/* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2008-2008 Google Inc opensource@google.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* Author: Konstantin Serebryany <opensource@google.com> This file contains a set of unit tests for a data race detection tool. These tests can be compiled with pthreads (default) or with any other library that supports threads, locks, cond vars, etc. */ #include <fcntl.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <string> #include <queue> #include <vector> #include "old_test_suite.h" #include "test_utils.h" #include <gtest/gtest.h> #include "gtest_fixture_injection.h" // The tests are // - Stability tests (marked STAB) // - Performance tests (marked PERF) // - Feature tests // - TN (true negative) : no race exists and the tool is silent. // - TP (true positive) : a race exists and reported. // - FN (false negative): a race exists but not reported. // - FP (false positive): no race exists but the tool reports it. // // The feature tests are marked according to the behavior of ThreadSanitizer. // // TP and FP tests are annotated with ANNOTATE_EXPECT_RACE, // so, no error reports should be seen when running under ThreadSanitizer. // // When some of the FP cases are fixed in helgrind we'll need // to update these tests. // // Each test resides in its own namespace. // Namespaces are named test01, test02, ... // Please, *DO NOT* change the logic of existing tests nor rename them. // Create a new test instead. // // Some tests use sleep()/usleep(). // This is not a synchronization, but a simple way to trigger // some specific behaviour of the race detector's scheduler. // Globals and utilities used by several tests. {{{1 static CondVar CV; static int COND = 0; // test00: {{{1 namespace test00 { int GLOB = 0; void Run() { printf("test00: negative\n"); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 00) } // namespace test00 // test01: TP. Simple race (write vs write). {{{1 namespace test01 { int GLOB = 0; void Worker1() { GLOB = 1; } void Worker2() { GLOB = 2; } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test01. TP."); ANNOTATE_TRACE_MEMORY(&GLOB); printf("test01: positive\n"); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 1); } // namespace test01 // test02: TN. Synchronization via CondVar. {{{1 namespace test02 { int GLOB = 0; // Two write accesses to GLOB are synchronized because // the pair of CV.Signal() and CV.Wait() establish happens-before relation. // // Waiter: Waker: // 1. COND = 0 // 2. Start(Waker) // 3. MU.Lock() a. write(GLOB) // b. MU.Lock() // c. COND = 1 // /--- d. CV.Signal() // 4. while(COND) / e. MU.Unlock() // CV.Wait(MU) <---/ // 5. MU.Unlock() // 6. write(GLOB) Mutex MU; void Waker() { usleep(200000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); MU.Lock(); while(COND != 1) CV.Wait(&MU); MU.Unlock(); GLOB = 2; } void Run() { printf("test02: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 2); } // namespace test02 // test03: TN. Synchronization via LockWhen, signaller gets there first. {{{1 namespace test03 { int GLOB = 0; // Two write accesses to GLOB are synchronized via conditional critical section. // Note that LockWhen() happens first (we use sleep(1) to make sure)! // // Waiter: Waker: // 1. COND = 0 // 2. Start(Waker) // a. write(GLOB) // b. MU.Lock() // c. COND = 1 // /--- d. MU.Unlock() // 3. MU.LockWhen(COND==1) <---/ // 4. MU.Unlock() // 5. write(GLOB) Mutex MU; void Waker() { usleep(100000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; // We are done! Tell the Waiter. MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); MU.LockWhen(Condition(&ArgIsOne, &COND)); // calls ANNOTATE_CONDVAR_WAIT MU.Unlock(); // Waker is done! GLOB = 2; } void Run() { printf("test03: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 3, FEATURE|NEEDS_ANNOTATIONS); } // namespace test03 // test04: TN. Synchronization via PCQ. {{{1 namespace test04 { int GLOB = 0; ProducerConsumerQueue Q(INT_MAX); // Two write accesses to GLOB are separated by PCQ Put/Get. // // Putter: Getter: // 1. write(GLOB) // 2. Q.Put() ---------\ . // \-------> a. Q.Get() // b. write(GLOB) void Putter() { GLOB = 1; Q.Put(NULL); } void Getter() { Q.Get(); GLOB = 2; } void Run() { printf("test04: negative\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 4); } // namespace test04 // test05: FP. Synchronization via CondVar, but waiter does not block. {{{1 // Since CondVar::Wait() is not called, we get a false positive. namespace test05 { int GLOB = 0; // Two write accesses to GLOB are synchronized via CondVar. // But race detector can not see it. // See this for details: // http://www.valgrind.org/docs/manual/hg-manual.html#hg-manual.effective-use. // // Waiter: Waker: // 1. COND = 0 // 2. Start(Waker) // 3. MU.Lock() a. write(GLOB) // b. MU.Lock() // c. COND = 1 // d. CV.Signal() // 4. while(COND) e. MU.Unlock() // CV.Wait(MU) <<< not called // 5. MU.Unlock() // 6. write(GLOB) Mutex MU; void Waker() { GLOB = 1; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); } void Waiter() { usleep(100000); // Make sure the signaller gets first. MU.Lock(); while(COND != 1) CV.Wait(&MU); MU.Unlock(); GLOB = 2; } void Run() { printf("test05: unavoidable false positive\n"); COND = 0; if (!Tsan_PureHappensBefore()) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test05. FP. Unavoidable in hybrid scheme."); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 5); } // namespace test05 // test06: TN. Synchronization via CondVar, but Waker gets there first. {{{1 namespace test06 { int GLOB = 0; // Same as test05 but we annotated the Wait() loop. // // Waiter: Waker: // 1. COND = 0 // 2. Start(Waker) // 3. MU.Lock() a. write(GLOB) // b. MU.Lock() // c. COND = 1 // /------- d. CV.Signal() // 4. while(COND) / e. MU.Unlock() // CV.Wait(MU) <<< not called / // 6. ANNOTATE_CONDVAR_WAIT(CV, MU) <----/ // 5. MU.Unlock() // 6. write(GLOB) Mutex MU; void Waker() { GLOB = 1; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); usleep(500000); // Make sure the signaller gets first. MU.Lock(); while(COND != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_LOCK_WAIT(&CV, &MU); MU.Unlock(); GLOB = 2; } void Run() { printf("test06: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 6, FEATURE|NEEDS_ANNOTATIONS); } // namespace test06 // test07: TN. Synchronization via LockWhen(), Signaller is observed first. {{{1 namespace test07 { int GLOB = 0; bool COND = 0; // Two write accesses to GLOB are synchronized via conditional critical section. // LockWhen() is observed after COND has been set (due to sleep). // Unlock() calls ANNOTATE_CONDVAR_SIGNAL(). // // Waiter: Signaller: // 1. COND = 0 // 2. Start(Signaller) // a. write(GLOB) // b. MU.Lock() // c. COND = 1 // /--- d. MU.Unlock calls ANNOTATE_CONDVAR_SIGNAL // 3. MU.LockWhen(COND==1) <---/ // 4. MU.Unlock() // 5. write(GLOB) Mutex MU; void Signaller() { GLOB = 1; MU.Lock(); COND = true; // We are done! Tell the Waiter. MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Waiter() { COND = false; MyThread t(Signaller); t.Start(); usleep(100000); // Make sure the signaller gets there first. MU.LockWhen(Condition(&ArgIsTrue, &COND)); // calls ANNOTATE_CONDVAR_WAIT MU.Unlock(); // Signaller is done! GLOB = 2; // If LockWhen didn't catch the signal, a race may be reported here. t.Join(); } void Run() { printf("test07: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 7, FEATURE|NEEDS_ANNOTATIONS); } // namespace test07 // test08: TN. Synchronization via thread start/join. {{{1 namespace test08 { int GLOB = 0; // Three accesses to GLOB are separated by thread start/join. // // Parent: Worker: // 1. write(GLOB) // 2. Start(Worker) ------------> // a. write(GLOB) // 3. Join(Worker) <------------ // 4. write(GLOB) void Worker() { GLOB = 2; } void Parent() { MyThread t(Worker); GLOB = 1; t.Start(); t.Join(); GLOB = 3; } void Run() { printf("test08: negative\n"); Parent(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 8); } // namespace test08 // test09: TP. Simple race (read vs write). {{{1 namespace test09 { int GLOB = 0; // A simple data race between writer and reader. // Write happens after read (enforced by sleep). // Usually, easily detectable by a race detector. void Writer() { usleep(100000); GLOB = 3; } void Reader() { CHECK(GLOB != -777); } void Run() { ANNOTATE_TRACE_MEMORY(&GLOB); ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test09. TP."); printf("test09: positive\n"); MyThreadArray t(Writer, Reader); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 9); } // namespace test09 // test10: FN. Simple race (write vs read). {{{1 namespace test10 { int GLOB = 0; // A simple data race between writer and reader. // Write happens before Read (enforced by sleep), // otherwise this test is the same as test09. // // Writer: Reader: // 1. write(GLOB) a. sleep(long enough so that GLOB // is most likely initialized by Writer) // b. read(GLOB) // // // Eraser algorithm does not detect the race here, // see Section 2.2 of http://citeseer.ist.psu.edu/savage97eraser.html. // void Writer() { GLOB = 3; } void Reader() { usleep(100000); CHECK(GLOB != -777); } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test10. TP. FN in MSMHelgrind."); printf("test10: positive\n"); MyThreadArray t(Writer, Reader); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 10); } // namespace test10 // test12: FP. Synchronization via Mutex, then via PCQ. {{{1 namespace test12 { int GLOB = 0; // This test is properly synchronized, but currently (Dec 2007) // helgrind reports a false positive. // // First, we write to GLOB under MU, then we synchronize via PCQ, // which is essentially a semaphore. // // Putter: Getter: // 1. MU.Lock() a. MU.Lock() // 2. write(GLOB) <---- MU ----> b. write(GLOB) // 3. MU.Unlock() c. MU.Unlock() // 4. Q.Put() ---------------> d. Q.Get() // e. write(GLOB) ProducerConsumerQueue Q(INT_MAX); Mutex MU; void Putter() { MU.Lock(); GLOB++; MU.Unlock(); Q.Put(NULL); } void Getter() { MU.Lock(); GLOB++; MU.Unlock(); Q.Get(); GLOB++; } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test12. FP. Fixed by MSMProp1."); printf("test12: negative\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 12); } // namespace test12 // test13: FP. Synchronization via Mutex, then via LockWhen. {{{1 namespace test13 { int GLOB = 0; // This test is essentially the same as test12, but uses LockWhen // instead of PCQ. // // Waker: Waiter: // 1. MU.Lock() a. MU.Lock() // 2. write(GLOB) <---------- MU ----------> b. write(GLOB) // 3. MU.Unlock() c. MU.Unlock() // 4. MU.Lock() . // 5. COND = 1 . // 6. ANNOTATE_CONDVAR_SIGNAL -------\ . // 7. MU.Unlock() \ . // \----> d. MU.LockWhen(COND == 1) // e. MU.Unlock() // f. write(GLOB) Mutex MU; void Waker() { MU.Lock(); GLOB++; MU.Unlock(); MU.Lock(); COND = 1; ANNOTATE_CONDVAR_SIGNAL(&MU); MU.Unlock(); } void Waiter() { MU.Lock(); GLOB++; MU.Unlock(); MU.LockWhen(Condition(&ArgIsOne, &COND)); MU.Unlock(); GLOB++; } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test13. FP. Fixed