's SSA property disallows this. Instead we must abandon the old shadow, allocate a new one and use that instead. */ static void newShadowTmp ( MCEnv* mce, IRTemp orig ) { tl_assert(orig < mce->n_originalTmps); mce->tmpMap[orig] = newIRTemp(mce->bb->tyenv, shadowType(mce->bb->tyenv->types[orig])); } /*------------------------------------------------------------*/ /*--- IRAtoms -- a subset of IRExprs ---*/ /*------------------------------------------------------------*/ /* An atom is either an IRExpr_Const or an IRExpr_Tmp, as defined by isIRAtom() in libvex_ir.h. Because this instrumenter expects flat input, most of this code deals in atoms. Usefully, a value atom always has a V-value which is also an atom: constants are shadowed by constants, and temps are shadowed by the corresponding shadow temporary. */ typedef IRExpr IRAtom; /* (used for sanity checks only): is this an atom which looks like it's from original code? */ static Bool isOriginalAtom ( MCEnv* mce, IRAtom* a1 ) { if (a1->tag == Iex_Const) return True; if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp < mce->n_originalTmps) return True; return False; } /* (used for sanity checks only): is this an atom which looks like it's from shadow code? */ static Bool isShadowAtom ( MCEnv* mce, IRAtom* a1 ) { if (a1->tag == Iex_Const) return True; if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp >= mce->n_originalTmps) return True; return False; } /* (used for sanity checks only): check that both args are atoms and are identically-kinded. */ static Bool sameKindedAtoms ( IRAtom* a1, IRAtom* a2 ) { if (a1->tag == Iex_RdTmp && a1->tag == Iex_RdTmp) return True; if (a1->tag == Iex_Const && a1->tag == Iex_Const) return True; return False; } /*------------------------------------------------------------*/ /*--- Type management ---*/ /*------------------------------------------------------------*/ /* Shadow state is always accessed using integer types. This returns an integer type with the same size (as per sizeofIRType) as the given type. The only valid shadow types are Bit, I8, I16, I32, I64, V128. */ static IRType shadowType ( IRType ty ) { switch (ty) { case Ity_I1: case Ity_I8: case Ity_I16: case Ity_I32: case Ity_I64: return ty; case Ity_F32: return Ity_I32; case Ity_F64: return Ity_I64; case Ity_V128: return Ity_V128; default: ppIRType(ty); VG_(tool_panic)("memcheck:shadowType"); } } /* Produce a 'defined' value of the given shadow type. Should only be supplied shadow types (Bit/I8/I16/I32/UI64). */ static IRExpr* definedOfType ( IRType ty ) { switch (ty) { case Ity_I1: return IRExpr_Const(IRConst_U1(False)); case Ity_I8: return IRExpr_Const(IRConst_U8(0)); case Ity_I16: return IRExpr_Const(IRConst_U16(0)); case Ity_I32: return IRExpr_Const(IRConst_U32(0)); case Ity_I64: return IRExpr_Const(IRConst_U64(0)); case Ity_V128: return IRExpr_Const(IRConst_V128(0x0000)); default: VG_(tool_panic)("memcheck:definedOfType"); } } /*------------------------------------------------------------*/ /*--- Constructing IR fragments ---*/ /*------------------------------------------------------------*/ /* assign value to tmp */ #define assign(_bb,_tmp,_expr) \ addStmtToIRSB((_bb), IRStmt_WrTmp((_tmp),(_expr))) /* add stmt to a bb */ #define stmt(_bb,_stmt) \ addStmtToIRSB((_bb), (_stmt)) /* build various kinds of expressions */ #define binop(_op, _arg1, _arg2) IRExpr_Binop((_op),(_arg1),(_arg2)) #define unop(_op, _arg) IRExpr_Unop((_op),(_arg)) #define mkU8(_n) IRExpr_Const(IRConst_U8(_n)) #define mkU16(_n) IRExpr_Const(IRConst_U16(_n)) #define mkU32(_n) IRExpr_Const(IRConst_U32(_n)) #define mkU64(_n) IRExpr_Const(IRConst_U64(_n)) #define mkV128(_n) IRExpr_Const(IRConst_V128(_n)) #define mkexpr(_tmp) IRExpr_RdTmp((_tmp)) /* bind the given expression to a new temporary, and return the temporary. This effectively converts an arbitrary expression into an atom. */ static IRAtom* assignNew ( MCEnv* mce, IRType ty, IRExpr* e ) { IRTemp t = newIRTemp(mce->bb->tyenv, ty); assign(mce->bb, t, e); return mkexpr(t); } /*------------------------------------------------------------*/ /*--- Constructing definedness primitive ops ---*/ /*------------------------------------------------------------*/ /* --------- Defined-if-either-defined --------- */ static IRAtom* mkDifD8 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I8, binop(Iop_And8, a1, a2)); } static IRAtom* mkDifD16 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I16, binop(Iop_And16, a1, a2)); } static IRAtom* mkDifD32 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I32, binop(Iop_And32, a1, a2)); } static IRAtom* mkDifD64 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I64, binop(Iop_And64, a1, a2)); } static IRAtom* mkDifDV128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_V128, binop(Iop_AndV128, a1, a2)); } /* --------- Undefined-if-either-undefined --------- */ static IRAtom* mkUifU8 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I8, binop(Iop_Or8, a1, a2)); } static IRAtom* mkUifU16 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I16, binop(Iop_Or16, a1, a2)); } static IRAtom* mkUifU32 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I32, binop(Iop_Or32, a1, a2)); } static IRAtom* mkUifU64 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_I64, binop(Iop_Or64, a1, a2)); } static IRAtom* mkUifUV128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { tl_assert(isShadowAtom(mce,a1)); tl_assert(isShadowAtom(mce,a2)); return assignNew(mce, Ity_V128, binop(Iop_OrV128, a1, a2)); } static IRAtom* mkUifU ( MCEnv* mce, IRType vty, IRAtom* a1, IRAtom* a2 ) { switch (vty) { case Ity_I8: return mkUifU8(mce, a1, a2); case Ity_I16: return mkUifU16(mce, a1, a2); case Ity_I32: return mkUifU32(mce, a1, a2); case Ity_I64: return mkUifU64(mce, a1, a2); case Ity_V128: return mkUifUV128(mce, a1, a2); default: VG_(printf)("\n"); ppIRType(vty); VG_(printf)("\n"); VG_(tool_panic)("memcheck:mkUifU"); } } /* --------- The Left-family of operations. --------- */ static IRAtom* mkLeft8 ( MCEnv* mce, IRAtom* a1 ) { tl_assert(isShadowAtom(mce,a1)); /* It's safe to duplicate a1 since it's only an atom */ return assignNew(mce, Ity_I8, binop(Iop_Or8, a1, assignNew(mce, Ity_I8, /* unop(Iop_Neg8, a1)))); */ binop(Iop_Sub8, mkU8(0), a1) ))); } static IRAtom* mkLeft16 ( MCEnv* mce, IRAtom* a1 ) { tl_assert(isShadowAtom(mce,a1)); /* It's safe to duplicate a1 since it's only an atom */ return assignNew(mce, Ity_I16, binop(Iop_Or16, a1, assignNew(mce, Ity_I16, /* unop(Iop_Neg16, a1)))); */ binop(Iop_Sub16, mkU16(0), a1) ))); } static IRAtom* mkLeft32 ( MCEnv* mce, IRAtom* a1 ) { tl_assert(isShadowAtom(mce,a1)); /* It's safe to duplicate a1 since it's only an atom */ return assignNew(mce, Ity_I32, binop(Iop_Or32, a1, assignNew(mce, Ity_I32, /* unop(Iop_Neg32, a1)))); */ binop(Iop_Sub32, mkU32(0), a1) ))); } /* --------- 'Improvement' functions for AND/OR. --------- */ /* ImproveAND(data, vbits) = data OR vbits. Defined (0) data 0s give defined (0); all other -> undefined (1). */ static IRAtom* mkImproveAND8 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew(mce, Ity_I8, binop(Iop_Or8, data, vbits)); } static IRAtom* mkImproveAND16 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew(mce, Ity_I16, binop(Iop_Or16, data, vbits)); } static IRAtom* mkImproveAND32 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew(mce, Ity_I32, binop(Iop_Or32, data, vbits)); } static IRAtom* mkImproveAND64 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew(mce, Ity_I64, binop(Iop_Or64, data, vbits)); } static IRAtom* mkImproveANDV128 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew(mce, Ity_V128, binop(Iop_OrV128, data, vbits)); } /* ImproveOR(data, vbits) = ~data OR vbits. Defined (0) data 1s give defined (0); all other -> undefined (1). */ static IRAtom* mkImproveOR8 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew( mce, Ity_I8, binop(Iop_Or8, assignNew(mce, Ity_I8, unop(Iop_Not8, data)), vbits) ); } static IRAtom* mkImproveOR16 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew( mce, Ity_I16, binop(Iop_Or16, assignNew(mce, Ity_I16, unop(Iop_Not16, data)), vbits) ); } static IRAtom* mkImproveOR32 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew( mce, Ity_I32, binop(Iop_Or32, assignNew(mce, Ity_I32, unop(Iop_Not32, data)), vbits) ); } static IRAtom* mkImproveOR64 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew( mce, Ity_I64, binop(Iop_Or64, assignNew(mce, Ity_I64, unop(Iop_Not64, data)), vbits) ); } static IRAtom* mkImproveORV128 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) { tl_assert(isOriginalAtom(mce, data)); tl_assert(isShadowAtom(mce, vbits)); tl_assert(sameKindedAtoms(data, vbits)); return assignNew( mce, Ity_V128, binop(Iop_OrV128, assignNew(mce, Ity_V128, unop(Iop_NotV128, data)), vbits) ); } /* --------- Pessimising casts. --------- */ static IRAtom* mkPCastTo( MCEnv* mce, IRType dst_ty, IRAtom* vbits ) { IRType ty; IRAtom* tmp1; /* Note, dst_ty is a shadow type, not an original type. */ /* First of all, collapse vbits down to a single bit. */ tl_assert(isShadowAtom(mce,vbits)); ty = typeOfIRExpr(mce->bb->tyenv, vbits); tmp1 = NULL; switch (ty) { case Ity_I1: tmp1 = vbits; break; case Ity_I8: tmp1 = assignNew(mce, Ity_I1, binop(Iop_CmpNE8, vbits, mkU8(0))); break; case Ity_I16: tmp1 = assignNew(mce, Ity_I1, binop(Iop_CmpNE16, vbits, mkU16(0))); break; case Ity_I32: tmp1 = assignNew(mce, Ity_I1, binop(Iop_CmpNE32, vbits, mkU32(0))); break; case Ity_I64: tmp1 = assignNew(mce, Ity_I1, binop(Iop_CmpNE64, vbits, mkU64(0))); break; default: VG_(tool_panic)("mkPCastTo(1)"); } tl_assert(tmp1); /* Now widen up to the dst type. */ switch (dst_ty) { case Ity_I1: return tmp1; case Ity_I8: return assignNew(mce, Ity_I8, unop(Iop_1Sto8, tmp1)); case Ity_I16: return assignNew(mce, Ity_I16, unop(Iop_1Sto16, tmp1)); case Ity_I32: return assignNew(mce, Ity_I32, unop(Iop_1Sto32, tmp1)); case Ity_I64: return assignNew(mce, Ity_I64, unop(Iop_1Sto64, tmp1)); case Ity_V128: tmp1 = assignNew(mce, Ity_I64, unop(Iop_1Sto64, tmp1)); tmp1 = assignNew(mce, Ity_V128, binop(Iop_64HLtoV128, tmp1, tmp1)); return tmp1; default: ppIRType(dst_ty); VG_(tool_panic)("mkPCastTo(2)"); } } /*------------------------------------------------------------*/ /*--- Emit a test and complaint if something is undefined. ---*/ /*------------------------------------------------------------*/ /* Set the annotations on a dirty helper to indicate that the stack pointer and instruction pointers might be read. This is the behaviour of all 'emit-a-complaint' style functions we might call. */ static void setHelperAnns ( MCEnv* mce, IRDirty* di ) { di->nFxState = 2; di->fxState[0].fx = Ifx_Read; di->fxState[0].offset = mce->layout->offset_SP; di->fxState[0].size = mce->layout->sizeof_SP; di->fxState[1].fx = Ifx_Read; di->fxState[1].offset = mce->layout->offset_IP; di->fxState[1].size = mce->layout->sizeof_IP; } /* Check the supplied **original** atom for undefinedness, and emit a complaint if so. Once that happens, mark it as defined. This is possible because the atom is either a tmp or literal. If it's a tmp, it will be shadowed by a tmp, and so we can set the shadow to be defined. In fact as mentioned above, we will have to allocate a new tmp to carry the new 'defined' shadow value, and update the original->tmp mapping accordingly; we cannot simply assign a new value to an existing shadow tmp as this breaks SSAness -- resulting in the post-instrumentation sanity checker spluttering in disapproval. */ static void complainIfUndefined ( MCEnv* mce, IRAtom* atom ) { IRAtom* vatom; IRType ty; Int sz; IRDirty* di; IRAtom* cond; /* Since the original expression is atomic, there's no duplicated work generated by making multiple V-expressions for it. So we don't really care about the possibility that someone else may also create a V-interpretion for it. */ tl_assert(isOriginalAtom(mce, atom)); vatom = expr2vbits( mce, atom ); tl_assert(isShadowAtom(mce, vatom)); tl_assert(sameKindedAtoms(atom, vatom)); ty = typeOfIRExpr(mce->bb->tyenv, vatom); /* sz is only used for constructing the error message */ sz = ty==Ity_I1 ? 0 : sizeofIRType(ty); cond = mkPCastTo( mce, Ity_I1, vatom ); /* cond will be 0 if all defined, and 1 if any not defined. */ switch (sz) { case 0: di = unsafeIRDirty_0_N( 0/*regparms*/, "MC_(helperc_value_check0_fail)", &MC_(helperc_value_check0_fail), mkIRExprVec_0() ); break; case 1: di = unsafeIRDirty_0_N( 0/*regparms*/, "MC_(helperc_value_check1_fail)", &MC_(helperc_value_check1_fail), mkIRExprVec_0() ); break; case 4: di = unsafeIRDirty_0_N( 0/*regparms*/, "MC_(helperc_value_check4_fail)", &MC_(helperc_value_check4_fail), mkIRExprVec_0() ); break; default: di = unsafeIRDirty_0_N( 1/*regparms*/, "MC_(helperc_complain_undef)", &MC_(helperc_complain_undef), mkIRExprVec_1( mkIRExpr_HWord( sz )) ); break; } di->guard = cond; setHelperAnns( mce, di ); stmt( mce->bb, IRStmt_Dirty(di)); /* Set the shadow tmp to be defined. First, update the orig->shadow tmp mapping to reflect the fact that this shadow is getting a new value. */ tl_assert(isIRAtom(vatom)); /* sameKindedAtoms ... */ if (vatom->tag == Iex_RdTmp) { tl_assert(atom->tag == Iex_RdTmp); newShadowTmp(mce, atom->Iex.RdTmp.tmp); assign(mce->bb, findShadowTmp(mce, atom->Iex.RdTmp.tmp), definedOfType(ty)); } } /*------------------------------------------------------------*/ /*--- Shadowing