// These #defines attempt to ensure that posix_memalign() is declared, and // so no spurious warning is given about using it. // Advertise compliance of the code to the XSI (a POSIX superset that // defines what a system must be like to be called "UNIX") #undef _XOPEN_SOURCE #define _XOPEN_SOURCE 600 // Advertise compliance to POSIX #undef _POSIX_C_SOURCE #define _POSIX_C_SOURCE 200112L #include <stdlib.h> #include <stdio.h> #include <assert.h> #include "tests/malloc.h" #include <errno.h> int main ( void ) { # if defined(VGO_darwin) // Mac OS X has neither memalign() nor posix_memalign(); do nothing. // Still true for 10.6 / 10.7 ? # else // Nb: assuming VG_MIN_MALLOC_SZB is 8 or more... int* p; int* piece; int res; assert(sizeof(long int) == sizeof(void*)); // Check behaviour of memalign/free for big alignment. // In particular, the below aims at checking that a // superblock with a big size is not marked as reclaimable // if the superblock is used to provide a big aligned block // (see bug 250101, comment #14). // Valgrind m_mallocfree.c will allocate a big superblock for the memalign // call and will split it in two. This splitted superblock was // wrongly marked as reclaimable, which was then causing // assert failures (as reclaimable blocks cannot be splitted). p = memalign(1024 * 1024, 4 * 1024 * 1024 + 1); assert(0 == (long)p % (1024 * 1024)); // We allocate (and then free) a piece of memory smaller than // the hole created in the big superblock. // If the superblock is marked as reclaimable, the below free(s) will cause // an assert. Note that the test has to be run with a --free-list-vol // parameter smaller than the released blocks size to ensure the free is directly // executed (otherwise memcheck does not really release the memory and so // the bug is not properly tested). piece = malloc(1024 * 1000); assert (piece); free (piece); free (p); // Same as above but do the free in the reverse order. p = memalign(1024 * 1024, 4 * 1024 * 1024 + 1); assert(0 == (long)p % (1024 * 1024)); piece = malloc(1024 * 100); assert (piece); free (p); free (piece); p = memalign(0, 100); assert(0 == (long)p % 8); p = memalign(1, 100); assert(0 == (long)p % 8); p = memalign(2, 100); assert(0 == (long)p % 8); p = memalign(3, 100); assert(0 == (long)p % 8); p = memalign(4, 100); assert(0 == (long)p % 8); p = memalign(5, 100); assert(0 == (long)p % 8); p = memalign(7, 100); assert(0 == (long)p % 8); p = memalign(8, 100); assert(0 == (long)p % 8); p = memalign(9, 100); assert(0 == (long)p % 16); p = memalign(31, 100); assert(0 == (long)p % 32); p = memalign(32, 100); assert(0 == (long)p % 32); p = memalign(33, 100); assert(0 == (long)p % 64); p = memalign(4095, 100); assert(0 == (long)p % 4096); p = memalign(4096, 100); assert(0 == (long)p % 4096); p = memalign(4097, 100); assert(0 == (long)p % 8192); # define PM(a,b,c) posix_memalign((void**)a, b, c) res = PM(&p, -1,100); assert(EINVAL == res); res = PM(&p, 0, 100); assert(0 == res && 0 == (long)p % 8); res = PM(&p, 1, 100); assert(EINVAL == res); res = PM(&p, 2, 100); assert(EINVAL == res); res = PM(&p, 3, 100); assert(EINVAL == res); res = PM(&p, sizeof(void*), 100); assert(0 == res && 0 == (long)p % sizeof(void*)); res = PM(&p, 31, 100); assert(EINVAL == res); res = PM(&p, 32, 100); assert(0 == res && 0 == (long)p % 32); res = PM(&p, 33, 100); assert(EINVAL == res); res = PM(&p, 4095, 100); assert(EINVAL == res); res = PM(&p, 4096, 100); assert(0 == res && 0 == (long)p % 4096); res = PM(&p, 4097, 100); assert(EINVAL == res); # endif return 0; }