/*--------------------------------------------------------------------*/ /*--- Contains machine-specific (guest-state-layout-specific) ---*/ /*--- support for origin tracking. ---*/ /*--- mc_machine.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of MemCheck, a heavyweight Valgrind tool for detecting memory errors. Copyright (C) 2008-2011 OpenWorks Ltd info@open-works.co.uk This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. Neither the names of the U.S. Department of Energy nor the University of California nor the names of its contributors may be used to endorse or promote products derived from this software without prior written permission. */ #include "pub_tool_basics.h" #include "pub_tool_hashtable.h" // For mc_include.h #include "pub_tool_libcassert.h" #include "pub_tool_libcprint.h" #include "pub_tool_tooliface.h" #include "mc_include.h" #undef MC_SIZEOF_GUEST_STATE #if defined(VGA_x86) # include "libvex_guest_x86.h" # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestX86State) #endif #if defined(VGA_amd64) # include "libvex_guest_amd64.h" # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestAMD64State) #endif #if defined(VGA_ppc32) # include "libvex_guest_ppc32.h" # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestPPC32State) #endif #if defined(VGA_ppc64) # include "libvex_guest_ppc64.h" # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestPPC64State) #endif #if defined(VGA_s390x) # include "libvex_guest_s390x.h" # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestS390XState) #endif #if defined(VGA_arm) # include "libvex_guest_arm.h" # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestARMState) #endif static inline Bool host_is_big_endian ( void ) { UInt x = 0x11223344; return 0x1122 == *(UShort*)(&x); } static inline Bool host_is_little_endian ( void ) { UInt x = 0x11223344; return 0x3344 == *(UShort*)(&x); } /* Let (offset,szB) describe a reference to the guest state section [offset, offset+szB). This function returns the corresponding guest state reference to be used for the origin tag (which of course will be in the second shadow area), or -1 if this piece of guest state is not to be tracked. Since origin tags are 32-bits long, we expect any returned value (except -1) to be a multiple of 4, between 0 and sizeof(guest-state)-4 inclusive. This is inherently (guest-)architecture specific. For x86 and amd64 we do some somewhat tricky things to give %AH .. %DH their own tags. On ppc32/64 we do some marginally tricky things to give all 16 %CR components their own tags. This function only deals with references to the guest state whose offsets are known at translation time (that is, references arising from Put and Get). References whose offset is not known until run time (that is, arise from PutI and GetI) are handled by MC_(get_otrack_reg_array_equiv_int_type) below. Note that since some guest state arrays (eg, the x86 FP reg stack) are accessed both as arrays (eg, x87 insns) and directly (eg, MMX insns), the two functions must be consistent for those sections of guest state -- that is, they must both say the area is shadowed, or both say it is not. This function is dependent on the host's endianness, hence we assert that the use case is supported. */ static Int get_otrack_shadow_offset_wrk ( Int offset, Int szB ); /*fwds*/ Int MC_(get_otrack_shadow_offset) ( Int offset, Int szB ) { Int cand = get_otrack_shadow_offset_wrk( offset, szB ); if (cand == -1) return cand; tl_assert(0 == (cand & 3)); tl_assert(cand <= MC_SIZEOF_GUEST_STATE-4); return cand; } static Int get_otrack_shadow_offset_wrk ( Int offset, Int szB ) { /* -------------------- ppc64 -------------------- */ # if defined(VGA_ppc64) # define GOF(_fieldname) \ (offsetof(VexGuestPPC64State,guest_##_fieldname)) # define SZB(_fieldname) \ (sizeof(((VexGuestPPC64State*)0)->guest_##_fieldname)) Int sz = szB; Int o = offset; tl_assert(sz > 0); tl_assert(host_is_big_endian()); if (sz == 8 || sz == 4) { /* The point of this is to achieve if ((o == GOF(GPRn) && sz == 8) || (o == 4+GOF(GPRn) && sz == 4)) return GOF(GPRn); by testing ox instead of o, and setting ox back 4 bytes when sz == 4. */ Int ox = sz == 8 ? o : (o - 4); if (ox == GOF(GPR0)) return ox; if (ox == GOF(GPR1)) return ox; if (ox == GOF(GPR2)) return ox; if (ox == GOF(GPR3)) return ox; if (ox == GOF(GPR4)) return ox; if (ox == GOF(GPR5)) return ox; if (ox == GOF(GPR6)) return ox; if (ox == GOF(GPR7)) return ox; if (ox == GOF(GPR8)) return ox; if (ox == GOF(GPR9)) return ox; if (ox == GOF(GPR10)) return ox; if (ox == GOF(GPR11)) return ox; if (ox == GOF(GPR12)) return ox; if (ox == GOF(GPR13)) return ox; if (ox == GOF(GPR14)) return ox; if (ox == GOF(GPR15)) return ox; if (ox == GOF(GPR16)) return ox; if (ox == GOF(GPR17)) return ox; if (ox == GOF(GPR18)) return ox; if (ox == GOF(GPR19)) return ox; if (ox == GOF(GPR20)) return ox; if (ox == GOF(GPR21)) return ox; if (ox == GOF(GPR22)) return ox; if (ox == GOF(GPR23)) return ox; if (ox == GOF(GPR24)) return ox; if (ox == GOF(GPR25)) return ox; if (ox == GOF(GPR26)) return ox; if (ox == GOF(GPR27)) return ox; if (ox == GOF(GPR28)) return ox; if (ox == GOF(GPR29)) return ox; if (ox == GOF(GPR30)) return ox; if (ox == GOF(GPR31)) return ox; } if (o == GOF(LR) && sz == 8) return o; if (o == GOF(CTR) && sz == 8) return o; if (o == GOF(CIA) && sz == 8) return -1; if (o == GOF(IP_AT_SYSCALL) && sz == 8) return -1; /* slot unused */ if (o == GOF(FPROUND) && sz == 4) return -1; if (o == GOF(EMWARN) && sz == 4) return -1; if (o == GOF(TISTART) && sz == 8) return -1; if (o == GOF(TILEN) && sz == 8) return -1; if (o == GOF(VSCR) && sz == 4) return -1; if (o == GOF(VRSAVE) && sz == 4) return -1; if (o == GOF(REDIR_SP) && sz == 8) return -1; // With ISA 2.06, the "Vector-Scalar Floating-point" category // provides facilities to support vector and scalar binary floating- // point operations. A unified register file is an integral part // of this new facility, combining floating point and vector registers // using a 64x128-bit vector. These are referred to as VSR[0..63]. // The floating point registers are now mapped into double word element 0 // of VSR[0..31]. The 32x128-bit vector registers defined by the "Vector // Facility [Category: Vector]" are now mapped to VSR[32..63]. // Floating point registers . . . if (o == GOF(VSR0) && sz == 8) return o; if (o == GOF(VSR1) && sz == 8) return o; if (o == GOF(VSR2) && sz == 8) return o; if (o == GOF(VSR3) && sz == 8) return o; if (o == GOF(VSR4) && sz == 8) return o; if (o == GOF(VSR5) && sz == 8) return o; if (o == GOF(VSR6) && sz == 8) return o; if (o == GOF(VSR7) && sz == 8) return o; if (o == GOF(VSR8) && sz == 8) return o; if (o == GOF(VSR9) && sz == 8) return o; if (o == GOF(VSR10) && sz == 8) return o; if (o == GOF(VSR11) && sz == 8) return o; if (o == GOF(VSR12) && sz == 8) return o; if (o == GOF(VSR13) && sz == 8) return o; if (o == GOF(VSR14) && sz == 8) return o; if (o == GOF(VSR15) && sz == 8) return o; if (o == GOF(VSR16) && sz == 8) return o; if (o == GOF(VSR17) && sz == 8) return o; if (o == GOF(VSR18) && sz == 8) return o; if (o == GOF(VSR19) && sz == 8) return o; if (o == GOF(VSR20) && sz == 8) return o; if (o == GOF(VSR21) && sz == 8) return o; if (o == GOF(VSR22) && sz == 8) return o; if (o == GOF(VSR23) && sz == 8) return o; if (o == GOF(VSR24) && sz == 8) return o; if (o == GOF(VSR25) && sz == 8) return o; if (o == GOF(VSR26) && sz == 8) return o; if (o == GOF(VSR27) && sz == 8) return o; if (o == GOF(VSR28) && sz == 8) return o; if (o == GOF(VSR29) && sz == 8) return o; if (o == GOF(VSR30) && sz == 8) return o; if (o == GOF(VSR31) && sz == 8) return o; /* For the various byte sized XER/CR pieces, use offset 8 in VSR0 .. VSR19. */ tl_assert(SZB(VSR0) == 16); if (o == GOF(XER_SO) && sz == 1) return 8 +GOF(VSR0); if (o == GOF(XER_OV) && sz == 1) return 8 +GOF(VSR1); if (o == GOF(XER_CA) && sz == 1) return 8 +GOF(VSR2); if (o == GOF(XER_BC) && sz == 1) return 8 +GOF(VSR3); if (o == GOF(CR0_321) && sz == 1) return 8 +GOF(VSR4); if (o == GOF(CR0_0) && sz == 1) return 8 +GOF(VSR5); if (o == GOF(CR1_321) && sz == 1) return 8 +GOF(VSR6); if (o == GOF(CR1_0) && sz == 1) return 8 +GOF(VSR7); if (o == GOF(CR2_321) && sz == 1) return 8 +GOF(VSR8); if (o == GOF(CR2_0) && sz == 1) return 8 +GOF(VSR9); if (o == GOF(CR3_321) && sz == 1) return 8 +GOF(VSR10); if (o == GOF(CR3_0) && sz == 1) return 8 +GOF(VSR11); if (o == GOF(CR4_321) && sz == 1) return 8 +GOF(VSR12); if (o == GOF(CR4_0) && sz == 1) return 8 +GOF(VSR13); if (o == GOF(CR5_321) && sz == 1) return 8 +GOF(VSR14); if (o == GOF(CR5_0) && sz == 1) return 8 +GOF(VSR15); if (o == GOF(CR6_321) && sz == 1) return 8 +GOF(VSR16); if (o == GOF(CR6_0) && sz == 1) return 8 +GOF(VSR17); if (o == GOF(CR7_321) && sz == 1) return 8 +GOF(VSR18); if (o == GOF(CR7_0) && sz == 1) return 8 +GOF(VSR19); /* Vector registers .. use offset 0 in VSR0 .. VSR63. */ if (o >= GOF(VSR0) && o+sz <= GOF(VSR0) +SZB(VSR0)) return 0+ GOF(VSR0); if (o >= GOF(VSR1) && o+sz <= GOF(VSR1) +SZB(VSR1)) return 0+ GOF(VSR1); if (o >= GOF(VSR2) && o+sz <= GOF(VSR2) +SZB(VSR2)) return 0+ GOF(VSR2); if (o >= GOF(VSR3) && o+sz <= GOF(VSR3) +SZB(VSR3)) return 0+ GOF(VSR3); if (o >= GOF(VSR4) && o+sz <= GOF(VSR4) +SZB(VSR4)) return 0+ GOF(VSR4); if (o >= GOF(VSR5) && o+sz <= GOF(VSR5) +SZB(VSR5)) return 0+ GOF(VSR5); if (o >= GOF(VSR6) && o+sz <= GOF(VSR6) +SZB(VSR6)) return 0+ GOF(VSR6); if (o >= GOF(VSR7) && o+sz <= GOF(VSR7) +SZB(VSR7)) return 0+ GOF(VSR7); if (o >= GOF(VSR8) && o+sz <= GOF(VSR8) +SZB(VSR8)) return 0+ GOF(VSR8); if (o >= GOF(VSR9) && o+sz <= GOF(VSR9) +SZB(VSR9)) return 0+ GOF(VSR9); if (o >= GOF(VSR10) && o+sz <= GOF(VSR10)+SZB(VSR10)) return 0+ GOF(VSR10); if (o >= GOF(VSR11) && o+sz <= GOF(VSR11)+SZB(VSR11)) return 0+ GOF(VSR11); if (o >= GOF(VSR12) && o+sz <= GOF(VSR12)+SZB(VSR12)) return 0+ GOF(VSR12); if (o >= GOF(VSR13) && o+sz <= GOF(VSR13)+SZB(VSR13)) return 0+ GOF(VSR13); if (o >= GOF(VSR14) && o+sz <= GOF(VSR14)+SZB(VSR14)) return 0+ GOF(VSR14); if (o >= GOF(VSR15) && o+sz <= GOF(VSR15)+SZB(VSR15)) return 0+ GOF(VSR15); if (o >= GOF(VSR16) && o+sz <= GOF(VSR16)+SZB(VSR16)) return 0+ GOF(VSR16); if (o >= GOF(VSR17) && o+sz <= GOF(VSR17)+SZB(VSR17)) return 0+ GOF(VSR17); if (o >= GOF(VSR18) && o+sz <= GOF(VSR18)+SZB(VSR18)) return 0+ GOF(VSR18); if (o >= GOF(VSR19) && o+sz <= GOF(VSR19)+SZB(VSR19)) return 0+ GOF(VSR19); if (o >= GOF(VSR20) && o+sz <= GOF(VSR20)+SZB(VSR20)) return 0+ GOF(VSR20); if (o >= GOF(VSR21) && o+sz <= GOF(VSR21)+SZB(VSR21)) return 0+ GOF(VSR21); if (o >= GOF(VSR22) && o+sz <= GOF(VSR22)+SZB(VSR22)) return 0+ GOF(VSR22); if (o >= GOF(VSR23) && o+sz <= GOF(VSR23)+SZB(VSR23)) return 0+ GOF(VSR23); if (o >= GOF(VSR24) && o+sz <= GOF(VSR24)+SZB(VSR24)) return 0+ GOF(VSR24); if (o >= GOF(VSR25) && o+sz <= GOF(VSR25)+SZB(VSR25)) return 0+ GOF(VSR25); if (o >= GOF(VSR26) && o+sz <= GOF(VSR26)+SZB(VSR26)) return 0+ GOF(VSR26); if (o >= GOF(VSR27) && o+sz <= GOF(VSR27)+SZB(VSR27)) return 0+ GOF(VSR27); if (o >= GOF(VSR28) && o+sz <= GOF(VSR28)+SZB(VSR28)) return 0+ GOF(VSR28); if (o >= GOF(VSR29) && o+sz <= GOF(VSR29)+SZB(VSR29)) return 0+ GOF(VSR29); if (o >= GOF(VSR30) && o+sz <= GOF(VSR30)+SZB(VSR30)) return 0+ GOF(VSR30); if (o >= GOF(VSR31) && o+sz <= GOF(VSR31)+SZB(VSR31)) return 0+ GOF(VSR31); if (o >= GOF(VSR32) && o+sz <= GOF(VSR32)+SZB(VSR32)) return 0+ GOF(VSR32); if (o >= GOF(VSR33) && o+sz <= GOF(VSR33)+SZB(VSR33)) return 0+ GOF(VSR33); if (o >= GOF(VSR34) && o+sz <= GOF(VSR34)+SZB(VSR34)) return 0+ GOF(VSR34); if (o >= GOF(VSR35) && o+sz <= GOF(VSR35)+SZB(VSR35)) return 0+ GOF(VSR35); if (o >= GOF(VSR36) && o+sz <= GOF(VSR36)+SZB(VSR36)) return 0+ GOF(VSR36); if (o >= GOF(VSR37) && o+sz <= GOF(VSR37)+SZB(VSR37)) return 0+ GOF(VSR37); if (o >= GOF(VSR38) && o+sz <= GOF(VSR38)+SZB(VSR38)) return 0+ GOF(VSR38); if (o >= GOF(VSR39) && o+sz <= GOF(VSR39)+SZB(VSR39)) return 0+ GOF(VSR39); if (o >= GOF(VSR40) && o+sz <= GOF(VSR40)+SZB(VSR40)) return 0+ GOF(VSR40); if (o >= GOF(VSR41) && o+sz <= GOF(VSR41)+SZB(VSR41)) return 0+ GOF(VSR41); if (o >= GOF(VSR42) && o+sz <= GOF(VSR42)+SZB(VSR42)) return 0+ GOF(VSR42); if (o >= GOF(VSR43) && o+sz <= GOF(VSR43)+SZB(VSR43)) return 0+ GOF(VSR43); if (o >= GOF(VSR44) && o+sz <= GOF(VSR44)+SZB(VSR44)) return 0+ GOF(VSR44); if (o >= GOF(VSR45) && o+sz <= GOF(VSR45)+SZB(VSR45)) return 0+ GOF(VSR45); if (o >= GOF(VSR46) && o+sz <= GOF(VSR46)+SZB(VSR46)) return 0+ GOF(VSR46); if (o >= GOF(VSR47) && o+sz <= GOF(VSR47)+SZB(VSR47)) return 0+ GOF(VSR47); if (o >= GOF(VSR48) && o+sz <= GOF(VSR48)+SZB(VSR48)) return 0+ GOF(VSR48); if (o >= GOF(VSR49) && o+sz <= GOF(VSR49)+SZB(VSR49)) return 0+ GOF(VSR49); if (o >= GOF(VSR50) && o+sz <= GOF(VSR50)+SZB(VSR50)) return 0+ GOF(VSR50); if (o >= GOF(VSR51) && o+sz <= GOF(VSR51)+SZB(VSR51)) return 0+ GOF(VSR51); if (o >= GOF(VSR52) && o+sz <= GOF(VSR52)+SZB(VSR52)) return 0+ GOF(VSR52); if (o >= GOF(VSR53) && o+sz <= GOF(VSR53)+SZB(VSR53)) return 0+ GOF(VSR53); if (o >= GOF(VSR54) && o+sz <= GOF(VSR54)+SZB(VSR54)) return 0+ GOF(VSR54); if (o >= GOF(VSR55) && o+sz <= GOF(VSR55)+SZB(VSR55)) return 0+ GOF(VSR55); if (o >= GOF(VSR56) && o+sz <= GOF(VSR56)+SZB(VSR56)) return 0+ GOF(VSR56); if (o >= GOF(VSR57) && o+sz <= GOF(VSR57)+SZB(VSR57)) return 0+ GOF(VSR57); if (o >= GOF(VSR58) && o+sz <= GOF(VSR58)+SZB(VSR58)) return 0+ GOF(VSR58); if (o >= GOF(VSR59) && o+sz <= GOF(VSR59)+SZB(VSR59)) return 0+ GOF(VSR59); if (o >= GOF(VSR60) && o+sz <= GOF(VSR60)+SZB(VSR60)) return 0+ GOF(VSR60); if (o >= GOF(VSR61) && o+sz <= GOF(VSR61)+SZB(VSR61)) return 0+ GOF(VSR61); if (o >= GOF(VSR62) && o+sz <= GOF(VSR62)+SZB(VSR62)) return 0+ GOF(VSR62); if (o >= GOF(VSR63) && o+sz <= GOF(VSR63)+SZB(VSR63)) return 0+ GOF(VSR63); VG_(printf)("MC_(get_otrack_shadow_offset)(ppc64)(off=%d,sz=%d)\n", offset,szB); tl_assert(0); # undef GOF # undef SZB /* -------------------- ppc32 -------------------- */ # elif defined(VGA_ppc32) # define GOF(_fieldname) \ (offsetof(VexGuestPPC32State,guest_##_fieldname)) # define SZB(_fieldname) \ (sizeof(((VexGuestPPC32State*)0)->guest_##_fieldname)) Int o = offset; Int sz = szB; tl_assert(sz > 0); tl_assert(host_is_big_endian()); if (o == GOF(GPR0) && sz == 4) return o; if (o == GOF(GPR1) && sz == 4) return o; if (o == GOF(GPR2) && sz == 4) return o; if (o == GOF(GPR3) && sz == 4) return o; if (o == GOF(GPR4) && sz == 4) return o; if (o == GOF(GPR5) && sz == 4) return o; if (o == GOF(GPR6) && sz == 4) return o; if (o == GOF(GPR7) && sz == 4) return o; if (o == GOF(GPR8) && sz == 4) return o; if (o == GOF(GPR9) && sz == 4) return o; if (o == GOF(GPR10) && sz == 4) return o; if (o == GOF(GPR11) && sz == 4) return o; if (o == GOF(GPR12) && sz == 4) return o; if (o == GOF(GPR13) && sz == 4) return o; if (o == GOF(GPR14) && sz == 4) return o; if (o == GOF(GPR15) && sz == 4) return o; if (o == GOF(GPR16) && sz == 4) return o; if (o == GOF(GPR17) && sz == 4) return o; if (o == GOF(GPR18) && sz == 4) return o; if (o == GOF(GPR19) && sz == 4) return o; if (o == GOF(GPR20) && sz == 4) return o; if (o == GOF(GPR21) && sz == 4) return o; if (o == GOF(GPR22) && sz == 4) return o; if (o == GOF(GPR23) && sz == 4) return o; if (o == GOF(GPR24) && sz == 4) return o; if (o == GOF(GPR25) && sz == 4) return o; if (o == GOF(GPR26) && sz == 4) return o; if (o == GOF(GPR27) && sz == 4) return o; if (o == GOF(GPR28) && sz == 4) return o; if (o == GOF(GPR29) && sz == 4) return o; if (o == GOF(GPR30) && sz == 4) return o; if (o == GOF(GPR31) && sz == 4) return o; if (o == GOF(LR) && sz == 4) return o; if (o == GOF(CTR) && sz == 4) return o; if (o == GOF(CIA) && sz == 4) return -1; if (o == GOF(IP_AT_SYSCALL) && sz == 4) return -1; /* slot unused */ if (o == GOF(FPROUND) && sz == 4) return -1; if (o == GOF(VRSAVE) && sz == 4) return -1; if (o == GOF(EMWARN) && sz == 4) return -1; if (o == GOF(TISTART) && sz == 4) return -1; if (o == GOF(TILEN) && sz == 4) return -1; if (o == GOF(VSCR) && sz == 4) return -1; if (o == GOF(REDIR_SP) && sz == 4) return -1; if (o == GOF(SPRG3_RO) && sz == 4) return -1; // With ISA 2.06, the "Vector-Scalar Floating-point" category // provides facilities to support vector and scalar binary floating- // point operations. A unified register file is an integral part // of this new facility, combining floating point and vector registers // using