PUTs/GETs, and indexed variants thereof ---*/ /*------------------------------------------------------------*/ /* Examine the always-defined sections declared in layout to see if the (offset,size) section is within one. Note, is is an error to partially fall into such a region: (offset,size) should either be completely in such a region or completely not-in such a region. */ static Bool isAlwaysDefd ( MCEnv* mce, Int offset, Int size ) { Int minoffD, maxoffD, i; Int minoff = offset; Int maxoff = minoff + size - 1; tl_assert((minoff & ~0xFFFF) == 0); tl_assert((maxoff & ~0xFFFF) == 0); for (i = 0; i < mce->layout->n_alwaysDefd; i++) { minoffD = mce->layout->alwaysDefd[i].offset; maxoffD = minoffD + mce->layout->alwaysDefd[i].size - 1; tl_assert((minoffD & ~0xFFFF) == 0); tl_assert((maxoffD & ~0xFFFF) == 0); if (maxoff < minoffD || maxoffD < minoff) continue; /* no overlap */ if (minoff >= minoffD && maxoff <= maxoffD) return True; /* completely contained in an always-defd section */ VG_(tool_panic)("memcheck:isAlwaysDefd:partial overlap"); } return False; /* could not find any containing section */ } /* Generate into bb suitable actions to shadow this Put. If the state slice is marked 'always defined', do nothing. Otherwise, write the supplied V bits to the shadow state. We can pass in either an original atom or a V-atom, but not both. In the former case the relevant V-bits are then generated from the original. */ static void do_shadow_PUT ( MCEnv* mce, Int offset, IRAtom* atom, IRAtom* vatom ) { IRType ty; if (atom) { tl_assert(!vatom); tl_assert(isOriginalAtom(mce, atom)); vatom = expr2vbits( mce, atom ); } else { tl_assert(vatom); tl_assert(isShadowAtom(mce, vatom)); } ty = typeOfIRExpr(mce->bb->tyenv, vatom); tl_assert(ty != Ity_I1); if (isAlwaysDefd(mce, offset, sizeofIRType(ty))) { /* later: no ... */ /* emit code to emit a complaint if any of the vbits are 1. */ /* complainIfUndefined(mce, atom); */ } else { /* Do a plain shadow Put. */ stmt( mce->bb, IRStmt_Put( offset + mce->layout->total_sizeB, vatom ) ); } } /* Return an expression which contains the V bits corresponding to the given GETI (passed in in pieces). */ static void do_shadow_PUTI ( MCEnv* mce, IRRegArray* descr, IRAtom* ix, Int bias, IRAtom* atom ) { IRAtom* vatom; IRType ty, tyS; Int arrSize;; tl_assert(isOriginalAtom(mce,atom)); vatom = expr2vbits( mce, atom ); tl_assert(sameKindedAtoms(atom, vatom)); ty = descr->elemTy; tyS = shadowType(ty); arrSize = descr->nElems * sizeofIRType(ty); tl_assert(ty != Ity_I1); tl_assert(isOriginalAtom(mce,ix)); complainIfUndefined(mce,ix); if (isAlwaysDefd(mce, descr->base, arrSize)) { /* later: no ... */ /* emit code to emit a complaint if any of the vbits are 1. */ /* complainIfUndefined(mce, atom); */ } else { /* Do a cloned version of the Put that refers to the shadow area. */ IRRegArray* new_descr = mkIRRegArray( descr->base + mce->layout->total_sizeB, tyS, descr->nElems); stmt( mce->bb, IRStmt_PutI( new_descr, ix, bias, vatom )); } } /* Return an expression which contains the V bits corresponding to the given GET (passed in in pieces). */ static IRExpr* shadow_GET ( MCEnv* mce, Int offset, IRType ty ) { IRType tyS = shadowType(ty); tl_assert(ty != Ity_I1); if (isAlwaysDefd(mce, offset, sizeofIRType(ty))) { /* Always defined, return all zeroes of the relevant type */ return definedOfType(tyS); } else { /* return a cloned version of the Get that refers to the shadow area. */ return IRExpr_Get( offset + mce->layout->total_sizeB, tyS ); } } /* Return an expression which contains the V bits corresponding to the given GETI (passed in in pieces). */ static IRExpr* shadow_GETI ( MCEnv* mce, IRRegArray* descr, IRAtom* ix, Int bias ) { IRType ty = descr->elemTy; IRType tyS = shadowType(ty); Int arrSize = descr->nElems * sizeofIRType(ty); tl_assert(ty != Ity_I1); tl_assert(isOriginalAtom(mce,ix)); complainIfUndefined(mce,ix); if (isAlwaysDefd(mce, descr->base, arrSize)) { /* Always defined, return all zeroes of the relevant type */ return definedOfType(tyS); } else { /* return a cloned version of the Get that refers to the shadow area. */ IRRegArray* new_descr = mkIRRegArray( descr->base + mce->layout->total_sizeB, tyS, descr->nElems); return IRExpr_GetI( new_descr, ix, bias ); } } /*------------------------------------------------------------*/ /*--- Generating approximations for unknown operations, ---*/ /*--- using lazy-propagate semantics ---*/ /*------------------------------------------------------------*/ /* Lazy propagation of undefinedness from two values, resulting in the specified shadow type. */ static IRAtom* mkLazy2 ( MCEnv* mce, IRType finalVty, IRAtom* va1, IRAtom* va2 ) { /* force everything via 32-bit intermediaries. */ IRAtom* at; tl_assert(isShadowAtom(mce,va1)); tl_assert(isShadowAtom(mce,va2)); at = mkPCastTo(mce, Ity_I32, va1); at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va2)); at = mkPCastTo(mce, finalVty, at); return at; } /* Do the lazy propagation game from a null-terminated vector of atoms. This is presumably the arguments to a helper call, so the IRCallee info is also supplied in order that we can know which arguments should be ignored (via the .mcx_mask field). */ static IRAtom* mkLazyN ( MCEnv* mce, IRAtom** exprvec, IRType finalVtype, IRCallee* cee ) { Int i; IRAtom* here; IRAtom* curr = definedOfType(Ity_I32); for (i = 0; exprvec[i]; i++) { tl_assert(i < 32); tl_assert(isOriginalAtom(mce, exprvec[i])); /* Only take notice of this arg if the callee's mc-exclusion mask does not say it is to be excluded. */ if (cee->mcx_mask & (1<<i)) { /* the arg is to be excluded from definedness checking. Do nothing. */ if (0) VG_(printf)("excluding %s(%d)\n", cee->name, i); } else { /* calculate the arg's definedness, and pessimistically merge it in. */ here = mkPCastTo( mce, Ity_I32, expr2vbits(mce, exprvec[i]) ); curr = mkUifU32(mce, here, curr); } } return mkPCastTo(mce, finalVtype, curr ); } /*------------------------------------------------------------*/ /*--- Generating expensive sequences for exact carry-chain ---*/ /*--- propagation in add/sub and related operations. ---*/ /*------------------------------------------------------------*/ static __attribute__((unused)) IRAtom* expensiveAdd32 ( MCEnv* mce, IRAtom* qaa, IRAtom* qbb, IRAtom* aa, IRAtom* bb ) { IRAtom *a_min, *b_min, *a_max, *b_max; IRType ty; IROp opAND, opOR, opXOR, opNOT, opADD; tl_assert(isShadowAtom(mce,qaa)); tl_assert(isShadowAtom(mce,qbb)); tl_assert(isOriginalAtom(mce,aa)); tl_assert(isOriginalAtom(mce,bb)); tl_assert(sameKindedAtoms(qaa,aa)); tl_assert(sameKindedAtoms(qbb,bb)); ty = Ity_I32; opAND = Iop_And32; opOR = Iop_Or32; opXOR = Iop_Xor32; opNOT = Iop_Not32; opADD = Iop_Add32; // a_min = aa & ~qaa a_min = assignNew(mce,ty, binop(opAND, aa, assignNew(mce,ty, unop(opNOT, qaa)))); // b_min = bb & ~qbb b_min = assignNew(mce,ty, binop(opAND, bb, assignNew(mce,ty, unop(opNOT, qbb)))); // a_max = aa | qaa a_max = assignNew(mce,ty, binop(opOR, aa, qaa)); // b_max = bb | qbb b_max = assignNew(mce,ty, binop(opOR, bb, qbb)); // result = (qaa | qbb) | ((a_min + b_min) ^ (a_max + b_max)) return assignNew(mce,ty, binop( opOR, assignNew(mce,ty, binop(opOR, qaa, qbb)), assignNew(mce,ty, binop(opXOR, assignNew(mce,ty, binop(opADD, a_min, b_min)), assignNew(mce,ty, binop(opADD, a_max, b_max)) ) ) ) ); } /*------------------------------------------------------------*/ /*--- Helpers for dealing with vector primops. ---*/ /*------------------------------------------------------------*/ /* Vector pessimisation -- pessimise within each lane individually. */ static IRAtom* mkPCast8x16 ( MCEnv* mce, IRAtom* at ) { return assignNew(mce, Ity_V128, unop(Iop_CmpNEZ8x16, at)); } static IRAtom* mkPCast16x8 ( MCEnv* mce, IRAtom* at ) { return assignNew(mce, Ity_V128, unop(Iop_CmpNEZ16x8, at)); } static IRAtom* mkPCast32x4 ( MCEnv* mce, IRAtom* at ) { return assignNew(mce, Ity_V128, unop(Iop_CmpNEZ32x4, at)); } static IRAtom* mkPCast64x2 ( MCEnv* mce, IRAtom* at ) { return assignNew(mce, Ity_V128, unop(Iop_CmpNEZ64x2, at)); } /* Here's a simple scheme capable of handling ops derived from SSE1 code and while only generating ops that can be efficiently implemented in SSE1. */ /* All-lanes versions are straightforward: binary32Fx4(x,y) ==> PCast32x4(UifUV128(x#,y#)) unary32Fx4(x,y) ==> PCast32x4(x#) Lowest-lane-only versions are more complex: binary32F0x4(x,y) ==> SetV128lo32( x#, PCast32(V128to32(UifUV128(x#,y#))) ) This is perhaps not so obvious. In particular, it's faster to do a V128-bit UifU and then take the bottom 32 bits than the more obvious scheme of taking the bottom 32 bits of each operand and doing a 32-bit UifU. Basically since UifU is fast and chopping lanes off vector values is slow. Finally: unary32F0x4(x) ==> SetV128lo32( x#, PCast32(V128to32(x#)) ) Where: PCast32(v#) = 1Sto32(CmpNE32(v#,0)) PCast32x4(v#) = CmpNEZ32x4(v#) */ static IRAtom* binary32Fx4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); tl_assert(isShadowAtom(mce, vatomY)); at = mkUifUV128(mce, vatomX, vatomY); at = assignNew(mce, Ity_V128, mkPCast32x4(mce, at)); return at; } static IRAtom* unary32Fx4 ( MCEnv* mce, IRAtom* vatomX ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); at = assignNew(mce, Ity_V128, mkPCast32x4(mce, vatomX)); return at; } static IRAtom* binary32F0x4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); tl_assert(isShadowAtom(mce, vatomY)); at = mkUifUV128(mce, vatomX, vatomY); at = assignNew(mce, Ity_I32, unop(Iop_V128to32, at)); at = mkPCastTo(mce, Ity_I32, at); at = assignNew(mce, Ity_V128, binop(Iop_SetV128lo32, vatomX, at)); return at; } static IRAtom* unary32F0x4 ( MCEnv* mce, IRAtom* vatomX ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); at = assignNew(mce, Ity_I32, unop(Iop_V128to32, vatomX)); at = mkPCastTo(mce, Ity_I32, at); at = assignNew(mce, Ity_V128, binop(Iop_SetV128lo32, vatomX, at)); return at; } /* --- ... and ... 64Fx2 versions of the same ... --- */ static IRAtom* binary64Fx2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); tl_assert(isShadowAtom(mce, vatomY)); at = mkUifUV128(mce, vatomX, vatomY); at = assignNew(mce, Ity_V128, mkPCast64x2(mce, at)); return at; } static IRAtom* unary64Fx2 ( MCEnv* mce, IRAtom* vatomX ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); at = assignNew(mce, Ity_V128, mkPCast64x2(mce, vatomX)); return at; } static IRAtom* binary64F0x2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); tl_assert(isShadowAtom(mce, vatomY)); at = mkUifUV128(mce, vatomX, vatomY); at = assignNew(mce, Ity_I64, unop(Iop_V128to64, at)); at = mkPCastTo(mce, Ity_I64, at); at = assignNew(mce, Ity_V128, binop(Iop_SetV128lo64, vatomX, at)); return at; } static IRAtom* unary64F0x2 ( MCEnv* mce, IRAtom* vatomX ) { IRAtom* at; tl_assert(isShadowAtom(mce, vatomX)); at = assignNew(mce, Ity_I64, unop(Iop_V128to64, vatomX)); at = mkPCastTo(mce, Ity_I64, at); at = assignNew(mce, Ity_V128, binop(Iop_SetV128lo64, vatomX, at)); return at; } /* --- --- Vector saturated narrowing --- --- */ /* This is quite subtle. What to do is simple: Let the original narrowing op be QNarrowW{S,U}xN. Produce: the-narrowing-op( PCastWxN(vatom1), PCastWxN(vatom2)) Why this is right is not so simple. Consider a lane in the args, vatom1 or 2, doesn't matter. After the PCast, that lane is all 0s (defined) or all 1s(undefined). Both signed and unsigned saturating narrowing of all 0s produces all 0s, which is what we want. The all-1s case is more complex. Unsigned narrowing interprets an all-1s input as the largest unsigned integer, and so produces all 1s as a result since that is the largest unsigned value at the smaller width. Signed narrowing interprets all 1s as -1. Fortunately, -1 narrows to -1, so we still wind up with all 1s at the smaller width. So: In short, pessimise the args, then apply the original narrowing op. */ static IRAtom* vectorNarrowV128 ( MCEnv* mce, IROp narrow_op, IRAtom* vatom1, IRAtom* vatom2) { IRAtom *at1, *at2, *at3; IRAtom* (*pcast)( MCEnv*, IRAtom* ); switch (narrow_op) { case Iop_QNarrowBin32Sto16Sx8: pcast = mkPCast32x4; break; case Iop_QNarrowBin16Sto8Sx16: pcast = mkPCast16x8; break; case Iop_QNarrowBin16Sto8Ux16: pcast = mkPCast16x8; break; default: VG_(tool_panic)("vectorNarrowV128"); } tl_assert(isShadowAtom(mce,vatom1)); tl_assert(isShadowAtom(mce,vatom2)); at1 = assignNew(mce, Ity_V128, pcast(mce, vatom1)); at2 = assignNew(mce, Ity_V128, pcast(mce, vatom2)); at3 = assignNew(mce, Ity_V128, binop(narrow_op, at1, at2)); return at3; } /* --- --- Vector integer arithmetic --- --- */ /* Simple ... UifU the args and per-lane pessimise the results. */ static IRAtom* binary8Ix16 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) { IRAtom* at; at = mkUifUV128(mce, vatom1, vatom2); at = mkPCast8x16(mce, at); return at; } static IRAtom* binary16Ix8 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) { IRAtom* at; at = mkUifUV128(mce, vatom1, vatom2); at = mkPCast16x8(mce, at); return at; } static IRAtom* binary32Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) { IRAtom* at; at = mkUifUV128(mce, vatom1, vatom2); at = mkPCast32x4(mce, at); return at; } static IRAtom* binary64Ix2 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) { IRAtom* at; at = mkUifUV128(mce, vatom1, vatom2); at = mkPCast64x2(mce, at); return at; } /*------------------------------------------------------------*/ /*--- Generate