a 64x128-bit vector. These are referred to as VSR[0..63]. // The floating point registers are now mapped into double word element 0 // of VSR[0..31]. The 32x128-bit vector registers defined by the "Vector // Facility [Category: Vector]" are now mapped to VSR[32..63]. // Floating point registers . . . if (o == GOF(VSR0) && sz == 8) return o; if (o == GOF(VSR1) && sz == 8) return o; if (o == GOF(VSR2) && sz == 8) return o; if (o == GOF(VSR3) && sz == 8) return o; if (o == GOF(VSR4) && sz == 8) return o; if (o == GOF(VSR5) && sz == 8) return o; if (o == GOF(VSR6) && sz == 8) return o; if (o == GOF(VSR7) && sz == 8) return o; if (o == GOF(VSR8) && sz == 8) return o; if (o == GOF(VSR9) && sz == 8) return o; if (o == GOF(VSR10) && sz == 8) return o; if (o == GOF(VSR11) && sz == 8) return o; if (o == GOF(VSR12) && sz == 8) return o; if (o == GOF(VSR13) && sz == 8) return o; if (o == GOF(VSR14) && sz == 8) return o; if (o == GOF(VSR15) && sz == 8) return o; if (o == GOF(VSR16) && sz == 8) return o; if (o == GOF(VSR17) && sz == 8) return o; if (o == GOF(VSR18) && sz == 8) return o; if (o == GOF(VSR19) && sz == 8) return o; if (o == GOF(VSR20) && sz == 8) return o; if (o == GOF(VSR21) && sz == 8) return o; if (o == GOF(VSR22) && sz == 8) return o; if (o == GOF(VSR23) && sz == 8) return o; if (o == GOF(VSR24) && sz == 8) return o; if (o == GOF(VSR25) && sz == 8) return o; if (o == GOF(VSR26) && sz == 8) return o; if (o == GOF(VSR27) && sz == 8) return o; if (o == GOF(VSR28) && sz == 8) return o; if (o == GOF(VSR29) && sz == 8) return o; if (o == GOF(VSR30) && sz == 8) return o; if (o == GOF(VSR31) && sz == 8) return o; /* For the various byte sized XER/CR pieces, use offset 8 in VSR0 .. VSR19. */ tl_assert(SZB(VSR0) == 16); if (o == GOF(XER_SO) && sz == 1) return 8 +GOF(VSR0); if (o == GOF(XER_OV) && sz == 1) return 8 +GOF(VSR1); if (o == GOF(XER_CA) && sz == 1) return 8 +GOF(VSR2); if (o == GOF(XER_BC) && sz == 1) return 8 +GOF(VSR3); if (o == GOF(CR0_321) && sz == 1) return 8 +GOF(VSR4); if (o == GOF(CR0_0) && sz == 1) return 8 +GOF(VSR5); if (o == GOF(CR1_321) && sz == 1) return 8 +GOF(VSR6); if (o == GOF(CR1_0) && sz == 1) return 8 +GOF(VSR7); if (o == GOF(CR2_321) && sz == 1) return 8 +GOF(VSR8); if (o == GOF(CR2_0) && sz == 1) return 8 +GOF(VSR9); if (o == GOF(CR3_321) && sz == 1) return 8 +GOF(VSR10); if (o == GOF(CR3_0) && sz == 1) return 8 +GOF(VSR11); if (o == GOF(CR4_321) && sz == 1) return 8 +GOF(VSR12); if (o == GOF(CR4_0) && sz == 1) return 8 +GOF(VSR13); if (o == GOF(CR5_321) && sz == 1) return 8 +GOF(VSR14); if (o == GOF(CR5_0) && sz == 1) return 8 +GOF(VSR15); if (o == GOF(CR6_321) && sz == 1) return 8 +GOF(VSR16); if (o == GOF(CR6_0) && sz == 1) return 8 +GOF(VSR17); if (o == GOF(CR7_321) && sz == 1) return 8 +GOF(VSR18); if (o == GOF(CR7_0) && sz == 1) return 8 +GOF(VSR19); /* Vector registers .. use offset 0 in VSR0 .. VSR63. */ if (o >= GOF(VSR0) && o+sz <= GOF(VSR0) +SZB(VSR0)) return 0+ GOF(VSR0); if (o >= GOF(VSR1) && o+sz <= GOF(VSR1) +SZB(VSR1)) return 0+ GOF(VSR1); if (o >= GOF(VSR2) && o+sz <= GOF(VSR2) +SZB(VSR2)) return 0+ GOF(VSR2); if (o >= GOF(VSR3) && o+sz <= GOF(VSR3) +SZB(VSR3)) return 0+ GOF(VSR3); if (o >= GOF(VSR4) && o+sz <= GOF(VSR4) +SZB(VSR4)) return 0+ GOF(VSR4); if (o >= GOF(VSR5) && o+sz <= GOF(VSR5) +SZB(VSR5)) return 0+ GOF(VSR5); if (o >= GOF(VSR6) && o+sz <= GOF(VSR6) +SZB(VSR6)) return 0+ GOF(VSR6); if (o >= GOF(VSR7) && o+sz <= GOF(VSR7) +SZB(VSR7)) return 0+ GOF(VSR7); if (o >= GOF(VSR8) && o+sz <= GOF(VSR8) +SZB(VSR8)) return 0+ GOF(VSR8); if (o >= GOF(VSR9) && o+sz <= GOF(VSR9) +SZB(VSR9)) return 0+ GOF(VSR9); if (o >= GOF(VSR10) && o+sz <= GOF(VSR10)+SZB(VSR10)) return 0+ GOF(VSR10); if (o >= GOF(VSR11) && o+sz <= GOF(VSR11)+SZB(VSR11)) return 0+ GOF(VSR11); if (o >= GOF(VSR12) && o+sz <= GOF(VSR12)+SZB(VSR12)) return 0+ GOF(VSR12); if (o >= GOF(VSR13) && o+sz <= GOF(VSR13)+SZB(VSR13)) return 0+ GOF(VSR13); if (o >= GOF(VSR14) && o+sz <= GOF(VSR14)+SZB(VSR14)) return 0+ GOF(VSR14); if (o >= GOF(VSR15) && o+sz <= GOF(VSR15)+SZB(VSR15)) return 0+ GOF(VSR15); if (o >= GOF(VSR16) && o+sz <= GOF(VSR16)+SZB(VSR16)) return 0+ GOF(VSR16); if (o >= GOF(VSR17) && o+sz <= GOF(VSR17)+SZB(VSR17)) return 0+ GOF(VSR17); if (o >= GOF(VSR18) && o+sz <= GOF(VSR18)+SZB(VSR18)) return 0+ GOF(VSR18); if (o >= GOF(VSR19) && o+sz <= GOF(VSR19)+SZB(VSR19)) return 0+ GOF(VSR19); if (o >= GOF(VSR20) && o+sz <= GOF(VSR20)+SZB(VSR20)) return 0+ GOF(VSR20); if (o >= GOF(VSR21) && o+sz <= GOF(VSR21)+SZB(VSR21)) return 0+ GOF(VSR21); if (o >= GOF(VSR22) && o+sz <= GOF(VSR22)+SZB(VSR22)) return 0+ GOF(VSR22); if (o >= GOF(VSR23) && o+sz <= GOF(VSR23)+SZB(VSR23)) return 0+ GOF(VSR23); if (o >= GOF(VSR24) && o+sz <= GOF(VSR24)+SZB(VSR24)) return 0+ GOF(VSR24); if (o >= GOF(VSR25) && o+sz <= GOF(VSR25)+SZB(VSR25)) return 0+ GOF(VSR25); if (o >= GOF(VSR26) && o+sz <= GOF(VSR26)+SZB(VSR26)) return 0+ GOF(VSR26); if (o >= GOF(VSR27) && o+sz <= GOF(VSR27)+SZB(VSR27)) return 0+ GOF(VSR27); if (o >= GOF(VSR28) && o+sz <= GOF(VSR28)+SZB(VSR28)) return 0+ GOF(VSR28); if (o >= GOF(VSR29) && o+sz <= GOF(VSR29)+SZB(VSR29)) return 0+ GOF(VSR29); if (o >= GOF(VSR30) && o+sz <= GOF(VSR30)+SZB(VSR30)) return 0+ GOF(VSR30); if (o >= GOF(VSR31) && o+sz <= GOF(VSR31)+SZB(VSR31)) return 0+ GOF(VSR31); if (o >= GOF(VSR32) && o+sz <= GOF(VSR32)+SZB(VSR32)) return 0+ GOF(VSR32); if (o >= GOF(VSR33) && o+sz <= GOF(VSR33)+SZB(VSR33)) return 0+ GOF(VSR33); if (o >= GOF(VSR34) && o+sz <= GOF(VSR34)+SZB(VSR34)) return 0+ GOF(VSR34); if (o >= GOF(VSR35) && o+sz <= GOF(VSR35)+SZB(VSR35)) return 0+ GOF(VSR35); if (o >= GOF(VSR36) && o+sz <= GOF(VSR36)+SZB(VSR36)) return 0+ GOF(VSR36); if (o >= GOF(VSR37) && o+sz <= GOF(VSR37)+SZB(VSR37)) return 0+ GOF(VSR37); if (o >= GOF(VSR38) && o+sz <= GOF(VSR38)+SZB(VSR38)) return 0+ GOF(VSR38); if (o >= GOF(VSR39) && o+sz <= GOF(VSR39)+SZB(VSR39)) return 0+ GOF(VSR39); if (o >= GOF(VSR40) && o+sz <= GOF(VSR40)+SZB(VSR40)) return 0+ GOF(VSR40); if (o >= GOF(VSR41) && o+sz <= GOF(VSR41)+SZB(VSR41)) return 0+ GOF(VSR41); if (o >= GOF(VSR42) && o+sz <= GOF(VSR42)+SZB(VSR42)) return 0+ GOF(VSR42); if (o >= GOF(VSR43) && o+sz <= GOF(VSR43)+SZB(VSR43)) return 0+ GOF(VSR43); if (o >= GOF(VSR44) && o+sz <= GOF(VSR44)+SZB(VSR44)) return 0+ GOF(VSR44); if (o >= GOF(VSR45) && o+sz <= GOF(VSR45)+SZB(VSR45)) return 0+ GOF(VSR45); if (o >= GOF(VSR46) && o+sz <= GOF(VSR46)+SZB(VSR46)) return 0+ GOF(VSR46); if (o >= GOF(VSR47) && o+sz <= GOF(VSR47)+SZB(VSR47)) return 0+ GOF(VSR47); if (o >= GOF(VSR48) && o+sz <= GOF(VSR48)+SZB(VSR48)) return 0+ GOF(VSR48); if (o >= GOF(VSR49) && o+sz <= GOF(VSR49)+SZB(VSR49)) return 0+ GOF(VSR49); if (o >= GOF(VSR50) && o+sz <= GOF(VSR50)+SZB(VSR50)) return 0+ GOF(VSR50); if (o >= GOF(VSR51) && o+sz <= GOF(VSR51)+SZB(VSR51)) return 0+ GOF(VSR51); if (o >= GOF(VSR52) && o+sz <= GOF(VSR52)+SZB(VSR52)) return 0+ GOF(VSR52); if (o >= GOF(VSR53) && o+sz <= GOF(VSR53)+SZB(VSR53)) return 0+ GOF(VSR53); if (o >= GOF(VSR54) && o+sz <= GOF(VSR54)+SZB(VSR54)) return 0+ GOF(VSR54); if (o >= GOF(VSR55) && o+sz <= GOF(VSR55)+SZB(VSR55)) return 0+ GOF(VSR55); if (o >= GOF(VSR56) && o+sz <= GOF(VSR56)+SZB(VSR56)) return 0+ GOF(VSR56); if (o >= GOF(VSR57) && o+sz <= GOF(VSR57)+SZB(VSR57)) return 0+ GOF(VSR57); if (o >= GOF(VSR58) && o+sz <= GOF(VSR58)+SZB(VSR58)) return 0+ GOF(VSR58); if (o >= GOF(VSR59) && o+sz <= GOF(VSR59)+SZB(VSR59)) return 0+ GOF(VSR59); if (o >= GOF(VSR60) && o+sz <= GOF(VSR60)+SZB(VSR60)) return 0+ GOF(VSR60); if (o >= GOF(VSR61) && o+sz <= GOF(VSR61)+SZB(VSR61)) return 0+ GOF(VSR61); if (o >= GOF(VSR62) && o+sz <= GOF(VSR62)+SZB(VSR62)) return 0+ GOF(VSR62); if (o >= GOF(VSR63) && o+sz <= GOF(VSR63)+SZB(VSR63)) return 0+ GOF(VSR63); VG_(printf)("MC_(get_otrack_shadow_offset)(ppc32)(off=%d,sz=%d)\n", offset,szB); tl_assert(0); # undef GOF # undef SZB /* -------------------- amd64 -------------------- */ # elif defined(VGA_amd64) # define GOF(_fieldname) \ (offsetof(VexGuestAMD64State,guest_##_fieldname)) # define SZB(_fieldname) \ (sizeof(((VexGuestAMD64State*)0)->guest_##_fieldname)) Int o = offset; Int sz = szB; Bool is1248 = sz == 8 || sz == 4 || sz == 2 || sz == 1; tl_assert(sz > 0); tl_assert(host_is_little_endian()); if (o == GOF(RAX) && is1248) return o; if (o == GOF(RCX) && is1248) return o; if (o == GOF(RDX) && is1248) return o; if (o == GOF(RBX) && is1248) return o; if (o == GOF(RSP) && is1248) return o; if (o == GOF(RBP) && is1248) return o; if (o == GOF(RSI) && is1248) return o; if (o == GOF(RDI) && is1248) return o; if (o == GOF(R8) && is1248) return o; if (o == GOF(R9) && is1248) return o; if (o == GOF(R10) && is1248) return o; if (o == GOF(R11) && is1248) return o; if (o == GOF(R12) && is1248) return o; if (o == GOF(R13) && is1248) return o; if (o == GOF(R14) && is1248) return o; if (o == GOF(R15) && is1248) return o; if (o == GOF(CC_DEP1) && sz == 8) return o; if (o == GOF(CC_DEP2) && sz == 8) return o; if (o == GOF(CC_OP) && sz == 8) return -1; /* slot used for %AH */ if (o == GOF(CC_NDEP) && sz == 8) return -1; /* slot used for %BH */ if (o == GOF(DFLAG) && sz == 8) return -1; /* slot used for %CH */ if (o == GOF(RIP) && sz == 8) return -1; /* slot unused */ if (o == GOF(IP_AT_SYSCALL) && sz == 8) return -1; /* slot unused */ if (o == GOF(IDFLAG) && sz == 8) return -1; /* slot used for %DH */ if (o == GOF(ACFLAG) && sz == 8) return -1; /* slot unused */ if (o == GOF(FS_ZERO) && sz == 8) return -1; /* slot unused */ if (o == GOF(GS_0x60) && sz == 8) return -1; /* slot unused */ if (o == GOF(TISTART) && sz == 8) return -1; /* slot unused */ if (o == GOF(TILEN) && sz == 8) return -1; /* slot unused */ /* Treat %AH, %BH, %CH, %DH as independent registers. To do this requires finding 4 unused 32-bit slots in the second-shadow guest state, respectively: CC_OP CC_NDEP DFLAG IDFLAG, since none of those are tracked. */ tl_assert(SZB(CC_OP) == 8); tl_assert(SZB(CC_NDEP) == 8); tl_assert(SZB(IDFLAG) == 8); tl_assert(SZB(DFLAG) == 8); if (o == 1+ GOF(RAX) && szB == 1) return GOF(CC_OP); if (o == 1+ GOF(RBX) && szB == 1) return GOF(CC_NDEP); if (o == 1+ GOF(RCX) && szB == 1) return GOF(DFLAG); if (o == 1+ GOF(RDX) && szB == 1) return GOF(IDFLAG); /* skip XMM and FP admin stuff */ if (o == GOF(SSEROUND) && szB == 8) return -1; if (o == GOF(FTOP) && szB == 4) return -1; if (o == GOF(FPROUND) && szB == 8) return -1; if (o == GOF(EMWARN) && szB == 4) return -1; if (o == GOF(FC3210) && szB == 8) return -1; /* XMM registers */ if (o >= GOF(XMM0) && o+sz <= GOF(XMM0) +SZB(XMM0)) return GOF(XMM0); if (o >= GOF(XMM1) && o+sz <= GOF(XMM1) +SZB(XMM1)) return GOF(XMM1); if (o >= GOF(XMM2) && o+sz <= GOF(XMM2) +SZB(XMM2)) return GOF(XMM2); if (o >= GOF(XMM3) && o+sz <= GOF(XMM3) +SZB(XMM3)) return GOF(XMM3); if (o >= GOF(XMM4) && o+sz <= GOF(XMM4) +SZB(XMM4)) return GOF(XMM4); if (o >= GOF(XMM5) && o+sz <= GOF(XMM5) +SZB(XMM5)) return GOF(XMM5); if (o >= GOF(XMM6) && o+sz <= GOF(XMM6) +SZB(XMM6)) return GOF(XMM6); if (o >= GOF(XMM7) && o+sz <= GOF(XMM7) +SZB(XMM7)) return GOF(XMM7); if (o >= GOF(XMM8) && o+sz <= GOF(XMM8) +SZB(XMM8)) return GOF(XMM8); if (o >= GOF(XMM9) && o+sz <= GOF(XMM9) +SZB(XMM9)) return GOF(XMM9); if (o >= GOF(XMM10) && o+sz <= GOF(XMM10)+SZB(XMM10)) return GOF(XMM10); if (o >= GOF(XMM11) && o+sz <= GOF(XMM11)+SZB(XMM11)) return GOF(XMM11); if (o >= GOF(XMM12) && o+sz <= GOF(XMM12)+SZB(XMM12)) return GOF(XMM12); if (o >= GOF(XMM13) && o+sz <= GOF(XMM13)+SZB(XMM13)) return GOF(XMM13); if (o >= GOF(XMM14) && o+sz <= GOF(XMM14)+SZB(XMM14)) return GOF(XMM14); if (o >= GOF(XMM15) && o+sz <= GOF(XMM15)+SZB(XMM15)) return GOF(XMM15); if (o >= GOF(XMM16) && o+sz <= GOF(XMM16)+SZB(XMM16)) return GOF(XMM16); /* MMX accesses to FP regs. Need to allow for 32-bit references due to dirty helpers for frstor etc, which reference the entire 64-byte block in one go. */ if (o >= GOF(FPREG[0]) && o+sz <= GOF(FPREG[0])+SZB(FPREG[0])) return GOF(FPREG[0]); if (o >= GOF(FPREG[1]) && o+sz <= GOF(FPREG[1])+SZB(FPREG[1])) return GOF(FPREG[1]); if (o >= GOF(FPREG[2]) && o+sz <= GOF(FPREG[2])+SZB(FPREG[2])) return GOF(FPREG[2]); if (o >= GOF(FPREG[3]) && o+sz <= GOF(FPREG[3])+SZB(FPREG[3])) return GOF(FPREG[3]); if (o >= GOF(FPREG[4]) && o+sz <= GOF(FPREG[4])+SZB(FPREG[4])) return GOF(FPREG[4]); if (o >= GOF(FPREG[5]) && o+sz <= GOF(FPREG[5])+SZB(FPREG[5])) return GOF(FPREG[5]); if (o >= GOF(FPREG[6]) && o+sz <= GOF(FPREG[6])+SZB(FPREG[6])) return GOF(FPREG[6]); if (o >= GOF(FPREG[7]) && o+sz <= GOF(FPREG[7])+SZB(FPREG[7])) return GOF(FPREG[7]); /* Map high halves of %RAX,%RCX,%RDX,%RBX to the whole register. This is needed because the general handling of dirty helper calls is done in 4 byte chunks. Hence we will see these. Currently we only expect to see artefacts from CPUID. */ if (o == 4+ GOF(RAX) && sz == 4) return GOF(RAX); if (o == 4+ GOF(RCX) && sz == 4) return GOF(RCX); if (o == 4+ GOF(RDX) && sz == 4) return GOF(RDX); if (o == 4+ GOF(RBX) && sz == 4) return GOF(RBX); VG_(printf)("MC_(get_otrack_shadow_offset)(amd64)(off=%d,sz=%d)\n", offset,szB); tl_assert(0); # undef GOF # undef SZB /* --------------------- x86 --------------------- */ # elif defined(VGA_x86) # define GOF(_fieldname) \ (offsetof(VexGuestX86State,guest_##_fieldname)) # define SZB(_fieldname) \ (sizeof(((VexGuestX86State*)0)->guest_##_fieldname)) Int o = offset; Int sz = szB; Bool is124 = sz == 4 || sz == 2 || sz == 1; tl_assert(sz > 0); tl_assert(host_is_little_endian()); if (o == GOF(EAX) && is124) return o; if (o == GOF(ECX) && is124) return o; if (o == GOF(EDX) && is124) return o; if (o == GOF(EBX) && is124) return o; if (o == GOF(ESP) && is124) return o; if (o == GOF(EBP) && is124) return o; if (o == GOF(ESI) && is124) return o; if (o == GOF(EDI) && is124) return o; if (o == GOF(CC_DEP1) && sz == 4) return o; if (o == GOF(CC_DEP2) && sz == 4) return o; if (o == GOF(CC_OP) && sz == 4) return -1; /* slot used for %AH */ if (o == GOF(CC_NDEP) && sz == 4) return -1; /* slot used for %BH */ if (o == GOF(DFLAG) && sz == 4) return -1; /* slot used for %CH */ if (o == GOF(EIP) && sz == 4) return -1; /* slot unused */ if (o == GOF(IP_AT_SYSCALL) && sz == 4) return -1; /* slot unused */ if (o == GOF(IDFLAG) && sz == 4) return -1; /* slot used for %DH */ if (o == GOF(ACFLAG) && sz == 4) return -1; /* slot unused */ if (o == GOF(TISTART) && sz == 4) return -1; /* slot unused */ if (o == GOF(TILEN) && sz == 4) return -1; /* slot unused */ if (o == GOF(NRADDR) && sz == 4) return -1; /* slot unused */ /* Treat %AH, %BH, %CH, %DH as independent registers. To do this requires finding 4 unused 32-bit slots in the second-shadow guest state, respectively: CC_OP CC_NDEP DFLAG IDFLAG since none of those are tracked. */ tl_assert(SZB(CC_OP) == 4); tl_assert(SZB(CC_NDEP) == 4); tl_assert(SZB(DFLAG) == 4); tl_assert(SZB(IDFLAG) == 4); if (o == 1+ GOF(EAX) && szB == 1) return GOF(CC_OP); if (o == 1+ GOF(EBX) && szB == 1) return GOF(CC_NDEP); if (o == 1+ GOF(ECX) && szB == 1) return GOF(DFLAG); if (o == 1+ GOF(EDX) && szB == 1) return GOF(IDFLAG); /* skip XMM and FP admin stuff */ if (o == GOF(SSEROUND) && szB == 4) return -1; if (o == GOF(FTOP) && szB == 4) return -1; if (o == GOF(FPROUND) && szB == 4) return -1; if (o == GOF(EMWARN) && szB == 4) return -1; if (o == GOF(FC3210) && szB == 4) return -1; /* XMM registers */ if (o >= GOF(XMM0) && o+sz <= GOF(XMM0)+SZB(XMM0)) return GOF(XMM0); if (o >= GOF(XMM1) && o+sz <= GOF(XMM1)+SZB(XMM1)) return GOF(XMM1); if (o >= GOF(XMM2) && o+sz <= GOF(XMM2)+SZB(XMM2)) return GOF(XMM2); if (o >= GOF(XMM3) && o+sz <= GOF(XMM3)+SZB(XMM3)) return GOF(XMM3); if (o >= GOF(XMM4) && o+sz <= GOF(XMM4)+SZB(XMM4)) return GOF(XMM4); if (o >= GOF(XMM5) && o+sz <= GOF(XMM5)+SZB(XMM5)) return GOF(XMM5); if (o >= GOF(XMM6) && o+sz <= GOF(XMM6)+SZB(XMM6)) return GOF(XMM6); if (o >= GOF(XMM7) && o+sz <= GOF(XMM7)+SZB(XMM7)) return GOF(XMM7); /* MMX accesses to FP regs. Need to allow for 32-bit references due to dirty helpers for frstor etc, which reference the entire 64-byte block in one go. */ if (o >= GOF(FPREG[0]) && o+sz <= GOF(FPREG[0])+SZB(FPREG[0])) return GOF(FPREG[0]); if (o >= GOF(FPREG[1]) && o+sz <= GOF(FPREG[1])+SZB(FPREG[1])) return GOF(FPREG[1]); if (o >= GOF(FPREG[2]) && o+sz <= GOF(FPREG[2])+SZB(FPREG[2])) return GOF(FPREG[2]); if (o >= GOF(FPREG[3]) && o+sz <= GOF(FPREG[3])+SZB(FPREG[3])) return