shadow values from all kinds of IRExprs. ---*/ /*------------------------------------------------------------*/ static IRAtom* expr2vbits_Binop ( MCEnv* mce, IROp op, IRAtom* atom1, IRAtom* atom2 ) { IRType and_or_ty; IRAtom* (*uifu) (MCEnv*, IRAtom*, IRAtom*); IRAtom* (*difd) (MCEnv*, IRAtom*, IRAtom*); IRAtom* (*improve) (MCEnv*, IRAtom*, IRAtom*); IRAtom* vatom1 = expr2vbits( mce, atom1 ); IRAtom* vatom2 = expr2vbits( mce, atom2 ); tl_assert(isOriginalAtom(mce,atom1)); tl_assert(isOriginalAtom(mce,atom2)); tl_assert(isShadowAtom(mce,vatom1)); tl_assert(isShadowAtom(mce,vatom2)); tl_assert(sameKindedAtoms(atom1,vatom1)); tl_assert(sameKindedAtoms(atom2,vatom2)); switch (op) { /* V128-bit SIMD (SSE2-esque) */ case Iop_ShrN16x8: case Iop_ShrN32x4: case Iop_ShrN64x2: case Iop_SarN16x8: case Iop_SarN32x4: case Iop_ShlN16x8: case Iop_ShlN32x4: case Iop_ShlN64x2: /* Same scheme as with all other shifts. */ complainIfUndefined(mce, atom2); return assignNew(mce, Ity_V128, binop(op, vatom1, atom2)); case Iop_QSub8Ux16: case Iop_QSub8Sx16: case Iop_Sub8x16: case Iop_Min8Ux16: case Iop_Max8Ux16: case Iop_CmpGT8Sx16: case Iop_CmpEQ8x16: case Iop_Avg8Ux16: case Iop_QAdd8Ux16: case Iop_QAdd8Sx16: case Iop_Add8x16: return binary8Ix16(mce, vatom1, vatom2); case Iop_QSub16Ux8: case Iop_QSub16Sx8: case Iop_Sub16x8: case Iop_Mul16x8: case Iop_MulHi16Sx8: case Iop_MulHi16Ux8: case Iop_Min16Sx8: case Iop_Max16Sx8: case Iop_CmpGT16Sx8: case Iop_CmpEQ16x8: case Iop_Avg16Ux8: case Iop_QAdd16Ux8: case Iop_QAdd16Sx8: case Iop_Add16x8: return binary16Ix8(mce, vatom1, vatom2); case Iop_Sub32x4: case Iop_QSub32Sx4: case Iop_QSub32Ux4: case Iop_CmpGT32Sx4: case Iop_CmpEQ32x4: case Iop_Add32x4: case Iop_QAdd32Ux4: case Iop_QAdd32Sx4: return binary32Ix4(mce, vatom1, vatom2); case Iop_Sub64x2: case Iop_QSub64Ux2: case Iop_QSub64Sx2: case Iop_Add64x2: case Iop_QAdd64Ux2: case Iop_QAdd64Sx2: return binary64Ix2(mce, vatom1, vatom2); case Iop_QNarrowBin32Sto16Sx8: case Iop_QNarrowBin16Sto8Sx16: case Iop_QNarrowBin16Sto8Ux16: return vectorNarrowV128(mce, op, vatom1, vatom2); case Iop_Sub64Fx2: case Iop_Mul64Fx2: case Iop_Min64Fx2: case Iop_Max64Fx2: case Iop_Div64Fx2: case Iop_CmpLT64Fx2: case Iop_CmpLE64Fx2: case Iop_CmpEQ64Fx2: case Iop_Add64Fx2: return binary64Fx2(mce, vatom1, vatom2); case Iop_Sub64F0x2: case Iop_Mul64F0x2: case Iop_Min64F0x2: case Iop_Max64F0x2: case Iop_Div64F0x2: case Iop_CmpLT64F0x2: case Iop_CmpLE64F0x2: case Iop_CmpEQ64F0x2: case Iop_Add64F0x2: return binary64F0x2(mce, vatom1, vatom2); /* V128-bit SIMD (SSE1-esque) */ case Iop_Sub32Fx4: case Iop_Mul32Fx4: case Iop_Min32Fx4: case Iop_Max32Fx4: case Iop_Div32Fx4: case Iop_CmpLT32Fx4: case Iop_CmpLE32Fx4: case Iop_CmpEQ32Fx4: case Iop_Add32Fx4: return binary32Fx4(mce, vatom1, vatom2); case Iop_Sub32F0x4: case Iop_Mul32F0x4: case Iop_Min32F0x4: case Iop_Max32F0x4: case Iop_Div32F0x4: case Iop_CmpLT32F0x4: case Iop_CmpLE32F0x4: case Iop_CmpEQ32F0x4: case Iop_Add32F0x4: return binary32F0x4(mce, vatom1, vatom2); /* V128-bit data-steering */ case Iop_SetV128lo32: case Iop_SetV128lo64: case Iop_64HLtoV128: case Iop_InterleaveLO64x2: case Iop_InterleaveLO32x4: case Iop_InterleaveLO16x8: case Iop_InterleaveLO8x16: case Iop_InterleaveHI64x2: case Iop_InterleaveHI32x4: case Iop_InterleaveHI16x8: case Iop_InterleaveHI8x16: return assignNew(mce, Ity_V128, binop(op, vatom1, vatom2)); /* Scalar floating point */ // case Iop_RoundF64: case Iop_F64toI64S: case Iop_I64StoF64: /* First arg is I32 (rounding mode), second is F64 or I64 (data). */ return mkLazy2(mce, Ity_I64, vatom1, vatom2); case Iop_PRemC3210F64: case Iop_PRem1C3210F64: /* Takes two F64 args. */ case Iop_F64toI32S: case Iop_F64toF32: /* First arg is I32 (rounding mode), second is F64 (data). */ return mkLazy2(mce, Ity_I32, vatom1, vatom2); case Iop_F64toI16S: /* First arg is I32 (rounding mode), second is F64 (data). */ return mkLazy2(mce, Ity_I16, vatom1, vatom2); case Iop_ScaleF64: case Iop_Yl2xF64: case Iop_Yl2xp1F64: case Iop_PRemF64: case Iop_AtanF64: case Iop_AddF64: case Iop_DivF64: case Iop_SubF64: case Iop_MulF64: return mkLazy2(mce, Ity_I64, vatom1, vatom2); case Iop_CmpF64: return mkLazy2(mce, Ity_I32, vatom1, vatom2); /* non-FP after here */ case Iop_DivModU64to32: case Iop_DivModS64to32: return mkLazy2(mce, Ity_I64, vatom1, vatom2); case Iop_16HLto32: return assignNew(mce, Ity_I32, binop(op, vatom1, vatom2)); case Iop_32HLto64: return assignNew(mce, Ity_I64, binop(op, vatom1, vatom2)); case Iop_MullS32: case Iop_MullU32: { IRAtom* vLo32 = mkLeft32(mce, mkUifU32(mce, vatom1,vatom2)); IRAtom* vHi32 = mkPCastTo(mce, Ity_I32, vLo32); return assignNew(mce, Ity_I64, binop(Iop_32HLto64, vHi32, vLo32)); } case Iop_MullS16: case Iop_MullU16: { IRAtom* vLo16 = mkLeft16(mce, mkUifU16(mce, vatom1,vatom2)); IRAtom* vHi16 = mkPCastTo(mce, Ity_I16, vLo16); return assignNew(mce, Ity_I32, binop(Iop_16HLto32, vHi16, vLo16)); } case Iop_MullS8: case Iop_MullU8: { IRAtom* vLo8 = mkLeft8(mce, mkUifU8(mce, vatom1,vatom2)); IRAtom* vHi8 = mkPCastTo(mce, Ity_I8, vLo8); return assignNew(mce, Ity_I16, binop(Iop_8HLto16, vHi8, vLo8)); } case Iop_Add32: # if 0 return expensiveAdd32(mce, vatom1,vatom2, atom1,atom2); # endif case Iop_Sub32: case Iop_Mul32: return mkLeft32(mce, mkUifU32(mce, vatom1,vatom2)); case Iop_Mul16: case Iop_Add16: case Iop_Sub16: return mkLeft16(mce, mkUifU16(mce, vatom1,vatom2)); case Iop_Sub8: case Iop_Add8: return mkLeft8(mce, mkUifU8(mce, vatom1,vatom2)); case Iop_CmpLE32S: case Iop_CmpLE32U: case Iop_CmpLT32U: case Iop_CmpLT32S: case Iop_CmpEQ32: case Iop_CmpNE32: return mkPCastTo(mce, Ity_I1, mkUifU32(mce, vatom1,vatom2)); case Iop_CmpEQ16: case Iop_CmpNE16: return mkPCastTo(mce, Ity_I1, mkUifU16(mce, vatom1,vatom2)); case Iop_CmpEQ8: case Iop_CmpNE8: return mkPCastTo(mce, Ity_I1, mkUifU8(mce, vatom1,vatom2)); case Iop_Shl32: case Iop_Shr32: case Iop_Sar32: /* Complain if the shift amount is undefined. Then simply shift the first arg's V bits by the real shift amount. */ complainIfUndefined(mce, atom2); return assignNew(mce, Ity_I32, binop(op, vatom1, atom2)); case Iop_Shl16: case Iop_Shr16: case Iop_Sar16: /* Same scheme as with 32-bit shifts. */ complainIfUndefined(mce, atom2); return assignNew(mce, Ity_I16, binop(op, vatom1, atom2)); case Iop_Shl8: case Iop_Shr8: /* Same scheme as with 32-bit shifts. */ complainIfUndefined(mce, atom2); return assignNew(mce, Ity_I8, binop(op, vatom1, atom2)); case Iop_Shl64: case Iop_Shr64: /* Same scheme as with 32-bit shifts. */ complainIfUndefined(mce, atom2); return assignNew(mce, Ity_I64, binop(op, vatom1, atom2)); case Iop_AndV128: uifu = mkUifUV128; difd = mkDifDV128; and_or_ty = Ity_V128; improve = mkImproveANDV128; goto do_And_Or; case Iop_And64: uifu = mkUifU64; difd = mkDifD64; and_or_ty = Ity_I64; improve = mkImproveAND64; goto do_And_Or; case Iop_And32: uifu = mkUifU32; difd = mkDifD32; and_or_ty = Ity_I32; improve = mkImproveAND32; goto do_And_Or; case Iop_And16: uifu = mkUifU16; difd = mkDifD16; and_or_ty = Ity_I16; improve = mkImproveAND16; goto do_And_Or; case Iop_And8: uifu = mkUifU8; difd = mkDifD8; and_or_ty = Ity_I8; improve = mkImproveAND8; goto do_And_Or; case Iop_OrV128: uifu = mkUifUV128; difd = mkDifDV128; and_or_ty = Ity_V128; improve = mkImproveORV128; goto do_And_Or; case Iop_Or64: uifu = mkUifU64; difd = mkDifD64; and_or_ty = Ity_I64; improve = mkImproveOR64; goto do_And_Or; case Iop_Or32: uifu = mkUifU32; difd = mkDifD32; and_or_ty = Ity_I32; improve = mkImproveOR32; goto do_And_Or; case Iop_Or16: uifu = mkUifU16; difd = mkDifD16; and_or_ty = Ity_I16; improve = mkImproveOR16; goto do_And_Or; case Iop_Or8: uifu = mkUifU8; difd = mkDifD8; and_or_ty = Ity_I8; improve = mkImproveOR8; goto do_And_Or; do_And_Or: return assignNew( mce, and_or_ty, difd(mce, uifu(mce, vatom1, vatom2), difd(mce, improve(mce, atom1, vatom1), improve(mce, atom2, vatom2) ) ) ); case Iop_Xor8: return mkUifU8(mce, vatom1, vatom2); case Iop_Xor16: return mkUifU16(mce, vatom1, vatom2); case Iop_Xor32: return mkUifU32(mce, vatom1, vatom2); case Iop_Xor64: return mkUifU64(mce, vatom1, vatom2); case Iop_XorV128: return mkUifUV128(mce, vatom1, vatom2); default: ppIROp(op); VG_(tool_panic)("memcheck:expr2vbits_Binop"); } } static IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom ) { IRAtom* vatom = expr2vbits( mce, atom ); tl_assert(isOriginalAtom(mce,atom)); switch (op) { case Iop_Sqrt64Fx2: return unary64Fx2(mce, vatom); case Iop_Sqrt64F0x2: return unary64F0x2(mce, vatom); case Iop_Sqrt32Fx4: case Iop_RSqrt32Fx4: case Iop_Recip32Fx4: return unary32Fx4(mce, vatom); case Iop_Sqrt32F0x4: case Iop_RSqrt32F0x4: case Iop_Recip32F0x4: return unary32F0x4(mce, vatom); case Iop_32UtoV128: case Iop_64UtoV128: return assignNew(mce, Ity_V128, unop(op, vatom)); case Iop_F32toF64: case Iop_I32StoF64: case Iop_NegF64: case Iop_SinF64: case Iop_CosF64: case Iop_TanF64: case Iop_SqrtF64: case Iop_AbsF64: case Iop_2xm1F64: return mkPCastTo(mce, Ity_I64, vatom); case Iop_Clz32: case Iop_Ctz32: return mkPCastTo(mce, Ity_I32, vatom); case Iop_32Sto64: case Iop_32Uto64: case Iop_V128to64: case Iop_V128HIto64: return assignNew(mce, Ity_I64, unop(op, vatom)); case Iop_64to32: case Iop_64HIto32: case Iop_1Uto32: case Iop_8Uto32: case Iop_16Uto32: case Iop_16Sto32: case Iop_8Sto32: return assignNew(mce, Ity_I32, unop(op, vatom)); case Iop_8Sto16: case Iop_8Uto16: case Iop_32to16: case Iop_32HIto16: return assignNew(mce, Ity_I16, unop(op, vatom)); case Iop_1Uto8: case Iop_16to8: case Iop_32to8: return assignNew(mce, Ity_I8, unop(op, vatom)); case Iop_32to1: return assignNew(mce, Ity_I1, unop(Iop_32to1, vatom)); case Iop_ReinterpF64asI64: case Iop_ReinterpI64asF64: case Iop_ReinterpI32asF32: case Iop_NotV128: case Iop_Not64: case Iop_Not32: case Iop_Not16: case Iop_Not8: case Iop_Not1: return vatom; default: ppIROp(op); VG_(tool_panic)("memcheck:expr2vbits_Unop"); } } /* Worker function; do not call directly. */ static IRAtom* expr2vbits_LDle_WRK ( MCEnv* mce, IRType ty, IRAtom* addr, UInt bias ) { void* helper; HChar* hname; IRDirty* di; IRTemp datavbits; IRAtom* addrAct; tl_assert(isOriginalAtom(mce,addr)); /* First, emit a definedness test for the address. This also sets the address (shadow) to 'defined' following the test. */ complainIfUndefined( mce, addr ); /* Now cook up a call to the relevant helper function, to read the data V bits from shadow memory. */ ty = shadowType(ty); switch (ty) { case Ity_I64: helper = &MC_(helperc_LOADV8); hname = "MC_(helperc_LOADV8)"; break; case Ity_I32: helper = &MC_(helperc_LOADV4); hname = "MC_(helperc_LOADV4)"; break; case Ity_I16: helper = &MC_(helperc_LOADV2); hname = "MC_(helperc_LOADV2)"; break; case Ity_I8: helper = &MC_(helperc_LOADV1); hname = "MC_(helperc_LOADV1)"; break; default: ppIRType(ty); VG_(tool_panic)("memcheck:do_shadow_LDle"); } /* Generate the actual address into addrAct. */ if (bias == 0) { addrAct = addr; } else { IROp mkAdd; IRAtom* eBias; IRType tyAddr = mce->hWordTy; tl_assert( tyAddr == Ity_I32 || tyAddr == Ity_I64 ); mkAdd = tyAddr==Ity_I32 ? Iop_Add32 : Iop_Add64; eBias = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); addrAct = assignNew(mce, tyAddr, binop(mkAdd, addr, eBias) ); } /* We need to have a place to park the V bits we're just about to read. */ datavbits = newIRTemp(mce->bb->tyenv, ty); di = unsafeIRDirty_1_N( datavbits, 1/*regparms*/, hname, helper, mkIRExprVec_1( addrAct )); setHelperAnns( mce, di ); stmt( mce->bb, IRStmt_Dirty(di) ); return mkexpr(datavbits); } static IRAtom* expr2vbits_LDle ( MCEnv* mce, IRType ty, IRAtom* addr, UInt bias ) { IRAtom *v64hi, *v64lo; switch (shadowType(ty)) { case Ity_I8: case Ity_I16: case Ity_I32: case Ity_I64: return expr2vbits_LDle_WRK(mce, ty, addr, bias); case Ity_V128: v64lo = expr2vbits_LDle_WRK(mce, Ity_I64, addr, bias); v64hi = expr2vbits_LDle_WRK(mce, Ity_I64, addr, bias+8); return assignNew( mce, Ity_V128, binop(Iop_64HLtoV128, v64hi, v64lo)); default: VG_(tool_panic)("expr2vbits_LDle"); } } static IRAtom* expr2vbits_Mux0X ( MCEnv* mce, IRAtom* cond, IRAtom* expr0, IRAtom* exprX ) { IRAtom *vbitsC, *vbits0, *vbitsX; IRType ty; /* Given Mux0X(cond,expr0,exprX), generate Mux0X(cond,expr0#,exprX#) `UifU` PCast(cond#) That is, steer the V bits like the originals, but trash the result if the steering value is undefined. This gives lazy propagation. */ tl_assert(isOriginalAtom(mce, cond)); tl_assert(isOriginalAtom(mce, expr0)); tl_assert(isOriginalAtom(mce, exprX)); vbitsC = expr2vbits(mce, cond); vbits0 = expr2vbits(mce, expr0); vbitsX = expr2vbits(mce, exprX); ty = typeOfIRExpr(mce->bb->tyenv, vbits0); return mkUifU(mce, ty, assignNew(mce, ty, IRExpr_Mux0X(cond, vbits0, vbitsX)), mkPCastTo(mce, ty, vbitsC) ); } /* --------- This is the main expression-handling function. --------- */ static IRExpr* expr2vbits ( MCEnv* mce, IRExpr* e ) { switch (e->tag) { case Iex_Get: return shadow_GET( mce, e->Iex.Get.offset, e->Iex.Get.ty ); case Iex_GetI: return shadow_GETI( mce, e->Iex.GetI.descr, e->Iex.GetI.ix, e->Iex.GetI.bias ); case Iex_RdTmp: return IRExpr_RdTmp( findShadowTmp(mce, e->Iex.RdTmp.tmp) ); case Iex_Const: return definedOfType(shadowType(typeOfIRExpr(mce->bb->tyenv, e))); case Iex_Binop: return expr2vbits_Binop( mce, e->Iex.Binop.op, e->Iex.Binop.arg1, e->Iex.Binop.arg2 ); case Iex_Unop: return expr2vbits_Unop( mce, e->Iex.Unop.op, e->Iex.Unop.arg ); case Iex_Load: return