GOF(FPREG[3]); if (o >= GOF(FPREG[4]) && o+sz <= GOF(FPREG[4])+SZB(FPREG[4])) return GOF(FPREG[4]); if (o >= GOF(FPREG[5]) && o+sz <= GOF(FPREG[5])+SZB(FPREG[5])) return GOF(FPREG[5]); if (o >= GOF(FPREG[6]) && o+sz <= GOF(FPREG[6])+SZB(FPREG[6])) return GOF(FPREG[6]); if (o >= GOF(FPREG[7]) && o+sz <= GOF(FPREG[7])+SZB(FPREG[7])) return GOF(FPREG[7]); /* skip %GS and other segment related stuff. We could shadow guest_LDT and guest_GDT, although it seems pointless. guest_CS .. guest_SS are too small to shadow directly and it also seems pointless to shadow them indirectly (that is, in the style of %AH .. %DH). */ if (o == GOF(CS) && sz == 2) return -1; if (o == GOF(DS) && sz == 2) return -1; if (o == GOF(ES) && sz == 2) return -1; if (o == GOF(FS) && sz == 2) return -1; if (o == GOF(GS) && sz == 2) return -1; if (o == GOF(SS) && sz == 2) return -1; if (o == GOF(LDT) && sz == 4) return -1; if (o == GOF(GDT) && sz == 4) return -1; VG_(printf)("MC_(get_otrack_shadow_offset)(x86)(off=%d,sz=%d)\n", offset,szB); tl_assert(0); # undef GOF # undef SZB /* -------------------- s390x -------------------- */ # elif defined(VGA_s390x) # define GOF(_fieldname) \ (offsetof(VexGuestS390XState,guest_##_fieldname)) Int o = offset; Int sz = szB; tl_assert(sz > 0); tl_assert(host_is_big_endian()); /* no matter what byte(s) we change, we have changed the full 8 byte value and need to track this change for the whole register */ if (o >= GOF(r0) && sz <= 8 && o <= (GOF(r15) + 8 - sz)) return GOF(r0) + ((o-GOF(r0)) & -8) ; /* fprs are accessed 4 or 8 byte at once. Again, we track that change for the full register */ if ((sz == 8 || sz == 4) && o >= GOF(f0) && o <= GOF(f15)+8-sz) return GOF(f0) + ((o-GOF(f0)) & -8) ; /* access registers are accessed 4 bytes at once */ if (sz == 4 && o >= GOF(a0) && o <= GOF(a15)) return o; /* we access the guest counter either fully or one of the 4byte words */ if (o == GOF(counter) && (sz == 8 || sz ==4)) return o; if (o == GOF(counter) + 4 && sz == 4) return o; if (o == GOF(CC_OP)) return -1; if (o == GOF(CC_DEP1)) return o; if (o == GOF(CC_DEP2)) return o; if (o == GOF(CC_NDEP)) return -1; if (o == GOF(TISTART)) return -1; if (o == GOF(TILEN)) return -1; if (o == GOF(NRADDR)) return -1; if (o == GOF(IP_AT_SYSCALL)) return -1; if (o == GOF(fpc)) return -1; if (o == GOF(IA)) return -1; if (o == GOF(SYSNO)) return -1; VG_(printf)("MC_(get_otrack_shadow_offset)(s390x)(off=%d,sz=%d)\n", offset,szB); tl_assert(0); # undef GOF /* --------------------- arm --------------------- */ # elif defined(VGA_arm) # define GOF(_fieldname) \ (offsetof(VexGuestARMState,guest_##_fieldname)) # define SZB(_fieldname) \ (sizeof(((VexGuestARMState*)0)->guest_##_fieldname)) Int o = offset; Int sz = szB; tl_assert(sz > 0); tl_assert(host_is_little_endian()); if (o == GOF(R0) && sz == 4) return o; if (o == GOF(R1) && sz == 4) return o; if (o == GOF(R2) && sz == 4) return o; if (o == GOF(R3) && sz == 4) return o; if (o == GOF(R4) && sz == 4) return o; if (o == GOF(R5) && sz == 4) return o; if (o == GOF(R6) && sz == 4) return o; if (o == GOF(R7) && sz == 4) return o; if (o == GOF(R8) && sz == 4) return o; if (o == GOF(R9) && sz == 4) return o; if (o == GOF(R10) && sz == 4) return o; if (o == GOF(R11) && sz == 4) return o; if (o == GOF(R12) && sz == 4) return o; if (o == GOF(R13) && sz == 4) return o; if (o == GOF(R14) && sz == 4) return o; /* EAZG: These may be completely wrong. */ if (o == GOF(R15T) && sz == 4) return -1; /* slot unused */ if (o == GOF(CC_OP) && sz == 4) return -1; /* slot unused */ if (o == GOF(CC_DEP1) && sz == 4) return o; if (o == GOF(CC_DEP2) && sz == 4) return o; if (o == GOF(CC_NDEP) && sz == 4) return -1; /* slot unused */ if (o == GOF(QFLAG32) && sz == 4) return o; if (o == GOF(GEFLAG0) && sz == 4) return o; if (o == GOF(GEFLAG1) && sz == 4) return o; if (o == GOF(GEFLAG2) && sz == 4) return o; if (o == GOF(GEFLAG3) && sz == 4) return o; //if (o == GOF(SYSCALLNO) && sz == 4) return -1; /* slot unused */ //if (o == GOF(CC) && sz == 4) return -1; /* slot unused */ //if (o == GOF(EMWARN) && sz == 4) return -1; /* slot unused */ //if (o == GOF(TISTART) && sz == 4) return -1; /* slot unused */ //if (o == GOF(NRADDR) && sz == 4) return -1; /* slot unused */ if (o == GOF(FPSCR) && sz == 4) return -1; if (o == GOF(TPIDRURO) && sz == 4) return -1; if (o == GOF(ITSTATE) && sz == 4) return -1; /* Accesses to F or D registers */ if (sz == 4 || sz == 8) { if (o >= GOF(D0) && o+sz <= GOF(D0) +SZB(D0)) return GOF(D0); if (o >= GOF(D1) && o+sz <= GOF(D1) +SZB(D1)) return GOF(D1); if (o >= GOF(D2) && o+sz <= GOF(D2) +SZB(D2)) return GOF(D2); if (o >= GOF(D3) && o+sz <= GOF(D3) +SZB(D3)) return GOF(D3); if (o >= GOF(D4) && o+sz <= GOF(D4) +SZB(D4)) return GOF(D4); if (o >= GOF(D5) && o+sz <= GOF(D5) +SZB(D5)) return GOF(D5); if (o >= GOF(D6) && o+sz <= GOF(D6) +SZB(D6)) return GOF(D6); if (o >= GOF(D7) && o+sz <= GOF(D7) +SZB(D7)) return GOF(D7); if (o >= GOF(D8) && o+sz <= GOF(D8) +SZB(D8)) return GOF(D8); if (o >= GOF(D9) && o+sz <= GOF(D9) +SZB(D9)) return GOF(D9); if (o >= GOF(D10) && o+sz <= GOF(D10)+SZB(D10)) return GOF(D10); if (o >= GOF(D11) && o+sz <= GOF(D11)+SZB(D11)) return GOF(D11); if (o >= GOF(D12) && o+sz <= GOF(D12)+SZB(D12)) return GOF(D12); if (o >= GOF(D13) && o+sz <= GOF(D13)+SZB(D13)) return GOF(D13); if (o >= GOF(D14) && o+sz <= GOF(D14)+SZB(D14)) return GOF(D14); if (o >= GOF(D15) && o+sz <= GOF(D15)+SZB(D15)) return GOF(D15); if (o >= GOF(D16) && o+sz <= GOF(D16)+SZB(D16)) return GOF(D16); if (o >= GOF(D17) && o+sz <= GOF(D17)+SZB(D17)) return GOF(D17); if (o >= GOF(D18) && o+sz <= GOF(D18)+SZB(D18)) return GOF(D18); if (o >= GOF(D19) && o+sz <= GOF(D19)+SZB(D19)) return GOF(D19); if (o >= GOF(D20) && o+sz <= GOF(D20)+SZB(D20)) return GOF(D20); if (o >= GOF(D21) && o+sz <= GOF(D21)+SZB(D21)) return GOF(D21); if (o >= GOF(D22) && o+sz <= GOF(D22)+SZB(D22)) return GOF(D22); if (o >= GOF(D23) && o+sz <= GOF(D23)+SZB(D23)) return GOF(D23); if (o >= GOF(D24) && o+sz <= GOF(D24)+SZB(D24)) return GOF(D24); if (o >= GOF(D25) && o+sz <= GOF(D25)+SZB(D25)) return GOF(D25); if (o >= GOF(D26) && o+sz <= GOF(D26)+SZB(D26)) return GOF(D26); if (o >= GOF(D27) && o+sz <= GOF(D27)+SZB(D27)) return GOF(D27); if (o >= GOF(D28) && o+sz <= GOF(D28)+SZB(D28)) return GOF(D28); if (o >= GOF(D29) && o+sz <= GOF(D29)+SZB(D29)) return GOF(D29); if (o >= GOF(D30) && o+sz <= GOF(D30)+SZB(D30)) return GOF(D30); if (o >= GOF(D31) && o+sz <= GOF(D31)+SZB(D31)) return GOF(D31); } /* Accesses to Q registers */ if (sz == 16) { if (o >= GOF(D0) && o+sz <= GOF(D0) +2*SZB(D0)) return GOF(D0); // Q0 if (o >= GOF(D2) && o+sz <= GOF(D2) +2*SZB(D2)) return GOF(D2); // Q1 if (o >= GOF(D4) && o+sz <= GOF(D4) +2*SZB(D4)) return GOF(D4); // Q2 if (o >= GOF(D6) && o+sz <= GOF(D6) +2*SZB(D6)) return GOF(D6); // Q3 if (o >= GOF(D8) && o+sz <= GOF(D8) +2*SZB(D8)) return GOF(D8); // Q4 if (o >= GOF(D10) && o+sz <= GOF(D10)+2*SZB(D10)) return GOF(D10); // Q5 if (o >= GOF(D12) && o+sz <= GOF(D12)+2*SZB(D12)) return GOF(D12); // Q6 if (o >= GOF(D14) && o+sz <= GOF(D14)+2*SZB(D14)) return GOF(D14); // Q7 if (o >= GOF(D16) && o+sz <= GOF(D16)+2*SZB(D16)) return GOF(D16); // Q8 if (o >= GOF(D18) && o+sz <= GOF(D18)+2*SZB(D18)) return GOF(D18); // Q9 if (o >= GOF(D20) && o+sz <= GOF(D20)+2*SZB(D20)) return GOF(D20); // Q10 if (o >= GOF(D22) && o+sz <= GOF(D22)+2*SZB(D22)) return GOF(D22); // Q11 if (o >= GOF(D24) && o+sz <= GOF(D24)+2*SZB(D24)) return GOF(D24); // Q12 if (o >= GOF(D26) && o+sz <= GOF(D26)+2*SZB(D26)) return GOF(D26); // Q13 if (o >= GOF(D28) && o+sz <= GOF(D28)+2*SZB(D28)) return GOF(D28); // Q14 if (o >= GOF(D30) && o+sz <= GOF(D30)+2*SZB(D30)) return GOF(D30); // Q15 } VG_(printf)("MC_(get_otrack_shadow_offset)(arm)(off=%d,sz=%d)\n", offset,szB); tl_assert(0); # undef GOF # undef SZB # else # error "FIXME: not implemented for this architecture" # endif } /* Let 'arr' describe an indexed reference to a guest state section (guest state array). This function returns the corresponding guest state type to be used when indexing the corresponding array in the second shadow (origin tracking) area. If the array is not to be origin-tracked, return Ity_INVALID. This function must agree with MC_(get_otrack_shadow_offset) above. See comments at the start of MC_(get_otrack_shadow_offset). */ IRType MC_(get_otrack_reg_array_equiv_int_type) ( IRRegArray* arr ) { /* -------------------- ppc64 -------------------- */ # if defined(VGA_ppc64) /* The redir stack. */ if (arr->base == offsetof(VexGuestPPC64State,guest_REDIR_STACK[0]) && arr->elemTy == Ity_I64 && arr->nElems == VEX_GUEST_PPC64_REDIR_STACK_SIZE) return Ity_I64; VG_(printf)("get_reg_array_equiv_int_type(ppc64): unhandled: "); ppIRRegArray(arr); VG_(printf)("\n"); tl_assert(0); /* -------------------- ppc32 -------------------- */ # elif defined(VGA_ppc32) /* The redir stack. */ if (arr->base == offsetof(VexGuestPPC32State,guest_REDIR_STACK[0]) && arr->elemTy == Ity_I32 && arr->nElems == VEX_GUEST_PPC32_REDIR_STACK_SIZE) return Ity_I32; VG_(printf)("get_reg_array_equiv_int_type(ppc32): unhandled: "); ppIRRegArray(arr); VG_(printf)("\n"); tl_assert(0); /* -------------------- amd64 -------------------- */ # elif defined(VGA_amd64) /* Ignore the FP tag array - pointless to shadow, and in any case the elements are too small */ if (arr->base == offsetof(VexGuestAMD64State,guest_FPTAG) && arr->elemTy == Ity_I8 && arr->nElems == 8) return Ity_INVALID; /* The FP register array */ if (arr->base == offsetof(VexGuestAMD64State,guest_FPREG[0]) && arr->elemTy == Ity_F64 && arr->nElems == 8) return Ity_I64; VG_(printf)("get_reg_array_equiv_int_type(amd64): unhandled: "); ppIRRegArray(arr); VG_(printf)("\n"); tl_assert(0); /* --------------------- x86 --------------------- */ # elif defined(VGA_x86) /* Ignore the FP tag array - pointless to shadow, and in any case the elements are too small */ if (arr->base == offsetof(VexGuestX86State,guest_FPTAG) && arr->elemTy == Ity_I8 && arr->nElems == 8) return Ity_INVALID; /* The FP register array */ if (arr->base == offsetof(VexGuestX86State,guest_FPREG[0]) && arr->elemTy == Ity_F64 && arr->nElems == 8) return Ity_I64; VG_(printf)("get_reg_array_equiv_int_type(x86): unhandled: "); ppIRRegArray(arr); VG_(printf)("\n"); tl_assert(0); /* --------------------- arm --------------------- */ # elif defined(VGA_arm) VG_(printf)("get_reg_array_equiv_int_type(arm): unhandled: "); ppIRRegArray(arr); VG_(printf)("\n"); tl_assert(0); /* --------------------- s390x --------------------- */ # elif defined(VGA_s390x) /* Should never het here because s390x does not use Ist_PutI and Iex_GetI. */ tl_assert(0); # else # error "FIXME: not implemented for this architecture" # endif } /*--------------------------------------------------------------------*/ /*--- end mc_machine.c ---*/ /*--------------------------------------------------------------------*/