expr2vbits_LDle( mce, e->Iex.Load.ty, e->Iex.Load.addr, 0/*addr bias*/ ); case Iex_CCall: return mkLazyN( mce, e->Iex.CCall.args, e->Iex.CCall.retty, e->Iex.CCall.cee ); case Iex_Mux0X: return expr2vbits_Mux0X( mce, e->Iex.Mux0X.cond, e->Iex.Mux0X.expr0, e->Iex.Mux0X.exprX); default: VG_(printf)("\n"); ppIRExpr(e); VG_(printf)("\n"); VG_(tool_panic)("memcheck: expr2vbits"); } } /*------------------------------------------------------------*/ /*--- Generate shadow stmts from all kinds of IRStmts. ---*/ /*------------------------------------------------------------*/ /* Widen a value to the host word size. */ static IRExpr* zwidenToHostWord ( MCEnv* mce, IRAtom* vatom ) { IRType ty, tyH; /* vatom is vbits-value and as such can only have a shadow type. */ tl_assert(isShadowAtom(mce,vatom)); ty = typeOfIRExpr(mce->bb->tyenv, vatom); tyH = mce->hWordTy; if (tyH == Ity_I32) { switch (ty) { case Ity_I32: return vatom; case Ity_I16: return assignNew(mce, tyH, unop(Iop_16Uto32, vatom)); case Ity_I8: return assignNew(mce, tyH, unop(Iop_8Uto32, vatom)); default: goto unhandled; } } else { goto unhandled; } unhandled: VG_(printf)("\nty = "); ppIRType(ty); VG_(printf)("\n"); VG_(tool_panic)("zwidenToHostWord"); } /* Generate a shadow store. addr is always the original address atom. You can pass in either originals or V-bits for the data atom, but obviously not both. */ static void do_shadow_STle ( MCEnv* mce, IRAtom* addr, UInt bias, IRAtom* data, IRAtom* vdata ) { IROp mkAdd; IRType ty, tyAddr; IRDirty *di, *diLo64, *diHi64; IRAtom *addrAct, *addrLo64, *addrHi64; IRAtom *vdataLo64, *vdataHi64; IRAtom *eBias, *eBias0, *eBias8; void* helper = NULL; HChar* hname = NULL; tyAddr = mce->hWordTy; mkAdd = tyAddr==Ity_I32 ? Iop_Add32 : Iop_Add64; tl_assert( tyAddr == Ity_I32 || tyAddr == Ity_I64 ); di = diLo64 = diHi64 = NULL; eBias = eBias0 = eBias8 = NULL; addrAct = addrLo64 = addrHi64 = NULL; vdataLo64 = vdataHi64 = NULL; if (data) { tl_assert(!vdata); tl_assert(isOriginalAtom(mce, data)); tl_assert(bias == 0); vdata = expr2vbits( mce, data ); } else { tl_assert(vdata); } tl_assert(isOriginalAtom(mce,addr)); tl_assert(isShadowAtom(mce,vdata)); ty = typeOfIRExpr(mce->bb->tyenv, vdata); /* First, emit a definedness test for the address. This also sets the address (shadow) to 'defined' following the test. */ complainIfUndefined( mce, addr ); /* Now decide which helper function to call to write the data V bits into shadow memory. */ switch (ty) { case Ity_V128: /* we'll use the helper twice */ case Ity_I64: helper = &MC_(helperc_STOREV8); hname = "MC_(helperc_STOREV8)"; break; case Ity_I32: helper = &MC_(helperc_STOREV4); hname = "MC_(helperc_STOREV4)"; break; case Ity_I16: helper = &MC_(helperc_STOREV2); hname = "MC_(helperc_STOREV2)"; break; case Ity_I8: helper = &MC_(helperc_STOREV1); hname = "MC_(helperc_STOREV1)"; break; default: VG_(tool_panic)("memcheck:do_shadow_STle"); } if (ty == Ity_V128) { /* V128-bit case */ /* See comment in next clause re 64-bit regparms */ eBias0 = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); addrLo64 = assignNew(mce, tyAddr, binop(mkAdd, addr, eBias0) ); vdataLo64 = assignNew(mce, Ity_I64, unop(Iop_V128to64, vdata)); diLo64 = unsafeIRDirty_0_N( 1/*regparms*/, hname, helper, mkIRExprVec_2( addrLo64, vdataLo64 )); eBias8 = tyAddr==Ity_I32 ? mkU32(bias+8) : mkU64(bias+8); addrHi64 = assignNew(mce, tyAddr, binop(mkAdd, addr, eBias8) ); vdataHi64 = assignNew(mce, Ity_I64, unop(Iop_V128HIto64, vdata)); diHi64 = unsafeIRDirty_0_N( 1/*regparms*/, hname, helper, mkIRExprVec_2( addrHi64, vdataHi64 )); setHelperAnns( mce, diLo64 ); setHelperAnns( mce, diHi64 ); stmt( mce->bb, IRStmt_Dirty(diLo64) ); stmt( mce->bb, IRStmt_Dirty(diHi64) ); } else { /* 8/16/32/64-bit cases */ /* Generate the actual address into addrAct. */ if (bias == 0) { addrAct = addr; } else { eBias = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); addrAct = assignNew(mce, tyAddr, binop(mkAdd, addr, eBias) ); } if (ty == Ity_I64) { /* We can't do this with regparm 2 on 32-bit platforms, since the back ends aren't clever enough to handle 64-bit regparm args. Therefore be different. */ di = unsafeIRDirty_0_N( 1/*regparms*/, hname, helper, mkIRExprVec_2( addrAct, vdata )); } else { di = unsafeIRDirty_0_N( 2/*regparms*/, hname, helper, mkIRExprVec_2( addrAct, zwidenToHostWord( mce, vdata ))); } setHelperAnns( mce, di ); stmt( mce->bb, IRStmt_Dirty(di) ); } } /* Do lazy pessimistic propagation through a dirty helper call, by looking at the annotations on it. This is the most complex part of Memcheck. */ static IRType szToITy ( Int n ) { switch (n) { case 1: return Ity_I8; case 2: return Ity_I16; case 4: return Ity_I32; case 8: return Ity_I64; default: VG_(tool_panic)("szToITy(memcheck)"); } } static void do_shadow_Dirty ( MCEnv* mce, IRDirty* d ) { Int i, n, offset, toDo, gSz, gOff; IRAtom *src, *here, *curr; IRType tyAddr, tySrc, tyDst; IRTemp dst; /* First check the guard. */ complainIfUndefined(mce, d->guard); /* Now round up all inputs and PCast over them. */ curr = definedOfType(Ity_I32); /* Inputs: unmasked args */ for (i = 0; d->args[i]; i++) { if (d->cee->mcx_mask & (1<<i)) { /* ignore this arg */ } else { here = mkPCastTo( mce, Ity_I32, expr2vbits(mce, d->args[i]) ); curr = mkUifU32(mce, here, curr); } } /* Inputs: guest state that we read. */ for (i = 0; i < d->nFxState; i++) { tl_assert(d->fxState[i].fx != Ifx_None); if (d->fxState[i].fx == Ifx_Write) continue; /* Ignore any sections marked as 'always defined'. */ if (isAlwaysDefd(mce, d->fxState[i].offset, d->fxState[i].size )) { if (0) VG_(printf)("memcheck: Dirty gst: ignored off %d, sz %d\n", d->fxState[i].offset, d->fxState[i].size ); continue; } /* This state element is read or modified. So we need to consider it. If larger than 8 bytes, deal with it in 8-byte chunks. */ gSz = d->fxState[i].size; gOff = d->fxState[i].offset; tl_assert(gSz > 0); while (True) { if (gSz == 0) break; n = gSz <= 8 ? gSz : 8; /* update 'curr' with UifU of the state slice gOff .. gOff+n-1 */ tySrc = szToITy( n ); src = assignNew( mce, tySrc, shadow_GET(mce, gOff, tySrc ) ); here = mkPCastTo( mce, Ity_I32, src ); curr = mkUifU32(mce, here, curr); gSz -= n; gOff += n; } } /* Inputs: memory. First set up some info needed regardless of whether we're doing reads or writes. */ tyAddr = Ity_INVALID; if (d->mFx != Ifx_None) { /* Because we may do multiple shadow loads/stores from the same base address, it's best to do a single test of its definedness right now. Post-instrumentation optimisation should remove all but this test. */ tl_assert(d->mAddr); complainIfUndefined(mce, d->mAddr); tyAddr = typeOfIRExpr(mce->bb->tyenv, d->mAddr); tl_assert(tyAddr == Ity_I32 || tyAddr == Ity_I64); tl_assert(tyAddr == mce->hWordTy); /* not really right */ } /* Deal with memory inputs (reads or modifies) */ if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify) { offset = 0; toDo = d->mSize; /* chew off 32-bit chunks */ while (toDo >= 4) { here = mkPCastTo( mce, Ity_I32, expr2vbits_LDle ( mce, Ity_I32, d->mAddr, d->mSize - toDo ) ); curr = mkUifU32(mce, here, curr); toDo -= 4; } /* chew off 16-bit chunks */ while (toDo >= 2) { here = mkPCastTo( mce, Ity_I32, expr2vbits_LDle ( mce, Ity_I16, d->mAddr, d->mSize - toDo ) ); curr = mkUifU32(mce, here, curr); toDo -= 2; } tl_assert(toDo == 0); /* also need to handle 1-byte excess */ } /* Whew! So curr is a 32-bit V-value summarising pessimistically all the inputs to the helper. Now we need to re-distribute the results to all destinations. */ /* Outputs: the destination temporary, if there is one. */ if (d->tmp != IRTemp_INVALID) { dst = findShadowTmp(mce, d->tmp); tyDst = typeOfIRTemp(mce->bb->tyenv, d->tmp); assign( mce->bb, dst, mkPCastTo( mce, tyDst, curr) ); } /* Outputs: guest state that we write or modify. */ for (i = 0; i < d->nFxState; i++) { tl_assert(d->fxState[i].fx != Ifx_None); if (d->fxState[i].fx == Ifx_Read) continue; /* Ignore any sections marked as 'always defined'. */ if (isAlwaysDefd(mce, d->fxState[i].offset, d->fxState[i].size )) continue; /* This state element is written or modified. So we need to consider it. If larger than 8 bytes, deal with it in 8-byte chunks. */ gSz = d->fxState[i].size; gOff = d->fxState[i].offset; tl_assert(gSz > 0); while (True) { if (gSz == 0) break; n = gSz <= 8 ? gSz : 8; /* Write suitably-casted 'curr' to the state slice gOff .. gOff+n-1 */ tyDst = szToITy( n ); do_shadow_PUT( mce, gOff, NULL, /* original atom */ mkPCastTo( mce, tyDst, curr ) ); gSz -= n; gOff += n; } } /* Outputs: memory that we write or modify. */ if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify) { offset = 0; toDo = d->mSize; /* chew off 32-bit chunks */ while (toDo >= 4) { do_shadow_STle( mce, d->mAddr, d->mSize - toDo, NULL, /* original data */ mkPCastTo( mce, Ity_I32, curr ) ); toDo -= 4; } /* chew off 16-bit chunks */ while (toDo >= 2) { do_shadow_STle( mce, d->mAddr, d->mSize - toDo, NULL, /* original data */ mkPCastTo( mce, Ity_I16, curr ) ); toDo -= 2; } tl_assert(toDo == 0); /* also need to handle 1-byte excess */ } } /*------------------------------------------------------------*/ /*--- Memcheck main ---*/ /*------------------------------------------------------------*/ static Bool isBogusAtom ( IRAtom* at ) { ULong n = 0; IRConst* con; tl_assert(isIRAtom(at)); if (at->tag == Iex_RdTmp) return False; tl_assert(at->tag == Iex_Const); con = at->Iex.Const.con; switch (con->tag) { case Ico_U8: n = (ULong)con->Ico.U8; break; case Ico_U16: n = (ULong)con->Ico.U16; break; case Ico_U32: n = (ULong)con->Ico.U32; break; case Ico_U64: n = (ULong)con->Ico.U64; break; default: ppIRExpr(at); tl_assert(0); } /* VG_(printf)("%llx\n", n); */ return (n == 0xFEFEFEFF || n == 0x80808080 || n == 0x1010101 || n == 1010100); } __attribute__((unused)) static Bool checkForBogusLiterals ( /*FLAT*/ IRStmt* st ) { Int i; IRExpr* e; switch (st->tag) { case Ist_WrTmp: e = st->Ist.WrTmp.data; switch (e->tag) { case Iex_Get: case Iex_RdTmp: return False; case Iex_Unop: return isBogusAtom(e->Iex.Unop.arg); case Iex_Binop: return isBogusAtom(e->Iex.Binop.arg1) || isBogusAtom(e->Iex.Binop.arg2); case Iex_Mux0X: return isBogusAtom(e->Iex.Mux0X.cond) || isBogusAtom(e->Iex.Mux0X.expr0) || isBogusAtom(e->Iex.Mux0X.exprX); case Iex_Load: return isBogusAtom(e->Iex.Load.addr); case Iex_CCall: for (i = 0; e->Iex.CCall.args[i]; i++) if (isBogusAtom(e->Iex.CCall.args[i])) return True; return False; default: goto unhandled; } case Ist_Put: return isBogusAtom(st->Ist.Put.data); case Ist_Store: return isBogusAtom(st->Ist.Store.addr) || isBogusAtom(st->Ist.Store.data); case Ist_Exit: return isBogusAtom(st->Ist.Exit.guard); default: unhandled: ppIRStmt(st); VG_(tool_panic)("hasBogusLiterals"); } } IRSB* mc_instrument ( void* closureV, IRSB* bb_in, VexGuestLayout* layout, VexGuestExtents* vge, IRType gWordTy, IRType hWordTy ) { Bool verboze = False; //True; /* Bool hasBogusLiterals = False; */ Int i, j, first_stmt; IRStmt* st; MCEnv mce; /* Set up BB */ IRSB* bb = emptyIRSB(); bb->tyenv = deepCopyIRTypeEnv(bb_in->tyenv); bb->next = deepCopyIRExpr(bb_in->next); bb->jumpkind = bb_in->jumpkind; /* Set up the running environment. Only .bb is modified as we go along. */ mce.bb = bb; mce.layout = layout; mce.n_originalTmps = bb->tyenv->types_used; mce.hWordTy = hWordTy; mce.tmpMap = LibVEX_Alloc(mce.n_originalTmps * sizeof(IRTemp)); for (i = 0; i < mce.n_originalTmps; i++) mce.tmpMap[i] = IRTemp_INVALID; /* Iterate over the stmts. */ for (i = 0; i < bb_in->stmts_used; i++) { st = bb_in->stmts[i]; if (!st) continue; tl_assert(isFlatIRStmt(st)); /* if (!hasBogusLiterals) { hasBogusLiterals = checkForBogusLiterals(st); if (hasBogusLiterals) { VG_(printf)("bogus: "); ppIRStmt(st); VG_(printf)("\n"); } } */ first_stmt = bb->stmts_used; if (verboze) { ppIRStmt(st); VG_(printf)("\n\n"); } switch (st->tag) { case Ist_WrTmp: assign( bb, findShadowTmp(&mce, st->Ist.WrTmp.tmp), expr2vbits( &mce, st->Ist.WrTmp.data) ); break; case Ist_Put: do_shadow_PUT( &mce, st->Ist.Put.offset, st->Ist.Put.data, NULL /* shadow atom */ ); break; case Ist_PutI: do_shadow_PUTI( &mce, st->Ist.PutI.descr, st->Ist.PutI.ix, st->Ist.PutI.bias, st->Ist.PutI.data ); break; case Ist_Store: do_shadow_STle( &mce, st->Ist.Store.addr, 0/* addr bias */, st->Ist.Store.data, NULL /* shadow data */ ); break; case Ist_Exit: /* if (!hasBogusLiterals) */ complainIfUndefined( &mce, st->Ist.Exit.guard ); break; case Ist_Dirty: do_shadow_Dirty( &mce, st->Ist.Dirty.details ); break; case Ist_IMark: case Ist_NoOp: break; default: VG_(printf)("\n"); ppIRStmt(st); VG_(printf)("\n"); VG_(tool_panic)("memcheck: unhandled IRStmt"); } /* switch (st->tag) */ if (verboze) { for (j = first_stmt; j < bb->stmts_used; j++) { VG_(printf)(" "); ppIRStmt(bb->stmts[j]); VG_(printf)("\n"); } VG_(printf)("\n"); } addStmtToIRSB(bb, st); } /* Now we need to complain if the jump target is undefined. */ first_stmt = bb->stmts_used; if (verboze) { VG_(printf)("bb->next = "); ppIRExpr(bb->next); VG_(printf)("\n\n"); } complainIfUndefined( &mce, bb->next ); if (verboze) { for (j = first_stmt; j < bb->stmts_used; j++) { VG_(printf)(" "); ppIRStmt(bb->stmts[j]); VG_(printf)("\n"); } VG_(printf)("\n"); } return bb; } #endif /* UNUSED */ /*--------------------------------------------------------------------*/ /*--- end test_main.c ---*/ /*--------------------------------------------------------------------*/