by MSMProp1."); printf("test13: negative\n"); COND = 0; MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 13, FEATURE|NEEDS_ANNOTATIONS); } // namespace test13 // test14: FP. Synchronization via PCQ, reads, 2 workers. {{{1 namespace test14 { int GLOB = 0; // This test is properly synchronized, but currently (Dec 2007) // helgrind reports a false positive. // // This test is similar to test11, but uses PCQ (semaphore). // // Putter2: Putter1: Getter: // 1. read(GLOB) a. read(GLOB) // 2. Q2.Put() ----\ b. Q1.Put() -----\ . // \ \--------> A. Q1.Get() // \----------------------------------> B. Q2.Get() // C. write(GLOB) ProducerConsumerQueue Q1(INT_MAX), Q2(INT_MAX); void Putter1() { CHECK(GLOB != 777); Q1.Put(NULL); } void Putter2() { CHECK(GLOB != 777); Q2.Put(NULL); } void Getter() { Q1.Get(); Q2.Get(); GLOB++; } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test14. FP. Fixed by MSMProp1."); printf("test14: negative\n"); MyThreadArray t(Getter, Putter1, Putter2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 14); } // namespace test14 // test15: TN. Synchronization via LockWhen. One waker and 2 waiters. {{{1 namespace test15 { // Waker: Waiter1, Waiter2: // 1. write(GLOB) // 2. MU.Lock() // 3. COND = 1 // 4. ANNOTATE_CONDVAR_SIGNAL ------------> a. MU.LockWhen(COND == 1) // 5. MU.Unlock() b. MU.Unlock() // c. read(GLOB) int GLOB = 0; Mutex MU; void Waker() { GLOB = 2; MU.Lock(); COND = 1; ANNOTATE_CONDVAR_SIGNAL(&MU); MU.Unlock(); }; void Waiter() { MU.LockWhen(Condition(&ArgIsOne, &COND)); MU.Unlock(); CHECK(GLOB != 777); } void Run() { COND = 0; printf("test15: negative\n"); MyThreadArray t(Waker, Waiter, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 15); } // namespace test15 // test16: FP. Barrier (emulated by CV), 2 threads. {{{1 namespace test16 { // Worker1: Worker2: // 1. MU.Lock() a. MU.Lock() // 2. write(GLOB) <------------ MU ----------> b. write(GLOB) // 3. MU.Unlock() c. MU.Unlock() // 4. MU2.Lock() d. MU2.Lock() // 5. COND-- e. COND-- // 6. ANNOTATE_CONDVAR_SIGNAL(MU2) ---->V . // 7. MU2.Await(COND == 0) <------------+------ f. ANNOTATE_CONDVAR_SIGNAL(MU2) // 8. MU2.Unlock() V-----> g. MU2.Await(COND == 0) // 9. read(GLOB) h. MU2.Unlock() // i. read(GLOB) // // // TODO: This way we may create too many edges in happens-before graph. // Arndt Mühlenfeld in his PhD (TODO: link) suggests creating special nodes in // happens-before graph to reduce the total number of edges. // See figure 3.14. // // int GLOB = 0; Mutex MU; Mutex MU2; void Worker() { MU.Lock(); GLOB++; MU.Unlock(); MU2.Lock(); COND--; ANNOTATE_CONDVAR_SIGNAL(&MU2); MU2.Await(Condition(&ArgIsZero, &COND)); MU2.Unlock(); CHECK(GLOB == 2); } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test16. FP. Fixed by MSMProp1 + Barrier support."); COND = 2; printf("test16: negative\n"); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 16, FEATURE|NEEDS_ANNOTATIONS); } // namespace test16 // test17: FP. Barrier (emulated by CV), 3 threads. {{{1 namespace test17 { // Same as test16, but with 3 threads. int GLOB = 0; Mutex MU; Mutex MU2; void Worker() { MU.Lock(); GLOB++; MU.Unlock(); MU2.Lock(); COND--; ANNOTATE_CONDVAR_SIGNAL(&MU2); MU2.Await(Condition(&ArgIsZero, &COND)); MU2.Unlock(); CHECK(GLOB == 3); } void Run() { COND = 3; printf("test17: negative\n"); MyThreadArray t(Worker, Worker, Worker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 17, FEATURE|NEEDS_ANNOTATIONS); } // namespace test17 // test18: TN. Synchronization via Await(), signaller gets there first. {{{1 namespace test18 { int GLOB = 0; Mutex MU; // Same as test03, but uses Mutex::Await() instead of Mutex::LockWhen(). void Waker() { usleep(100000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; // We are done! Tell the Waiter. MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); MU.Lock(); MU.Await(Condition(&ArgIsOne, &COND)); // calls ANNOTATE_CONDVAR_WAIT MU.Unlock(); // Waker is done! GLOB = 2; } void Run() { printf("test18: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 18, FEATURE|NEEDS_ANNOTATIONS); } // namespace test18 // test19: TN. Synchronization via AwaitWithTimeout(). {{{1 namespace test19 { int GLOB = 0; // Same as test18, but with AwaitWithTimeout. Do not timeout. Mutex MU; void Waker() { usleep(100000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; // We are done! Tell the Waiter. MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); MU.Lock(); CHECK(MU.AwaitWithTimeout(Condition(&ArgIsOne, &COND), INT_MAX)); MU.Unlock(); GLOB = 2; } void Run() { printf("test19: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 19, FEATURE|NEEDS_ANNOTATIONS); } // namespace test19 // test20: TP. Incorrect synchronization via AwaitWhen(), timeout. {{{1 namespace test20 { int GLOB = 0; Mutex MU; // True race. We timeout in AwaitWhen. void Waker() { GLOB = 1; usleep(100 * 1000); } void Waiter() { MU.Lock(); CHECK(!MU.AwaitWithTimeout(Condition(&ArgIsOne, &COND), 100)); MU.Unlock(); GLOB = 2; } void Run() { printf("test20: positive\n"); COND = 0; ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test20. TP."); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 20, FEATURE|NEEDS_ANNOTATIONS); } // namespace test20 // test21: TP. Incorrect synchronization via LockWhenWithTimeout(). {{{1 namespace test21 { int GLOB = 0; // True race. We timeout in LockWhenWithTimeout(). Mutex MU; void Waker() { GLOB = 1; usleep(100 * 1000); } void Waiter() { CHECK(!MU.LockWhenWithTimeout(Condition(&ArgIsOne, &COND), 100)); MU.Unlock(); GLOB = 2; } void Run() { printf("test21: positive\n"); COND = 0; ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test21. TP."); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 21, FEATURE|NEEDS_ANNOTATIONS); } // namespace test21 // test22: TP. Incorrect synchronization via CondVar::WaitWithTimeout(). {{{1 namespace test22 { int GLOB = 0; Mutex MU; // True race. We timeout in CondVar::WaitWithTimeout(). void Waker() { GLOB = 1; usleep(100 * 1000); } void Waiter() { int ms_left_to_wait = 100; int deadline_ms = GetTimeInMs() + ms_left_to_wait; MU.Lock(); while(COND != 1 && ms_left_to_wait > 0) { CV.WaitWithTimeout(&MU, ms_left_to_wait); ms_left_to_wait = deadline_ms - GetTimeInMs(); } MU.Unlock(); GLOB = 2; } void Run() { printf("test22: positive\n"); COND = 0; ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test22. TP."); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 22); } // namespace test22 // test23: TN. TryLock, ReaderLock, ReaderTryLock. {{{1 namespace test23 { // Correct synchronization with TryLock, Lock, ReaderTryLock, ReaderLock. int GLOB = 0; Mutex MU; void Worker_TryLock() { for (int i = 0; i < 20; i++) { while (true) { if (MU.TryLock()) { GLOB++; MU.Unlock(); break; } usleep(1000); } } } void Worker_ReaderTryLock() { for (int i = 0; i < 20; i++) { while (true) { if (MU.ReaderTryLock()) { CHECK(GLOB != 777); MU.ReaderUnlock(); break; } usleep(1000); } } } void Worker_ReaderLock() { for (int i = 0; i < 20; i++) { MU.ReaderLock(); CHECK(GLOB != 777); MU.ReaderUnlock(); usleep(1000); } } void Worker_Lock() { for (int i = 0; i < 20; i++) { MU.Lock(); GLOB++; MU.Unlock(); usleep(1000); } } void Run() { printf("test23: negative\n"); MyThreadArray t(Worker_TryLock, Worker_ReaderTryLock, Worker_ReaderLock, Worker_Lock ); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 23); } // namespace test23 // test24: TN. Synchronization via ReaderLockWhen(). {{{1 namespace test24 { int GLOB = 0; Mutex MU; // Same as test03, but uses ReaderLockWhen(). void Waker() { usleep(100000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; // We are done! Tell the Waiter. MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); MU.ReaderLockWhen(Condition(&ArgIsOne, &COND)); MU.ReaderUnlock(); GLOB = 2; } void Run() { printf("test24: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 24, FEATURE|NEEDS_ANNOTATIONS); } // namespace test24 // test25: TN. Synchronization via ReaderLockWhenWithTimeout(). {{{1 namespace test25 { int GLOB = 0; Mutex MU; // Same as test24, but uses ReaderLockWhenWithTimeout(). // We do not timeout. void Waker() { usleep(100000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; // We are done! Tell the Waiter. MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Waiter() { ThreadPool pool(1); pool.StartWorkers(); COND = 0; pool.Add(NewCallback(Waker)); CHECK(MU.ReaderLockWhenWithTimeout(Condition(&ArgIsOne, &COND), INT_MAX)); MU.ReaderUnlock(); GLOB = 2; } void Run() { printf("test25: negative\n"); Waiter(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 25, FEATURE|NEEDS_ANNOTATIONS); } // namespace test25 // test26: TP. Incorrect synchronization via ReaderLockWhenWithTimeout(). {{{1 namespace test26 { int GLOB = 0; Mutex MU; // Same as test25, but we timeout and incorrectly assume happens-before. void Waker() { GLOB = 1; usleep(10000); } void Waiter() { CHECK(!MU.ReaderLockWhenWithTimeout(Condition(&ArgIsOne, &COND), 100)); MU.ReaderUnlock(); GLOB = 2; } void Run() { printf("test26: positive\n"); COND = 0; ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test26. TP"); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 26, FEATURE|NEEDS_ANNOTATIONS); } // namespace test26 // test27: TN. Simple synchronization via SpinLock. {{{1 namespace test27 { #ifndef NO_SPINLOCK int GLOB = 0; SpinLock MU; void Worker() { MU.Lock(); GLOB++; MU.Unlock(); usleep(10000); } void Run() { printf("test27: negative\n"); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 27, FEATURE|NEEDS_ANNOTATIONS); #endif } // namespace test27 // test28: TN. Synchronization via Mutex, then PCQ. 3 threads {{{1 namespace test28 { // Putter1: Getter: Putter2: // 1. MU.Lock() A. MU.Lock() // 2. write(GLOB) B. write(GLOB) // 3. MU.Unlock() C. MU.Unlock() // 4. Q.Put() ---------\ /------- D. Q.Put() // 5. MU.Lock() \-------> a. Q.Get() / E. MU.Lock() // 6. read(GLOB) b. Q.Get() <---------/ F. read(GLOB) // 7. MU.Unlock() (sleep) G. MU.Unlock() // c. read(GLOB) ProducerConsumerQueue Q(INT_MAX); int GLOB = 0; Mutex MU; void Putter() { MU.Lock(); GLOB++; MU.Unlock(); Q.Put(NULL); MU.Lock(); CHECK(GLOB != 777); MU.Unlock(); } void Getter() { Q.Get(); Q.Get(); usleep(100000); CHECK(GLOB == 2); } void Run() { printf("test28: negative\n"); MyThreadArray t(Getter, Putter, Putter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 28); } // namespace test28 // test29: TN. Synchronization via Mutex, then PCQ. 4 threads. {{{1 namespace test29 { // Similar to test28, but has two Getters and two PCQs. ProducerConsumerQueue *Q1, *Q2; Mutex MU; int GLOB = 0; void Putter(ProducerConsumerQueue *q) { MU.Lock(); GLOB++; MU.Unlock(); q->Put(NULL); q->Put(NULL); MU.Lock(); CHECK(GLOB != 777); MU.Unlock(); } void Putter1() { Putter(Q1); } void Putter2() { Putter(Q2); } void Getter() { Q1->Get(); Q2->Get(); usleep(100000); CHECK(GLOB == 2); usleep(48000); // TODO: remove this when FP in test32 is fixed. } void Run() { printf("test29: negative\n"); Q1 = new ProducerConsumerQueue(INT_MAX); Q2 = new ProducerConsumerQueue(INT_MAX); MyThreadArray t(Getter, Getter, Putter1, Putter2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); delete Q1; delete Q2; } REGISTER_TEST(Run, 29); } // namespace test29 // test30: TN. Synchronization via 'safe' race. Writer vs multiple Readers. {{{1 namespace test30 { // This test shows a very risky kind of synchronization which is very easy // to get wrong. Actually, I am not sure I've got it right. // // Writer: Reader1, Reader2, ..., ReaderN: // 1. write(GLOB[i]: i >= BOUNDARY) a. n = BOUNDARY // 2. HAPPENS_BEFORE(BOUNDARY+1) -------> b. HAPPENS_AFTER(n) // 3. BOUNDARY++; c. read(GLOB[i]: i < n) // // Here we have a 'safe' race on accesses to BOUNDARY and // no actual races on accesses to GLOB[]: // Writer writes to GLOB[i] where i>=BOUNDARY and then increments BOUNDARY. // Readers read BOUNDARY and read GLOB[i] where i<BOUNDARY. // // I am not completely sure that this scheme guaranties no race between // accesses to GLOB since compilers and CPUs // are free to rearrange memory operations. // I am actually sure that this scheme is wrong unless we use // some smart memory fencing... const int N = 48; static int GLOB[N]; volatile int BOUNDARY = 0; void Writer() { for (int i = 0; i < N; i++) { CHECK(BOUNDARY == i); for (int j = i; j < N; j++) { GLOB[j] = j; } ANNOTATE_HAPPENS_BEFORE(reinterpret_cast<void*>(BOUNDARY+1)); BOUNDARY++; usleep(1000); } } void Reader() { int n; do { n = BOUNDARY; if (n == 0) continue; ANNOTATE_HAPPENS_AFTER(reinterpret_cast<void*>(n)); for (int i = 0; i < n; i++) { CHECK(GLOB[i] == i); } usleep(100); } while(n < N); } void Run() { ANNOTATE_EXPECT_RACE((void*)(&BOUNDARY), "test30. Sync via 'safe' race."); printf("test30: negative\n"); MyThreadArray t(Writer, Reader, Reader, Reader); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB[N-1]); } REGISTER_TEST2(Run, 30, FEATURE|NEEDS_ANNOTATIONS); } // namespace test30 // test31: TN. Synchronization via 'safe' race. Writer vs Writer. {{{1 namespace test31 { // This test is similar to test30, but // it has one Writer instead of mulitple Readers. // // Writer1: Writer2 // 1. write(GLOB[i]: i >= BOUNDARY) a. n = BOUNDARY // 2. HAPPENS_BEFORE(BOUNDARY+1) -------> b. HAPPENS_AFTER(n) // 3. BOUNDARY++; c. write(GLOB[i]: i < n) // const int N = 48; static int GLOB[N]; volatile int BOUNDARY = 0; void Writer1() { for (int i = 0; i < N; i++) { CHECK(BOUNDARY == i); for (int j = i; j < N; j++) { GLOB[j] = j; } ANNOTATE_HAPPENS_BEFORE(reinterpret_cast<void*>(BOUNDARY+1)); BOUNDARY++; usleep(1000); } } void Writer2() { int n; do { n = BOUNDARY; if (n == 0) continue; ANNOTATE_HAPPENS_AFTER(reinterpret_cast<void*>(n)); for (int i = 0; i < n; i++) { if(GLOB[i] == i) { GLOB[i]++; } } usleep(100); } while(n < N); } void Run() { ANNOTATE_EXPECT_RACE((void*)(&BOUNDARY), "test31. Sync via 'safe' race."); printf("test31: negative\n"); MyThreadArray t(Writer1, Writer2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB[N-1]); } REGISTER_TEST2(Run, 31, FEATURE|NEEDS_ANNOTATIONS); } // namespace test31 // test32: FP. Synchronization via thread create/join. W/R. {{{1 namespace test32 { // This test is well synchronized but helgrind 3.3.0 reports a race. // // Parent: Writer: Reader: // 1. Start(Reader) -----------------------\ . // \ . // 2. Start(Writer) ---\ \ . // \---> a. MU.Lock() \--> A. sleep(long enough) // b. write(GLOB) // /---- c. MU.Unlock() // 3. Join(Writer) <---/ // B. MU.Lock() // C. read(GLOB) // /------------ D. MU.Unlock() // 4. Join(Reader) <----------------/ // 5. write(GLOB) // // // The call to sleep() in Reader is not part of synchronization, // it is required to trigger the false positive in helgrind 3.3.0. // int GLOB = 0; Mutex MU; void Writer() { MU.Lock(); GLOB = 1; MU.Unlock(); } void Reader() { usleep(480000); MU.Lock(); CHECK(GLOB != 777); MU.Unlock(); } void Parent() { MyThread r(Reader); MyThread w(Writer); r.Start(); w.Start(); w.Join(); // 'w' joins first. r.Join(); GLOB = 2; } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test32. FP. Fixed by MSMProp1."); printf("test32: negative\n"); Parent(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 32); } // namespace test32 // test33: STAB. Stress test for the number of thread sets (TSETs). {{{1 namespace test33 { int GLOB = 0; // Here we access N memory locations from within log(N) threads. // We do it in such a way that helgrind creates nearly all possible TSETs. // Then we join all threads and start again (N_iter times). const int N_iter = 48; const int Nlog = 15; const int N = 1 << Nlog; static int ARR[N]; Mutex MU; void Worker() { MU.Lock(); int n = ++GLOB; MU.Unlock(); n %= Nlog; for (int i = 0; i < N; i++) { // ARR[i] is accessed by threads from i-th subset if (i & (1 << n)) { CHECK(ARR[i] == 0); } } } void Run() { printf("test33:\n"); std::vector<MyThread*> vec(Nlog); for (int j = 0; j < N_iter; j++) { // Create and start Nlog threads for (int i = 0; i < Nlog; i++) { vec[i] = new MyThread(Worker); } for (int i = 0; i < Nlog; i++) { vec[i]->Start(); } // Join all threads. for (int i = 0; i < Nlog; i++) { vec[i]->Join(); delete vec[i]; } printf("------------------\n"); } printf("\tGLOB=%d; ARR[1]=%d; ARR[7]=%d; ARR[N-1]=%d\n", GLOB, ARR[1], ARR[7], ARR[N-1]); } REGISTER_TEST2(Run, 33, STABILITY|EXCLUDE_FROM_ALL); } // namespace test33 // test34: STAB. Stress test for the number of locks sets (LSETs). {{{1 namespace test34 { // Similar to test33, but for lock sets. int GLOB = 0; const int N_iter = 48; const int Nlog = 10; const int N = 1 << Nlog; static int ARR[N]; static Mutex *MUs[Nlog]; void Worker() { for (int i = 0; i < N; i++) { // ARR[i] is protected by MUs from i-th subset of all MUs for (int j = 0; j < Nlog; j++) if (i & (1 << j)) MUs[j]->Lock(); CHECK(ARR[i] == 0); for (int j = 0; j < Nlog; j++) if (i & (1 << j)) MUs[j]->Unlock(); } } void Run() { printf("test34:\n"); for (int iter = 0; iter < N_iter; iter++) { for (int i = 0; i < Nlog; i++) { MUs[i] = new Mutex; } MyThreadArray t(Worker, Worker); t.Start(); t.Join(); for (int i = 0; i < Nlog; i++) { delete MUs[i]; } printf("------------------\n"); } printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 34, STABILITY|EXCLUDE_FROM_ALL); } // namespace test34 // test35: PERF. Lots of mutexes and lots of call to free(). {{{1 namespace test35 { // Helgrind 3.3.0 has very slow in shadow_mem_make_NoAccess(). Fixed locally. // With the fix helgrind runs this test about a minute. // Without the fix -- about 5 minutes. (on c2d 2.4GHz). // // TODO: need to figure out the best way for performance testing. int **ARR; const int N_mu = 25000; const int N_free = 48000; void Worker() { for (int i = 0; i < N_free; i++) CHECK(777 == *ARR[i]); } void Run() { printf("test35:\n"); std::vector<Mutex*> mus; ARR = new int *[N_free]; for (int i = 0; i < N_free; i++) { const int c = N_free / N_mu; if ((i % c) == 0) { mus.push_back(new Mutex); mus.back()->Lock(); mus.back()->Unlock(); } ARR[i] = new int(777); } // Need to put all ARR[i] into shared state in order // to trigger the performance bug. MyThreadArray t(Worker, Worker); t.Start(); t.Join(); for (int i = 0; i < N_free; i++) delete ARR[i]; delete [] ARR; for (size_t i = 0; i < mus.size(); i++) { delete mus[i]; } } REGISTER_TEST2(Run, 35, PERFORMANCE|EXCLUDE_FROM_ALL); } // namespace test35 // test36: TN. Synchronization via Mutex, then PCQ. 3 threads. W/W {{{1 namespace test36 { // variation of test28 (W/W instead of W/R) // Putter1: Getter: Putter2: // 1. MU.Lock(); A. MU.Lock() // 2. write(GLOB) B. write(GLOB) // 3. MU.Unlock() C. MU.Unlock() // 4. Q.Put() ---------\ /------- D. Q.Put() // 5. MU1.Lock() \-------> a. Q.Get() / E. MU1.Lock() // 6. MU.Lock() b. Q.Get() <---------/ F. MU.Lock() // 7. write(GLOB) G. write(GLOB) // 8. MU.Unlock() H. MU.Unlock() // 9. MU1.Unlock() (sleep) I. MU1.Unlock() // c. MU1.Lock() // d. write(GLOB) // e. MU1.Unlock() ProducerConsumerQueue Q(INT_MAX); int GLOB = 0; Mutex MU, MU1; void Putter() { MU.Lock(); GLOB++; MU.Unlock(); Q.Put(NULL); MU1.Lock(); MU.Lock(); GLOB++; MU.Unlock(); MU1.Unlock(); } void Getter() { Q.Get(); Q.Get(); usleep(100000); MU1.Lock(); GLOB++; MU1.Unlock(); } void Run() { printf("test36: negative \n"); MyThreadArray t(Getter, Putter, Putter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 36); } // namespace test36 // test37: TN. Simple synchronization (write vs read). {{{1 namespace test37 { int GLOB = 0; Mutex MU; // Similar to test10, but properly locked. // Writer: Reader: // 1. MU.Lock() // 2. write // 3. MU.Unlock() // a. MU.Lock() // b. read // c. MU.Unlock(); void Writer() { MU.Lock(); GLOB = 3; MU.Unlock(); } void Reader() { usleep(100000); MU.Lock(); CHECK(GLOB != -777); MU.Unlock(); } void Run() { printf("test37: negative\n"); MyThreadArray t(Writer, Reader); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 37); } // namespace test37 // test38: TN. Synchronization via Mutexes and PCQ. 4 threads. W/W {{{1 namespace test38 { // Fusion of test29 and test36. // Putter1: Putter2: Getter1: Getter2: // MU1.Lock() MU1.Lock() // write(GLOB) write(GLOB) // MU1.Unlock() MU1.Unlock() // Q1.Put() Q2.Put() // Q1.Put() Q2.Put() // MU1.Lock() MU1.Lock() // MU2.Lock() MU2.Lock() // write(GLOB) write(GLOB) // MU2.Unlock() MU2.Unlock() // MU1.Unlock() MU1.Unlock() sleep sleep // Q1.Get() Q1.Get() // Q2.Get() Q2.Get() // MU2.Lock() MU2.Lock() // write(GLOB) write(GLOB) // MU2.Unlock() MU2.Unlock() // ProducerConsumerQueue *Q1, *Q2; int GLOB = 0; Mutex MU, MU1, MU2; void Putter(ProducerConsumerQueue *q) { MU1.Lock(); GLOB++; MU1.Unlock(); q->Put(NULL); q->Put(NULL); MU1.Lock(); MU2.Lock(); GLOB++; MU2.Unlock(); MU1.Unlock(); } void Putter1() { Putter(Q1); } void Putter2() { Putter(Q2); } void Getter() { usleep(100000); Q1->Get(); Q2->Get(); MU2.Lock(); GLOB++; MU2.Unlock(); usleep(48000); // TODO: remove this when FP in test32 is fixed. } void Run() { printf("test38: negative\n"); Q1 = new ProducerConsumerQueue(INT_MAX); Q2 = new ProducerConsumerQueue(INT_MAX); MyThreadArray t(Getter, Getter, Putter1, Putter2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); delete Q1; delete Q2; } REGISTER_TEST(Run, 38); } // namespace test38 namespace NegativeTests_Barrier { // {{{1 #ifndef NO_BARRIER // Same as test17 but uses Barrier class (pthread_barrier_t). int GLOB = 0; const int N_threads = 3; Barrier barrier(N_threads); Mutex MU; void Worker() { MU.Lock(); GLOB++; MU.Unlock(); barrier.Block(); CHECK(GLOB == N_threads); } TEST(NegativeTests, Barrier) { ANNOTATE_TRACE_MEMORY(&GLOB); { ThreadPool pool(N_threads); pool.StartWorkers(); for (int i = 0; i < N_threads; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. CHECK(GLOB == 3); } #endif // NO_BARRIER } // namespace test39 // test40: FP. Synchronization via Mutexes and PCQ. 4 threads. W/W {{{1 namespace test40 { // Similar to test38 but with different order of events (due to sleep). // Putter1: Putter2: Getter1: Getter2: // MU1.Lock() MU1.Lock() // write(GLOB) write(GLOB) // MU1.Unlock() MU1.Unlock() // Q1.Put() Q2.Put() // Q1.Put() Q2.Put() // Q1.Get() Q1.Get() // Q2.Get() Q2.Get() // MU2.Lock() MU2.Lock() // write(GLOB) write(GLOB) // MU2.Unlock() MU2.Unlock() // // MU1.Lock() MU1.Lock() // MU2.Lock() MU2.Lock() // write(GLOB) write(GLOB) // MU2.Unlock() MU2.Unlock() // MU1.Unlock() MU1.Unlock() ProducerConsumerQueue *Q1, *Q2; int GLOB = 0; Mutex MU, MU1, MU2; void Putter(ProducerConsumerQueue *q) { MU1.Lock(); GLOB++; MU1.Unlock(); q->Put(NULL); q->Put(NULL); usleep(100000); MU1.Lock(); MU2.Lock(); GLOB++; MU2.Unlock(); MU1.Unlock(); } void Putter1() { Putter(Q1); } void Putter2() { Putter(Q2); } void Getter() { Q1->Get(); Q2->Get(); MU2.Lock(); GLOB++; MU2.Unlock(); usleep(48000); // TODO: remove this when FP in test32 is fixed. } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test40. FP. Fixed by MSMProp1. Complex Stuff."); printf("test40: negative\n"); Q1 = new ProducerConsumerQueue(INT_MAX); Q2 = new ProducerConsumerQueue(INT_MAX); MyThreadArray t(Getter, Getter, Putter1, Putter2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); delete Q1; delete Q2; } REGISTER_TEST(Run, 40); } // namespace test40 // test41: TN. Test for race that appears when loading a dynamic symbol. {{{1 namespace test41 { void Worker() { ANNOTATE_NO_OP(NULL); // An empty function, loaded from dll. } void Run() { printf("test41: negative\n"); MyThreadArray t(Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 41, FEATURE|NEEDS_ANNOTATIONS); } // namespace test41 // test42: TN. Using the same cond var several times. {{{1 namespace test42 { int GLOB = 0; int COND = 0; int N_threads = 3; Mutex MU; void Worker1() { GLOB=1; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); MU.Lock(); while (COND != 0) CV.Wait(&MU); ANNOTATE_CONDVAR_LOCK_WAIT(&CV, &MU); MU.Unlock(); GLOB=3; } void Worker2() { MU.Lock(); while (COND != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_LOCK_WAIT(&CV, &MU); MU.Unlock(); GLOB=2; MU.Lock(); COND = 0; CV.Signal(); MU.Unlock(); } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test42. TN. debugging."); printf("test42: negative\n"); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 42, FEATURE|NEEDS_ANNOTATIONS); } // namespace test42 // test43: TN. {{{1 namespace test43 { // // Putter: Getter: // 1. write // 2. Q.Put() --\ . // 3. read \--> a. Q.Get() // b. read int GLOB = 0; ProducerConsumerQueue Q(INT_MAX); void Putter() { GLOB = 1; Q.Put(NULL); CHECK(GLOB == 1); } void Getter() { Q.Get(); usleep(100000); CHECK(GLOB == 1); } void Run() { printf("test43: negative\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 43) } // namespace test43 // test44: FP. {{{1 namespace test44 { // // Putter: Getter: // 1. read // 2. Q.Put() --\ . // 3. MU.Lock() \--> a. Q.Get() // 4. write // 5. MU.Unlock() // b. MU.Lock() // c. write // d. MU.Unlock(); int GLOB = 0; Mutex MU; ProducerConsumerQueue Q(INT_MAX); void Putter() { CHECK(GLOB == 0); Q.Put(NULL); MU.Lock(); GLOB = 1; MU.Unlock(); } void Getter() { Q.Get(); usleep(100000); MU.Lock(); GLOB = 1; MU.Unlock(); } void Run() { // ANNOTATE_EXPECT_RACE(&GLOB, "test44. FP. Fixed by MSMProp1."); printf("test44: negative\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 44) } // namespace test44 // test45: TN. {{{1 namespace test45 { // // Putter: Getter: // 1. read // 2. Q.Put() --\ . // 3. MU.Lock() \--> a. Q.Get() // 4. write // 5. MU.Unlock() // b. MU.Lock() // c. read // d. MU.Unlock(); int GLOB = 0; Mutex MU; ProducerConsumerQueue Q(INT_MAX); void Putter() { CHECK(GLOB == 0); Q.Put(NULL); MU.Lock(); GLOB++; MU.Unlock(); } void Getter() { Q.Get(); usleep(100000); MU.Lock(); CHECK(GLOB <= 1); MU.Unlock(); } void Run() { printf("test45: negative\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 45) } // namespace test45 // test46: FN. {{{1 namespace test46 { // // First: Second: // 1. write // 2. MU.Lock() // 3. write // 4. MU.Unlock() (sleep) // a. MU.Lock() // b. write // c. MU.Unlock(); int GLOB = 0; Mutex MU; void First() { GLOB++; MU.Lock(); GLOB++; MU.Unlock(); } void Second() { usleep(480000); MU.Lock(); GLOB++; MU.Unlock(); // just a print. // If we move it to Run() we will get report in MSMHelgrind // due to its false positive (test32). MU.Lock(); printf("\tGLOB=%d\n", GLOB); MU.Unlock(); } void Run() { ANNOTATE_TRACE_MEMORY(&GLOB); MyThreadArray t(First, Second); t.Start(); t.Join(); } REGISTER_TEST(Run, 46) } // namespace test46 // test47: TP. Not detected by pure happens-before detectors. {{{1 namespace test47 { // A true race that can not be detected by a pure happens-before // race detector. // // First: Second: // 1. write // 2. MU.Lock() // 3. MU.Unlock() (sleep) // a. MU.Lock() // b. MU.Unlock(); // c. write int GLOB = 0; Mutex MU; void First() { GLOB=1; MU.Lock(); MU.Unlock(); } void Second() { usleep(480000); MU.Lock(); MU.Unlock(); GLOB++; } void Run() { if (!Tsan_PureHappensBefore()) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test47. TP. Not detected by pure HB."); printf("test47: positive\n"); MyThreadArray t(First, Second); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 47) } // namespace test47 // test48: FN. Simple race (single write vs multiple reads). {{{1 namespace test48 { int GLOB = 0; // same as test10 but with single writer and multiple readers // A simple data race between single writer and multiple readers. // Write happens before Reads (enforced by sleep(1)), // // Writer: Readers: // 1. write(GLOB) a. sleep(long enough so that GLOB // is most likely initialized by Writer) // b. read(GLOB) // // // Eraser algorithm does not detect the race here, // see Section 2.2 of http://citeseer.ist.psu.edu/savage97eraser.html. // void Writer() { GLOB = 3; } void Reader() { usleep(100000); CHECK(GLOB != -777); } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test48. TP. FN in MSMHelgrind."); printf("test48: positive\n"); MyThreadArray t(Writer, Reader,Reader,Reader); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 48) } // namespace test48 // test49: FN. Simple race (single write vs multiple reads). {{{1 namespace test49 { int GLOB = 0; // same as test10 but with multiple read operations done by a single reader // A simple data race between writer and readers. // Write happens before Read (enforced by sleep(1)), // // Writer: Reader: // 1. write(GLOB) a. sleep(long enough so that GLOB // is most likely initialized by Writer) // b. read(GLOB) // c. read(GLOB) // d. read(GLOB) // e. read(GLOB) // // // Eraser algorithm does not detect the race here, // see Section 2.2 of http://citeseer.ist.psu.edu/savage97eraser.html. // void Writer() { GLOB = 3; } void Reader() { usleep(100000); CHECK(GLOB != -777); CHECK(GLOB != -777); CHECK(GLOB != -777); CHECK(GLOB != -777); } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test49. TP. FN in MSMHelgrind."); printf("test49: positive\n"); MyThreadArray t(Writer, Reader); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 49); } // namespace test49 // test50: TP. Synchronization via CondVar. {{{1 namespace test50 { int GLOB = 0; Mutex MU; // Two last write accesses to GLOB are not synchronized // // Waiter: Waker: // 1. COND = 0 // 2. Start(Waker) // 3. MU.Lock() a. write(GLOB) // b. MU.Lock() // c. COND = 1 // /--- d. CV.Signal() // 4. while(COND != 1) / e. MU.Unlock() // CV.Wait(MU) <---/ // 5. MU.Unlock() // 6. write(GLOB) f. MU.Lock() // g. write(GLOB) // h. MU.Unlock() void Waker() { usleep(100000); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); usleep(100000); MU.Lock(); GLOB = 3; MU.Unlock(); } void Waiter() { MU.Lock(); while(COND != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_LOCK_WAIT(&CV, &MU); MU.Unlock(); GLOB = 2; } void Run() { printf("test50: positive\n"); COND = 0; ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test50. TP."); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 50, FEATURE|NEEDS_ANNOTATIONS); } // namespace test50 // test51: TP. Synchronization via CondVar: problem with several signals. {{{1 namespace test51 { int GLOB = 0; int COND = 0; Mutex MU; StealthNotification n1, n2; // scheduler dependent results because of several signals // second signal will be lost // // Waiter: Waker: // 1. Start(Waker) // 2. MU.Lock() // 3. while(COND) // CV.Wait(MU)<-\ . // 4. MU.Unlock() \ . // 5. write(GLOB) \ a. write(GLOB) // \ b. MU.Lock() // \ c. COND = 1 // \--- d. CV.Signal() // e. MU.Unlock() // // f. write(GLOB) // // g. MU.Lock() // h. COND = 1 // LOST<---- i. CV.Signal() // j. MU.Unlock() void Waker() { n1.wait(); // Make sure the waiter blocks. GLOB = 1; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); n2.wait(); // Make sure the waiter continued. GLOB = 2; MU.Lock(); COND = 1; CV.Signal(); //Lost Signal MU.Unlock(); } void Waiter() { MU.Lock(); n1.signal(); // Ready to get the first signal. while(COND != 1) CV.Wait(&MU); MU.Unlock(); GLOB = 3; n2.signal(); // Ready to miss the second signal. } void Run() { ANNOTATE_EXPECT_RACE(&GLOB, "test51. TP."); printf("test51: positive\n"); MyThreadArray t(Waiter, Waker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 51); } // namespace test51 // test52: TP. Synchronization via CondVar: problem with several signals. {{{1 namespace test52 { int GLOB = 0; int COND = 0; Mutex MU; StealthNotification n1, n2; // same as test51 but the first signal will be lost // scheduler dependent results because of several signals // // Waiter: Waker: // 1. Start(Waker) // a. write(GLOB) // b. MU.Lock() // c. COND = 1 // LOST<---- d. CV.Signal() // e. MU.Unlock() // // 2. MU.Lock() // 3. while(COND) // CV.Wait(MU)<-\ . // 4. MU.Unlock() \ f. write(GLOB) // 5. write(GLOB) \ . // \ g. MU.Lock() // \ h. COND = 1 // \--- i. CV.Signal() // j. MU.Unlock() void Waker() { GLOB = 1; MU.Lock(); COND = 1; CV.Signal(); //lost signal MU.Unlock(); n1.signal(); // Ok, now we may block. n2.wait(); // We blocked. GLOB = 2; MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); } void Waiter() { n1.wait(); // The first signal is lost. MU.Lock(); n2.signal(); // The 2-nd signal may go. while(COND != 1) CV.Wait(&MU); MU.Unlock(); GLOB = 3; } void Run() { printf("test52: positive\n"); ANNOTATE_EXPECT_RACE(&GLOB, "test52. TP."); MyThreadArray t(Waker, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 52); } // namespace test52 // test53: FP. Synchronization via implicit semaphore. {{{1 namespace test53 { // Correctly synchronized test, but the common lockset is empty. // The variable FLAG works as an implicit semaphore. // MSMHelgrind still does not complain since it does not maintain the lockset // at the exclusive state. But MSMProp1 does complain. // See also test54. // // // Initializer: Users // 1. MU1.Lock() // 2. write(GLOB) // 3. FLAG = true // 4. MU1.Unlock() // a. MU1.Lock() // b. f = FLAG; // c. MU1.Unlock() // d. if (!f) goto a. // e. MU2.Lock() // f. write(GLOB) // g. MU2.Unlock() // int GLOB = 0; bool FLAG = false; Mutex MU1, MU2; void Initializer() { MU1.Lock(); GLOB = 1000; FLAG = true; MU1.Unlock(); usleep(100000); // just in case } void User() { bool f = false; while(!f) { MU1.Lock(); f = FLAG; MU1.Unlock(); usleep(10000); } // at this point Initializer will not access GLOB again MU2.Lock(); CHECK(GLOB >= 1000); GLOB++; MU2.Unlock(); } void Run() { if (!Tsan_PureHappensBefore()) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test53. FP. Implicit semaphore"); printf("test53: FP. false positive, Implicit semaphore\n"); MyThreadArray t(Initializer, User, User); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 53) } // namespace test53 // test54: TN. Synchronization via implicit semaphore. Annotated {{{1 namespace test54 { // Same as test53, but annotated. int GLOB = 0; bool FLAG = false; Mutex MU1, MU2; void Initializer() { MU1.Lock(); GLOB = 1000; FLAG = true; ANNOTATE_CONDVAR_SIGNAL(&GLOB); MU1.Unlock(); usleep(100000); // just in case } void User() { bool f = false; while(!f) { MU1.Lock(); f = FLAG; MU1.Unlock(); usleep(10000); } // at this point Initializer will not access GLOB again ANNOTATE_CONDVAR_WAIT(&GLOB); MU2.Lock(); CHECK(GLOB >= 1000); GLOB++; MU2.Unlock(); } void Run() { printf("test54: negative\n"); MyThreadArray t(Initializer, User, User); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 54, FEATURE|NEEDS_ANNOTATIONS) } // namespace test54 // test55: FP. Synchronization with TryLock. Not easy for race detectors {{{1 namespace test55 { // "Correct" synchronization with TryLock and Lock. // // This scheme is actually very risky. // It is covered in detail in this video: // http://youtube.com/watch?v=mrvAqvtWYb4 (slide 36, near 50-th minute). int GLOB = 0; Mutex MU; void Worker_Lock() { GLOB = 1; MU.Lock(); } void Worker_TryLock() { while (true) { if (!MU.TryLock()) { MU.Unlock(); break; } else MU.Unlock(); usleep(100); } GLOB = 2; } void Run() { printf("test55:\n"); MyThreadArray t(Worker_Lock, Worker_TryLock); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 55, FEATURE|EXCLUDE_FROM_ALL); } // namespace test55 // test56: TP. Use of ANNOTATE_BENIGN_RACE. {{{1 namespace test56 { // For whatever reason the user wants to treat // a race on GLOB as a benign race. int GLOB = 0; int GLOB2 = 0; void Worker() { GLOB++; } void Run() { ANNOTATE_BENIGN_RACE(&GLOB, "test56. Use of ANNOTATE_BENIGN_RACE."); ANNOTATE_BENIGN_RACE(&GLOB2, "No race. The tool should be silent"); printf("test56: positive\n"); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 56, FEATURE|NEEDS_ANNOTATIONS) } // namespace test56 // test57: TN: Correct use of atomics. {{{1 namespace test57 { int GLOB = 0; void Writer() { for (int i = 0; i < 10; i++) { AtomicIncrement(&GLOB, 1); usleep(1000); } } void Reader() { while (GLOB < 20) usleep(1000); } void Run() { printf("test57: negative\n"); MyThreadArray t(Writer, Writer, Reader, Reader); t.Start(); t.Join(); CHECK(GLOB == 20); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 57) } // namespace test57 // test58: TN. User defined synchronization. {{{1 namespace test58 { int GLOB1 = 1; int GLOB2 = 2; int FLAG1 = 0; int FLAG2 = 0; // Correctly synchronized test, but the common lockset is empty. // The variables FLAG1 and FLAG2 used for synchronization and as // temporary variables for swapping two global values. // Such kind of synchronization is rarely used (Excluded from all tests??). void Worker2() { FLAG1=GLOB2; while(!FLAG2) ; GLOB2=FLAG2; } void Worker1() { FLAG2=GLOB1; while(!FLAG1) ; GLOB1=FLAG1; } void Run() { printf("test58:\n"); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); printf("\tGLOB1=%d\n", GLOB1); printf("\tGLOB2=%d\n", GLOB2); } REGISTER_TEST2(Run, 58, FEATURE|EXCLUDE_FROM_ALL) } // namespace test58 // test59: TN. User defined synchronization. Annotated {{{1 namespace test59 { int COND1 = 0; int COND2 = 0; int GLOB1 = 1; int GLOB2 = 2; int FLAG1 = 0; int FLAG2 = 0; // same as test 58 but annotated void Worker2() { FLAG1=GLOB2; ANNOTATE_CONDVAR_SIGNAL(&COND2); while(!FLAG2) usleep(1); ANNOTATE_CONDVAR_WAIT(&COND1); GLOB2=FLAG2; } void Worker1() { FLAG2=GLOB1; ANNOTATE_CONDVAR_SIGNAL(&COND1); while(!FLAG1) usleep(1); ANNOTATE_CONDVAR_WAIT(&COND2); GLOB1=FLAG1; } void Run() { printf("test59: negative\n"); ANNOTATE_BENIGN_RACE(&FLAG1, "synchronization via 'safe' race"); ANNOTATE_BENIGN_RACE(&FLAG2, "synchronization via 'safe' race"); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); printf("\tGLOB1=%d\n", GLOB1); printf("\tGLOB2=%d\n", GLOB2); } REGISTER_TEST2(Run, 59, FEATURE|NEEDS_ANNOTATIONS) } // namespace test59 // test60: TN. Correct synchronization using signal-wait {{{1 namespace test60 { int COND1 = 0; int COND2 = 0; int GLOB1 = 1; int GLOB2 = 2; int FLAG2 = 0; int FLAG1 = 0; Mutex MU; // same as test 59 but synchronized with signal-wait. void Worker2() { FLAG1=GLOB2; MU.Lock(); COND1 = 1; CV.Signal(); MU.Unlock(); MU.Lock(); while(COND2 != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_LOCK_WAIT(&CV, &MU); MU.Unlock(); GLOB2=FLAG2; } void Worker1() { FLAG2=GLOB1; MU.Lock(); COND2 = 1; CV.Signal(); MU.Unlock(); MU.Lock(); while(COND1 != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_LOCK_WAIT(&CV, &MU); MU.Unlock(); GLOB1=FLAG1; } void Run() { printf("test60: negative\n"); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); printf("\tGLOB1=%d\n", GLOB1); printf("\tGLOB2=%d\n", GLOB2); } REGISTER_TEST2(Run, 60, FEATURE|NEEDS_ANNOTATIONS) } // namespace test60 // test61: TN. Synchronization via Mutex as in happens-before, annotated. {{{1 namespace test61 { Mutex MU; int GLOB = 0; int *P1 = NULL, *P2 = NULL; // In this test Mutex lock/unlock operations introduce happens-before relation. // We annotate the code so that MU is treated as in pure happens-before detector. void Putter() { ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&MU); MU.Lock(); if (P1 == NULL) { P1 = &GLOB; *P1 = 1; } MU.Unlock(); } void Getter() { bool done = false; while (!done) { MU.Lock(); if (P1) { done = true; P2 = P1; P1 = NULL; } MU.Unlock(); } *P2 = 2; } void Run() { printf("test61: negative\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 61, FEATURE|NEEDS_ANNOTATIONS) } // namespace test61 // test62: STAB. Create as many segments as possible. {{{1 namespace test62 { // Helgrind 3.3.0 will fail as it has a hard limit of < 2^24 segments. // A better scheme is to implement garbage collection for segments. ProducerConsumerQueue Q(INT_MAX); const int N = 1 << 22; void Putter() { for (int i = 0; i < N; i++){ if ((i % (N / 8)) == 0) { printf("i=%d\n", i); } Q.Put(NULL); } } void Getter() { for (int i = 0; i < N; i++) Q.Get(); } void Run() { printf("test62:\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); } REGISTER_TEST2(Run, 62, STABILITY|EXCLUDE_FROM_ALL) } // namespace test62 // test63: STAB. Create as many segments as possible and do it fast. {{{1 namespace test63 { // Helgrind 3.3.0 will fail as it has a hard limit of < 2^24 segments. // A better scheme is to implement garbage collection for segments. const int N = 1 << 24; int C = 0; void Putter() { for (int i = 0; i < N; i++){ if ((i % (N / 8)) == 0) { printf("i=%d\n", i); } ANNOTATE_CONDVAR_SIGNAL(&C); } } void Getter() { } void Run() { printf("test63:\n"); MyThreadArray t(Putter, Getter); t.Start(); t.Join(); } REGISTER_TEST2(Run, 63, STABILITY|EXCLUDE_FROM_ALL) } // namespace test63 // test64: TP. T2 happens-before T3, but T1 is independent. Reads in T1/T2. {{{1 namespace test64 { // True race between T1 and T3: // // T1: T2: T3: // 1. read(GLOB) (sleep) // a. read(GLOB) // b. Q.Put() -----> A. Q.Get() // B. write(GLOB) // // int GLOB = 0; ProducerConsumerQueue Q(INT_MAX); void T1() { CHECK(GLOB == 0); } void T2() { usleep(100000); CHECK(GLOB == 0); Q.Put(NULL); } void T3() { Q.Get(); GLOB = 1; } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test64: TP."); printf("test64: positive\n"); MyThreadArray t(T1, T2, T3); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 64) } // namespace test64 // test65: TP. T2 happens-before T3, but T1 is independent. Writes in T1/T2. {{{1 namespace test65 { // Similar to test64. // True race between T1 and T3: // // T1: T2: T3: // 1. MU.Lock() // 2. write(GLOB) // 3. MU.Unlock() (sleep) // a. MU.Lock() // b. write(GLOB) // c. MU.Unlock() // d. Q.Put() -----> A. Q.Get() // B. write(GLOB) // // int GLOB = 0; Mutex MU; ProducerConsumerQueue Q(INT_MAX); void T1() { MU.Lock(); GLOB++; MU.Unlock(); } void T2() { usleep(100000); MU.Lock(); GLOB++; MU.Unlock(); Q.Put(NULL); } void T3() { Q.Get(); GLOB = 1; } void Run() { if (!Tsan_PureHappensBefore()) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test65. TP."); printf("test65: positive\n"); MyThreadArray t(T1, T2, T3); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 65) } // namespace test65 // test66: TN. Two separate pairs of signaller/waiter using the same CV. {{{1 namespace test66 { int GLOB1 = 0; int GLOB2 = 0; int C1 = 0; int C2 = 0; Mutex MU; void Signaller1() { GLOB1 = 1; MU.Lock(); C1 = 1; CV.Signal(); MU.Unlock(); } void Signaller2() { GLOB2 = 1; usleep(100000); MU.Lock(); C2 = 1; CV.Signal(); MU.Unlock(); } void Waiter1() { MU.Lock(); while (C1 != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_WAIT(&CV); MU.Unlock(); GLOB1 = 2; } void Waiter2() { MU.Lock(); while (C2 != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_WAIT(&CV); MU.Unlock(); GLOB2 = 2; } void Run() { printf("test66: negative\n"); MyThreadArray t(Signaller1, Signaller2, Waiter1, Waiter2); t.Start(); t.Join(); printf("\tGLOB=%d/%d\n", GLOB1, GLOB2); } REGISTER_TEST2(Run, 66, FEATURE|NEEDS_ANNOTATIONS) } // namespace test66 // test67: FN. Race between Signaller1 and Waiter2 {{{1 namespace test67 { // Similar to test66, but there is a real race here. // // Here we create a happens-before arc between Signaller1 and Waiter2 // even though there should be no such arc. // However, it's probably improssible (or just very hard) to avoid it. int GLOB = 0; int C1 = 0; int C2 = 0; Mutex MU; void Signaller1() { GLOB = 1; MU.Lock(); C1 = 1; CV.Signal(); MU.Unlock(); } void Signaller2() { usleep(100000); MU.Lock(); C2 = 1; CV.Signal(); MU.Unlock(); } void Waiter1() { MU.Lock(); while (C1 != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_WAIT(&CV); MU.Unlock(); } void Waiter2() { MU.Lock(); while (C2 != 1) CV.Wait(&MU); ANNOTATE_CONDVAR_WAIT(&CV); MU.Unlock(); GLOB = 2; } void Run() { ANNOTATE_EXPECT_RACE(&GLOB, "test67. FN. Race between Signaller1 and Waiter2"); printf("test67: positive\n"); MyThreadArray t(Signaller1, Signaller2, Waiter1, Waiter2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 67, FEATURE|NEEDS_ANNOTATIONS|EXCLUDE_FROM_ALL) } // namespace test67 // test68: TP. Writes are protected by MU, reads are not. {{{1 namespace test68 { // In this test, all writes to GLOB are protected by a mutex // but some reads go unprotected. // This is certainly a race, but in some cases such code could occur in // a correct program. For example, the unprotected reads may be used // for showing statistics and are not required to be precise. int GLOB = 0; int COND = 0; const int N_writers = 3; Mutex MU, MU1; void Writer() { for (int i = 0; i < 100; i++) { MU.Lock(); GLOB++; MU.Unlock(); } // we are done MU1.Lock(); COND++; MU1.Unlock(); } void Reader() { bool cont = true; while (cont) { CHECK(GLOB >= 0); // are we done? MU1.Lock(); if (COND == N_writers) cont = false; MU1.Unlock(); usleep(100); } } void Run() { ANNOTATE_EXPECT_RACE(&GLOB, "TP. Writes are protected, reads are not."); printf("test68: positive\n"); MyThreadArray t(Reader, Writer, Writer, Writer); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 68) } // namespace test68 // test69: {{{1 namespace test69 { // This is the same as test68, but annotated. // We do not want to annotate GLOB as a benign race // because we want to allow racy reads only in certain places. // // TODO: int GLOB = 0; int COND = 0; const int N_writers = 3; int FAKE_MU = 0; Mutex MU, MU1; void Writer() { for (int i = 0; i < 10; i++) { MU.Lock(); GLOB++; MU.Unlock(); } // we are done MU1.Lock(); COND++; MU1.Unlock(); } void Reader() { bool cont = true; while (cont) { ANNOTATE_IGNORE_READS_BEGIN(); CHECK(GLOB >= 0); ANNOTATE_IGNORE_READS_END(); // are we done? MU1.Lock(); if (COND == N_writers) cont = false; MU1.Unlock(); usleep(100); } } void Run() { printf("test69: negative\n"); MyThreadArray t(Reader, Writer, Writer, Writer); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 69) } // namespace test69 // test70: STAB. Check that TRACE_MEMORY works. {{{1 namespace test70 { int GLOB = 0; void Run() { printf("test70: negative\n"); ANNOTATE_TRACE_MEMORY(&GLOB); GLOB = 1; printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 70) } // namespace test70 namespace NegativeTests_Strlen { // {{{1 // This test is a reproducer for a benign race in strlen (as well as index, etc). // Some implementations of strlen may read up to 7 bytes past the end of the string // thus touching memory which may not belong to this string. // Such race is benign because the data read past the end of the string is not used. // // Here, we allocate a 8-byte aligned string str and initialize first 5 bytes. // Then one thread calls strlen(str) (as well as index & rindex) // and another thread initializes str[5]..str[7]. // // This can be fixed in Helgrind by intercepting strlen and replacing it // with a simpler implementation. char *str; char *tmp2; void WorkerX() { usleep(100000); ASSERT_TRUE(strlen(str) == 4); #ifndef WIN32 EXPECT_TRUE(index(str, 'X') == str); EXPECT_TRUE(index(str, 'x') == str+1); EXPECT_TRUE(index(str, 'Y') == NULL); #ifndef ANDROID EXPECT_TRUE(rindex(str, 'X') == str+2); EXPECT_TRUE(rindex(str, 'x') == str+3); EXPECT_TRUE(rindex(str, 'Y') == NULL); #endif #else EXPECT_TRUE(lstrlenA(NULL) == 0); EXPECT_TRUE(lstrlenW(NULL) == 0); #endif EXPECT_TRUE(strchr(str, 'X') == str); EXPECT_TRUE(strchr(str, 'x') == str+1); EXPECT_TRUE(strchr(str, 'Y') == NULL); EXPECT_TRUE(memchr(str, 'X', 8) == str); EXPECT_TRUE(memchr(str, 'x', 8) == str+1); char tmp[100] = "Zzz"; EXPECT_TRUE(memmove(tmp, str, strlen(str) + 1) == tmp); EXPECT_TRUE(strcmp(tmp,str) == 0); EXPECT_TRUE(strncmp(tmp,str, 4) == 0); EXPECT_TRUE(memmove(str, tmp, strlen(tmp) + 1) == str); #ifndef WIN32 #ifndef ANDROID EXPECT_TRUE(stpcpy(tmp2, str) == tmp2+4); #endif EXPECT_TRUE(strcpy(tmp2, str) == tmp2); EXPECT_TRUE(strncpy(tmp, str, 4) == tmp); // These may not be properly intercepted since gcc -O1 may inline // strcpy/stpcpy in presence of a statically sized array. Damn. // EXPECT_TRUE(stpcpy(tmp, str) == tmp+4); // EXPECT_TRUE(strcpy(tmp, str) == tmp); #endif EXPECT_TRUE(strrchr(str, 'X') == str+2); EXPECT_TRUE(strrchr(str, 'x') == str+3); EXPECT_TRUE(strrchr(str, 'Y') == NULL); } void WorkerY() { str[5] = 'Y'; str[6] = 'Y'; str[7] = '\0'; } TEST(NegativeTests, StrlenAndFriends) { str = new char[8]; tmp2 = new char[8]; str[0] = 'X'; str[1] = 'x'; str[2] = 'X'; str[3] = 'x'; str[4] = '\0'; MyThread t1(WorkerY); MyThread t2(WorkerX); t1.Start(); t2.Start(); t1.Join(); t2.Join(); ASSERT_STREQ("XxXx", str); ASSERT_STREQ("YY", str+5); char foo[8] = {10, 20, 127, (char)128, (char)250, -50, 0}; EXPECT_TRUE(strchr(foo, 10) != 0); EXPECT_TRUE(strchr(foo, 127) != 0); EXPECT_TRUE(strchr(foo, 128) != 0); EXPECT_TRUE(strchr(foo, 250) != 0); EXPECT_TRUE(strchr(foo, -50) != 0); EXPECT_TRUE(strchr(foo, -60) == 0); EXPECT_TRUE(strchr(foo, 0) != 0); EXPECT_TRUE(strchr(foo, 0) == foo + strlen(foo)); EXPECT_TRUE(strrchr(foo, 10) != 0); EXPECT_TRUE(strrchr(foo, 0) != 0); EXPECT_TRUE(strrchr(foo, 0) == foo + strlen(foo)); EXPECT_TRUE(strrchr(foo, 250) != 0); EXPECT_TRUE(strrchr(foo, -60) == 0); delete [] str; delete [] tmp2; // TODO(kcc): add more tests to check that interceptors are correct. } } // namespace test71 namespace NegativeTests_EmptyRep { // {{{1 void Worker() { string s; s.erase(); } TEST(NegativeTests, DISABLED_EmptyRepTest) { // This is a test for the reports on an internal race in std::string implementation. // See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518 // ThreadSanitizer should be silent on this, but currently it is silent // only on Valgrind/Linux. MyThreadArray mta(Worker, Worker); mta.Start(); mta.Join(); } } //namespace NegativeTests_EmptyRep namespace NegativeTests_StdStringDtor { // {{{1 // Some implementations of std::string (including the one on Linux) // are unfriendly to race detectors since they use atomic reference counting // in a way that race detectors can not understand. // // See http://code.google.com/p/data-race-test/issues/detail?id=40 string *s = NULL; BlockingCounter *counter = NULL; void DestroyWorker() { string x = *s; // force string copy (increments ref count). counter->DecrementCount(); // x is destructed, ref count is decremented. } void AssignWorker() { string x = *s; // force string copy (increments ref count). counter->DecrementCount(); // x is assigned, the ref count is decremented. usleep(100000); x = "ZZZ"; } TEST(NegativeTests, StdStringDtorVsDtor) { MyThreadArray mta(DestroyWorker, DestroyWorker, DestroyWorker); counter = new BlockingCounter(3); s = new string ("foo"); mta.Start(); counter->Wait(); delete s; // ref count becomes zero and the object is destroyed. mta.Join(); delete counter; } TEST(NegativeTests, DISABLED_StdStringDtorVsAssign) { MyThreadArray mta(AssignWorker, AssignWorker, AssignWorker); counter = new BlockingCounter(3); s = new string ("foo"); mta.Start(); counter->Wait(); delete s; // ref count becomes zero and the object is destroyed. mta.Join(); delete counter; } } //namespace NegativeTests_EmptyRep namespace PositiveTests_MutexDtorNoSync { // Check that Mutex::~Mutex() doesn't introduce h-b arcs. int *GLOB = NULL; void WriteThenScopedLocalMutex() { *GLOB = 1; { Mutex l; } } void ScopedLocalMutexThenWrite() { { Mutex l; } *GLOB = 2; } TEST(PositiveTests, MutexDtorNoSyncTest) { GLOB = new int(0); ANNOTATE_EXPECT_RACE(GLOB, "TP: PositiveTests.MutexDtorNoSyncTest"); MyThreadArray t(WriteThenScopedLocalMutex, ScopedLocalMutexThenWrite); t.Start(); t.Join(); delete GLOB; } void WriteThenScopedLocalMutexLockUnlock() { *GLOB = 1; { Mutex l; l.Lock(); l.Unlock(); } } void ScopedLocalMutexLockUnlockThenWrite() { { Mutex l; l.Lock(); l.Unlock(); } *GLOB = 2; } TEST(PositiveTests, MutexDtorNoSyncTest2) { GLOB = new int(0); ANNOTATE_EXPECT_RACE(GLOB, "TP: PositiveTests.MutexDtorNoSyncTest2"); MyThreadArray t(WriteThenScopedLocalMutexLockUnlock, ScopedLocalMutexLockUnlockThenWrite); t.Start(); t.Join(); delete GLOB; } } // namespace PositiveTests_MutexDtorSync namespace PositiveTests_FprintfThreadCreateTest { // Check that fprintf doesn't introduce h-b with the start of the // following thread int *GLOB; StealthNotification *n; void Worker1() { *GLOB = 1; fprintf(stdout, "Hello, world!\n"); n->signal(); } void Worker2() { *GLOB = 2; } #if !defined(_MSC_VER) // TODO(timurrrr): investigate Windows FN and un-#if TEST(PositiveTests, FprintfThreadCreateTest) { GLOB = new int; ANNOTATE_EXPECT_RACE(GLOB, "TP: PositiveTests.FprintfThreadCreateTest"); n = new StealthNotification; MyThread t1(Worker1); t1.Start(); n->wait(); MyThread t2(Worker2); t2.Start(); t2.Join(); t1.Join(); delete n; delete GLOB; } #endif } // namespace PositiveTests_FprintfThreadCreateTest // test72: STAB. Stress test for the number of segment sets (SSETs). {{{1 namespace test72 { #ifndef NO_BARRIER // Variation of test33. // Instead of creating Nlog*N_iter threads, // we create Nlog threads and do N_iter barriers. int GLOB = 0; const int N_iter = 30; const int Nlog = 16; const int N = 1 << Nlog; static int64_t ARR1[N]; static int64_t ARR2[N]; Barrier *barriers[N_iter]; Mutex MU; void Worker() { MU.Lock(); int n = ++GLOB; MU.Unlock(); n %= Nlog; for (int it = 0; it < N_iter; it++) { // Iterate N_iter times, block on barrier after each iteration. // This way Helgrind will create new segments after each barrier. for (int x = 0; x < 2; x++) { // run the inner loop twice. // When a memory location is accessed second time it is likely // that the state (SVal) will be unchanged. // The memory machine may optimize this case. for (int i = 0; i < N; i++) { // ARR1[i] and ARR2[N-1-i] are accessed by threads from i-th subset if (i & (1 << n)) { CHECK(ARR1[i] == 0); CHECK(ARR2[N-1-i] == 0); } } } barriers[it]->Block(); } } void Run() { printf("test72:\n"); std::vector<MyThread*> vec(Nlog); for (int i = 0; i < N_iter; i++) barriers[i] = new Barrier(Nlog); // Create and start Nlog threads for (int i = 0; i < Nlog; i++) { vec[i] = new MyThread(Worker); vec[i]->Start(); } // Join all threads. for (int i = 0; i < Nlog; i++) { vec[i]->Join(); delete vec[i]; } for (int i = 0; i < N_iter; i++) delete barriers[i]; /*printf("\tGLOB=%d; ARR[1]=%d; ARR[7]=%d; ARR[N-1]=%d\n", GLOB, (int)ARR1[1], (int)ARR1[7], (int)ARR1[N-1]);*/ } REGISTER_TEST2(Run, 72, STABILITY|PERFORMANCE|EXCLUDE_FROM_ALL); #endif // NO_BARRIER } // namespace test72 // test73: STAB. Stress test for the number of (SSETs), different access sizes. {{{1 namespace test73 { #ifndef NO_BARRIER // Variation of test72. // We perform accesses of different sizes to the same location. int GLOB = 0; const int N_iter = 2; const int Nlog = 16; const int N = 1 << Nlog; static int64_t ARR1[N]; static int ARR2[N]; Barrier *barriers[N_iter]; Mutex MU; void Worker() { MU.Lock(); int n = ++GLOB; MU.Unlock(); n %= Nlog; for (int it = 0; it < N_iter; it++) { // Iterate N_iter times, block on barrier after each iteration. // This way Helgrind will create new segments after each barrier. for (int x = 0; x < 4; x++) { for (int i = 0; i < N; i++) { // ARR1[i] are accessed by threads from i-th subset if (i & (1 << n)) { for (int off = 0; off < (1 << x); off++) { switch(x) { case 0: CHECK( ARR1 [i * (1<<x) + off] == 0); break; case 1: CHECK(((int*) (ARR1))[i * (1<<x) + off] == 0); break; case 2: CHECK(((short*)(ARR1))[i * (1<<x) + off] == 0); break; case 3: CHECK(((char*) (ARR1))[i * (1<<x) + off] == 0); break; } switch(x) { case 1: CHECK(((int*) (ARR2))[i * (1<<x) + off] == 0); break; case 2: CHECK(((short*)(ARR2))[i * (1<<x) + off] == 0); break; case 3: CHECK(((char*) (ARR2))[i * (1<<x) + off] == 0); break; } } } } } barriers[it]->Block(); } } void Run() { printf("test73:\n"); std::vector<MyThread*> vec(Nlog); for (int i = 0; i < N_iter; i++) barriers[i] = new Barrier(Nlog); // Create and start Nlog threads for (int i = 0; i < Nlog; i++) { vec[i] = new MyThread(Worker); vec[i]->Start(); } // Join all threads. for (int i = 0; i < Nlog; i++) { vec[i]->Join(); delete vec[i]; } for (int i = 0; i < N_iter; i++) delete barriers[i]; /*printf("\tGLOB=%d; ARR[1]=%d; ARR[7]=%d; ARR[N-1]=%d\n", GLOB, (int)ARR1[1], (int)ARR1[7], (int)ARR1[N-1]);*/ } REGISTER_TEST2(Run, 73, STABILITY|PERFORMANCE|EXCLUDE_FROM_ALL); #endif // NO_BARRIER } // namespace test73 // test74: PERF. A lot of lock/unlock calls. {{{1 namespace test74 { const int N = 100000; Mutex MU; TEST(StressTests, ManyLocksUnlocks) { for (int i = 0; i < N; i++ ) { MU.Lock(); MU.Unlock(); } } } // namespace test74 // RefCountedClass {{{1 struct RefCountedClass { public: RefCountedClass() { annotate_unref_ = false; ref_ = 0; data_ = 0; } ~RefCountedClass() { CHECK(ref_ == 0); // race may be reported here int data_val = data_; // and here // if MU is not annotated data_ = 0; ref_ = -1; printf("\tRefCountedClass::data_ = %d\n", data_val); } void AccessData() { this->mu_.Lock(); this->data_++; this->mu_.Unlock(); } void Ref() { MU.Lock(); CHECK(ref_ >= 0); ref_++; MU.Unlock(); } void Unref() { MU.Lock(); CHECK(ref_ > 0); ref_--; bool do_delete = ref_ == 0; if (annotate_unref_) { ANNOTATE_HAPPENS_BEFORE(this); } MU.Unlock(); if (do_delete) { if (annotate_unref_) { ANNOTATE_HAPPENS_AFTER(this); } delete this; } } static void Annotate_MU() { ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&MU); } void AnnotateUnref() { annotate_unref_ = true; } void Annotate_Race() { ANNOTATE_BENIGN_RACE_SIZED(this, sizeof(*this), "needs annotation"); } private: bool annotate_unref_; int data_; Mutex mu_; // protects data_ int ref_; static Mutex MU; // protects ref_ }; Mutex RefCountedClass::MU; // test76: FP. Ref counting, no annotations. {{{1 namespace test76 { #ifndef NO_BARRIER int GLOB = 0; Barrier barrier(4); RefCountedClass *object = NULL; void Worker() { object->Ref(); barrier.Block(); object->AccessData(); object->Unref(); } void Run() { printf("test76: false positive (ref counting)\n"); object = new RefCountedClass; object->Annotate_Race(); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 76, FEATURE) #endif // NO_BARRIER } // namespace test76 // test77: TN. Ref counting, MU is annotated. {{{1 namespace test77 { #ifndef NO_BARRIER // same as test76, but RefCountedClass::MU is annotated. int GLOB = 0; Barrier barrier(4); RefCountedClass *object = NULL; void Worker() { object->Ref(); barrier.Block(); object->AccessData(); object->Unref(); } void Run() { printf("test77: true negative (ref counting), mutex is annotated\n"); RefCountedClass::Annotate_MU(); object = new RefCountedClass; MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST(Run, 77) #endif // NO_BARRIER } // namespace test77 // test78: TN. Ref counting, Unref is annotated. {{{1 namespace test78 { #ifndef NO_BARRIER // same as test76, but RefCountedClass::Unref is annotated. int GLOB = 0; Barrier barrier(4); RefCountedClass *object = NULL; void Worker() { object->Ref(); barrier.Block(); object->AccessData(); object->Unref(); } void Run() { printf("test78: true negative (ref counting), Unref is annotated\n"); RefCountedClass::Annotate_MU(); object = new RefCountedClass; MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST(Run, 78) #endif // NO_BARRIER } // namespace test78 // test79 TN. Swap. {{{1 namespace test79 { #if 0 typedef __gnu_cxx::hash_map<int, int> map_t; #else typedef std::map<int, int> map_t; #endif map_t MAP; Mutex MU; // Here we use swap to pass MAP between threads. // The synchronization is correct, but w/o ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX // Helgrind will complain. void Worker1() { map_t tmp; MU.Lock(); // We swap the new empty map 'tmp' with 'MAP'. MAP.swap(tmp); MU.Unlock(); // tmp (which is the old version of MAP) is destroyed here. } void Worker2() { MU.Lock(); MAP[1]++; // Just update MAP under MU. MU.Unlock(); } void Worker3() { Worker1(); } void Worker4() { Worker2(); } void Run() { ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&MU); printf("test79: negative\n"); MyThreadArray t(Worker1, Worker2, Worker3, Worker4); t.Start(); t.Join(); } REGISTER_TEST(Run, 79) } // namespace test79 // AtomicRefCountedClass. {{{1 // Same as RefCountedClass, but using atomic ops instead of mutex. struct AtomicRefCountedClass { public: AtomicRefCountedClass() { annotate_unref_ = false; ref_ = 0; data_ = 0; } ~AtomicRefCountedClass() { CHECK(ref_ == 0); // race may be reported here int data_val = data_; // and here data_ = 0; ref_ = -1; printf("\tRefCountedClass::data_ = %d\n", data_val); } void AccessData() { this->mu_.Lock(); this->data_++; this->mu_.Unlock(); } void Ref() { AtomicIncrement(&ref_, 1); } void Unref() { // DISCLAIMER: I am not sure I've implemented this correctly // (might require some memory barrier, etc). // But this implementation of reference counting is enough for // the purpose of Helgrind demonstration. AtomicIncrement(&ref_, -1); if (annotate_unref_) { ANNOTATE_HAPPENS_BEFORE(this); } if (ref_ == 0) { if (annotate_unref_) { ANNOTATE_HAPPENS_AFTER(this); } delete this; } } void AnnotateUnref() { annotate_unref_ = true; } void Annotate_Race() { ANNOTATE_BENIGN_RACE(&this->data_, "needs annotation"); } private: bool annotate_unref_; Mutex mu_; int data_; // under mu_ int ref_; // used in atomic ops. }; // test80: FP. Ref counting with atomics, no annotations. {{{1 namespace test80 { #ifndef NO_BARRIER int GLOB = 0; Barrier barrier(4); AtomicRefCountedClass *object = NULL; void Worker() { object->Ref(); barrier.Block(); object->AccessData(); object->Unref(); // All the tricky stuff is here. } void Run() { printf("test80: false positive (ref counting)\n"); object = new AtomicRefCountedClass; object->Annotate_Race(); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 80, FEATURE|EXCLUDE_FROM_ALL) #endif // NO_BARRIER } // namespace test80 // test81: TN. Ref counting with atomics, Unref is annotated. {{{1 namespace test81 { #ifndef NO_BARRIER // same as test80, but Unref is annotated. int GLOB = 0; Barrier barrier(4); AtomicRefCountedClass *object = NULL; void Worker() { object->Ref(); barrier.Block(); object->AccessData(); object->Unref(); // All the tricky stuff is here. } void Run() { printf("test81: negative (annotated ref counting)\n"); object = new AtomicRefCountedClass; object->AnnotateUnref(); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 81, FEATURE|EXCLUDE_FROM_ALL) #endif // NO_BARRIER } // namespace test81 // test82: Object published w/o synchronization. {{{1 namespace test82 { // Writer creates a new object and makes the pointer visible to the Reader. // Reader waits until the object pointer is non-null and reads the object. // // On Core 2 Duo this test will sometimes (quite rarely) fail in // the CHECK below, at least if compiled with -O2. // // The sequence of events:: // Thread1: Thread2: // a. arr_[...] = ... // b. foo[i] = ... // A. ... = foo[i]; // non NULL // B. ... = arr_[...]; // // Since there is no proper synchronization, during the even (B) // Thread2 may not see the result of the event (a). // On x86 and x86_64 this happens due to compiler reordering instructions. // On other arcitectures it may also happen due to cashe inconsistency. class FOO { public: FOO() { idx_ = rand() % 1024; arr_[idx_] = 77777; // __asm__ __volatile__("" : : : "memory"); // this fixes! } static void check(volatile FOO *foo) { CHECK(foo->arr_[foo->idx_] == 77777); } private: int idx_; int arr_[1024]; }; const int N = 100000; static volatile FOO *foo[N]; Mutex MU; void Writer() { for (int i = 0; i < N; i++) { foo[i] = new FOO; usleep(100); } } void Reader() { for (int i = 0; i < N; i++) { while (!foo[i]) { MU.Lock(); // this is NOT a synchronization, MU.Unlock(); // it just helps foo[i] to become visible in Reader. } if ((i % 100) == 0) { printf("rd %d\n", i); } // At this point Reader() sees the new value of foo[i] // but in very rare cases will not see the new value of foo[i]->arr_. // Thus this CHECK will sometimes fail. FOO::check(foo[i]); } } void Run() { printf("test82: positive\n"); MyThreadArray t(Writer, Reader); t.Start(); t.Join(); } REGISTER_TEST2(Run, 82, FEATURE|EXCLUDE_FROM_ALL) } // namespace test82 // test83: Object published w/o synchronization (simple version){{{1 namespace test83 { // A simplified version of test83 (example of a wrong code). // This test, though incorrect, will almost never fail. volatile static int *ptr = NULL; Mutex MU; void Writer() { usleep(100); ptr = new int(777); } void Reader() { while(!ptr) { MU.Lock(); // Not a synchronization! MU.Unlock(); } CHECK(*ptr == 777); } void Run() { // printf("test83: positive\n"); MyThreadArray t(Writer, Reader); t.Start(); t.Join(); } REGISTER_TEST2(Run, 83, FEATURE|EXCLUDE_FROM_ALL) } // namespace test83 // test84: TP. True race (regression test for a bug related to atomics){{{1 namespace test84 { // Helgrind should not create HB arcs for the bus lock even when // --pure-happens-before=yes is used. // Bug found in by Bart Van Assche, the test is taken from // valgrind file drd/tests/atomic_var.c. static int s_x = 0; /* s_dummy[] ensures that s_x and s_y are not in the same cache line. */ static char s_dummy[512] = {0}; static int s_y; void thread_func_1() { s_y = 1; AtomicIncrement(&s_x, 1); } void thread_func_2() { while (AtomicIncrement(&s_x, 0) == 0) ; printf("y = %d\n", s_y); } void Run() { CHECK(s_dummy[0] == 0); // Avoid compiler warning about 's_dummy unused'. printf("test84: positive\n"); ANNOTATE_EXPECT_RACE_FOR_TSAN(&s_y, "test84: TP. true race."); MyThreadArray t(thread_func_1, thread_func_2); t.Start(); t.Join(); } REGISTER_TEST(Run, 84) } // namespace test84 // Test for RunningOnValgrind(). {{{1 TEST(NegativeTests, RunningOnValgrindTest) { printf("RunningOnValgrind() = %d\n", RunningOnValgrind()); } namespace NegativeTests_BenignRaceInDtor { // {{{ // Test for race inside DTOR: racey write to vptr. Benign. // This test shows a racey access to vptr (the pointer to vtbl). // We have class A and class B derived from A. // Both classes have a virtual function f() and a virtual DTOR. // We create an object 'A *a = new B' // and pass this object from Thread1 to Thread2. // Thread2 calls a->f(). This call reads a->vtpr. // Thread1 deletes the object. B::~B waits untill the object can be destroyed // (flag_stopped == true) but at the very beginning of B::~B // a->vptr is written to. // So, we have a race on a->vptr. // On this particular test this race is benign, but HarmfulRaceInDtor shows // how such race could harm. // // // // Threa1: Thread2: // 1. A a* = new B; // 2. Q.Put(a); ------------\ . // \--------------------> a. a = Q.Get(); // b. a->f(); // /--------- c. flag_stopped = true; // 3. delete a; / // waits untill flag_stopped <------/ // inside the dtor // bool flag_stopped = false; Mutex mu; ProducerConsumerQueue Q(INT_MAX); // Used to pass A* between threads. struct A { A() { printf("A::A()\n"); } virtual ~A() { printf("A::~A()\n"); } virtual void f() { } uintptr_t padding[15]; } ALIGNED(64); struct B: A { B() { printf("B::B()\n"); } virtual ~B() { // The race is here. <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< printf("B::~B()\n"); // wait until flag_stopped is true. mu.LockWhen(Condition(&ArgIsTrue, &flag_stopped)); mu.Unlock(); printf("B::~B() done\n"); } virtual void f() { } }; void Waiter() { A *a = new B; printf("Waiter: B created\n"); Q.Put(a); usleep(100000); // so that Worker calls a->f() first. printf("Waiter: deleting B\n"); delete a; printf("Waiter: B deleted\n"); usleep(100000); printf("Waiter: done\n"); } void Worker() { A *a = reinterpret_cast<A*>(Q.Get()); printf("Worker: got A\n"); a->f(); mu.Lock(); flag_stopped = true; mu.Unlock(); usleep(200000); printf("Worker: done\n"); } TEST(NegativeTests, BenignRaceInDtor) { MyThreadArray t(Waiter, Worker); t.Start(); t.Join(); } } // namespace namespace PositiveTests_HarmfulRaceInDtor { // {{{ // A variation of BenignRaceInDtor where the race is harmful. // Race on vptr. Will run A::F() or B::F() depending on the timing. class A { public: A() : done_(false) { // W/o this annotation tsan may produce additional warnings in hybrid mode. ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&mu_); } virtual void F() { printf ("A::F()\n"); } void Done() { MutexLock lock(&mu_); done_ = true; } virtual ~A() { while (true) { { MutexLock lock(&mu_); if (done_) break; } usleep(10); // yield. } } private: Mutex mu_; bool done_; }; class B : public A { public: virtual void F() { // TODO(kcc): enable this printf back once issue 57 is fixed. // printf ("B::F()\n"); } }; static A *a; void Thread1() { a->F(); a->Done(); sleep(1); }; void Thread2() { delete a; } TEST(PositiveTests, HarmfulRaceInDtorB) { ANNOTATE_FLUSH_EXPECTED_RACES(); // Will print B::F() a = new B; ANNOTATE_EXPECT_RACE(a, "HarmfulRaceInDtor #1: expected race on a->vptr"); ANNOTATE_TRACE_MEMORY(a); MyThreadArray t(Thread1, Thread2); t.Start(); t.Join(); ANNOTATE_FLUSH_EXPECTED_RACES(); } TEST(PositiveTests, HarmfulRaceInDtorA) { ANNOTATE_FLUSH_EXPECTED_RACES(); // Will print A::F() a = new B; ANNOTATE_EXPECT_RACE(a, "HarmfulRaceInDtor #2: expected race on a->vptr"); ANNOTATE_TRACE_MEMORY(a); MyThreadArray t(Thread2, Thread1); t.Start(); t.Join(); ANNOTATE_FLUSH_EXPECTED_RACES(); } } // namespace namespace AnnotateIgnoreTests { // {{{1 int racey_write = 0; void RaceyWriter() { ANNOTATE_IGNORE_WRITES_BEGIN(); racey_write = 1; ANNOTATE_IGNORE_WRITES_END(); } TEST(NegativeTests, AnnotateIgnoreWritesTest) { MyThread t(RaceyWriter); t.Start(); racey_write = 1; t.Join(); } int racey_read = 0; void RaceyReader1() { ANNOTATE_IGNORE_READS_BEGIN(); CHECK(racey_read != 777); ANNOTATE_IGNORE_READS_END(); } void RaceyReader2() { CHECK(ANNOTATE_UNPROTECTED_READ(racey_read) != 777); } TEST(NegativeTests, AnnotateIgnoreReadsTest) { MyThreadArray t(RaceyReader1, RaceyReader2); t.Start(); racey_read = 1; t.Join(); } int incorrectly_annotated_racey_write = 0; void IncorrectlyAnnotatedRaceyWriter() { ANNOTATE_IGNORE_READS_BEGIN(); incorrectly_annotated_racey_write = 1; ANNOTATE_IGNORE_READS_END(); } TEST(PositiveTests, AnnotateIgnoreReadsOnWriteTest) { ANNOTATE_EXPECT_RACE(&incorrectly_annotated_racey_write, "expected race"); MyThread t(IncorrectlyAnnotatedRaceyWriter); t.Start(); incorrectly_annotated_racey_write = 1; t.Join(); ANNOTATE_FLUSH_EXPECTED_RACES(); } int incorrectly_annotated_racey_read = 0; void IncorrectlyAnnotatedRaceyReader() { ANNOTATE_IGNORE_WRITES_BEGIN(); CHECK(incorrectly_annotated_racey_read != 777); ANNOTATE_IGNORE_WRITES_END(); } TEST(PositiveTests, AnnotateIgnoreWritesOnReadTest) { ANNOTATE_EXPECT_RACE(&incorrectly_annotated_racey_read, "expected race"); MyThread t(IncorrectlyAnnotatedRaceyReader); t.Start(); incorrectly_annotated_racey_read = 1; t.Join(); ANNOTATE_FLUSH_EXPECTED_RACES(); } } // namespace // test89: Test for debug info. {{{1 namespace test89 { // Simlpe races with different objects (stack, heap globals; scalars, structs). // Also, if run with --trace-level=2 this test will show a sequence of // CTOR and DTOR calls. struct STRUCT { int a, b, c; }; struct A { int a; A() { ANNOTATE_TRACE_MEMORY(&a); a = 1; } virtual ~A() { a = 4; } }; struct B : A { B() { CHECK(a == 1); } virtual ~B() { CHECK(a == 3); } }; struct C : B { C() { a = 2; } virtual ~C() { a = 3; } }; int GLOBAL = 0; int *STACK = 0; STRUCT GLOB_STRUCT; STRUCT *STACK_STRUCT; STRUCT *HEAP_STRUCT; void Worker() { GLOBAL = 1; *STACK = 1; GLOB_STRUCT.b = 1; STACK_STRUCT->b = 1; HEAP_STRUCT->b = 1; } void Run() { int stack_var = 0; STACK = &stack_var; STRUCT stack_struct; STACK_STRUCT = &stack_struct; HEAP_STRUCT = new STRUCT; printf("test89: negative\n"); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); delete HEAP_STRUCT; A *a = new C; printf("Using 'a->a': %d\n", a->a); delete a; } REGISTER_TEST2(Run, 89, FEATURE|EXCLUDE_FROM_ALL) } // namespace test89 // test90: FP. Test for a safely-published pointer (read-only). {{{1 namespace test90 { // The Publisher creates an object and safely publishes it under a mutex. // Readers access the object read-only. // See also test91. // // Without annotations Helgrind will issue a false positive in Reader(). // // Choices for annotations: // -- ANNOTATE_CONDVAR_SIGNAL/ANNOTATE_CONDVAR_WAIT // -- ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX // -- ANNOTATE_PUBLISH_MEMORY_RANGE. int *GLOB = 0; Mutex MU; StealthNotification n1; void Publisher() { MU.Lock(); GLOB = (int*)malloc(128 * sizeof(int)); ANNOTATE_TRACE_MEMORY(&GLOB[42]); GLOB[42] = 777; if (!Tsan_PureHappensBefore()) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB[42], "test90. FP. This is a false positve"); MU.Unlock(); n1.signal(); usleep(200000); } void Reader() { n1.wait(); while (true) { MU.Lock(); int *p = &GLOB[42]; MU.Unlock(); if (p) { CHECK(*p == 777); // Race is reported here. break; } } } void Run() { printf("test90: false positive (safely published pointer).\n"); MyThreadArray t(Publisher, Reader, Reader, Reader); t.Start(); t.Join(); free(GLOB); } REGISTER_TEST(Run, 90) } // namespace test90 // test91: FP. Test for a safely-published pointer (read-write). {{{1 namespace test91 { // Similar to test90. // The Publisher creates an object and safely publishes it under a mutex MU1. // Accessors get the object under MU1 and access it (read/write) under MU2. // // Without annotations Helgrind will issue a false positive in Accessor(). // int *GLOB = 0; Mutex MU, MU1, MU2; void Publisher() { MU1.Lock(); GLOB = (int*)malloc(128 * sizeof(int)); GLOB[42] = 777; if (!Tsan_PureHappensBefore()) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB[42], "test91. FP. This is a false positve"); MU1.Unlock(); } void Accessor() { usleep(10000); while (true) { MU1.Lock(); int *p = &GLOB[42]; MU1.Unlock(); if (p) { MU2.Lock(); (*p)++; // Race is reported here. CHECK(*p > 777); MU2.Unlock(); break; } } } void Run() { printf("test91: false positive (safely published pointer, read/write).\n"); MyThreadArray t(Publisher, Accessor, Accessor, Accessor); t.Start(); t.Join(); free(GLOB); } REGISTER_TEST(Run, 91) } // namespace test91 // test92: TN. Test for a safely-published pointer (read-write), annotated. {{{1 namespace test92 { // Similar to test91, but annotated with ANNOTATE_PUBLISH_MEMORY_RANGE. // // // Publisher: Accessors: // // 1. MU1.Lock() // 2. Create GLOB. // 3. ANNOTATE_PUBLISH_...(GLOB) -------\ . // 4. MU1.Unlock() \ . // \ a. MU1.Lock() // \ b. Get GLOB // \ c. MU1.Unlock() // \--> d. Access GLOB // // A happens-before arc is created between ANNOTATE_PUBLISH_MEMORY_RANGE and // accesses to GLOB. struct ObjType { int arr[10]; }; ObjType *GLOB = 0; Mutex MU, MU1, MU2; void Publisher() { MU1.Lock(); GLOB = new ObjType; for (int i = 0; i < 10; i++) { GLOB->arr[i] = 777; } // This annotation should go right before the object is published. ANNOTATE_PUBLISH_MEMORY_RANGE(GLOB, sizeof(*GLOB)); MU1.Unlock(); } void Accessor(int index) { while (true) { MU1.Lock(); ObjType *p = GLOB; MU1.Unlock(); if (p) { MU2.Lock(); p->arr[index]++; // W/o the annotations the race will be reported here. CHECK(p->arr[index] == 778); MU2.Unlock(); break; } } } void Accessor0() { Accessor(0); } void Accessor5() { Accessor(5); } void Accessor9() { Accessor(9); } void Run() { printf("test92: safely published pointer, read/write, annotated.\n"); MyThreadArray t(Publisher, Accessor0, Accessor5, Accessor9); t.Start(); t.Join(); printf("\t*GLOB=%d\n", GLOB->arr[0]); } REGISTER_TEST(Run, 92) } // namespace test92 // test93: TP. Test for incorrect usage of ANNOTATE_PUBLISH_MEMORY_RANGE. {{{1 namespace test93 { int GLOB = 0; void Reader() { CHECK(GLOB == 0); } void Publisher() { usleep(10000); // Incorrect, used after the memory has been accessed in another thread. ANNOTATE_PUBLISH_MEMORY_RANGE(&GLOB, sizeof(GLOB)); } void Run() { printf("test93: positive, misuse of ANNOTATE_PUBLISH_MEMORY_RANGE\n"); MyThreadArray t(Reader, Publisher); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 93, FEATURE|EXCLUDE_FROM_ALL) } // namespace test93 // test94: TP. Check do_cv_signal/fake segment logic {{{1 namespace test94 { int GLOB; int COND = 0; int COND2 = 0; Mutex MU, MU2; CondVar CV, CV2; StealthNotification n1, n2, n3; void Thr1() { n2.wait(); // Make sure the waiter blocks. GLOB = 1; // WRITE MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); n1.signal(); } void Thr2() { // Make sure CV2.Signal() "happens after" CV.Signal() n1.wait(); // Make sure the waiter blocks. n3.wait(); MU2.Lock(); COND2 = 1; CV2.Signal(); MU2.Unlock(); } void Thr3() { MU.Lock(); n2.signal(); while(COND != 1) CV.Wait(&MU); MU.Unlock(); } void Thr4() { MU2.Lock(); n3.signal(); while(COND2 != 1) CV2.Wait(&MU2); MU2.Unlock(); GLOB = 2; // READ: no HB-relation between CV.Signal and CV2.Wait ! } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test94: TP."); printf("test94: TP. Check do_cv_signal/fake segment logic\n"); MyThreadArray mta(Thr1, Thr2, Thr3, Thr4); mta.Start(); mta.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 94); } // namespace test94 // test95: TP. Check do_cv_signal/fake segment logic {{{1 namespace test95 { int GLOB = 0; int COND = 0; int COND2 = 0; Mutex MU, MU2; CondVar CV, CV2; void Thr1() { usleep(1000*1000); // Make sure CV2.Signal() "happens before" CV.Signal() usleep(10000); // Make sure the waiter blocks. GLOB = 1; // WRITE MU.Lock(); COND = 1; CV.Signal(); MU.Unlock(); } void Thr2() { usleep(10000); // Make sure the waiter blocks. MU2.Lock(); COND2 = 1; CV2.Signal(); MU2.Unlock(); } void Thr3() { MU.Lock(); while(COND != 1) CV.Wait(&MU); MU.Unlock(); } void Thr4() { MU2.Lock(); while(COND2 != 1) CV2.Wait(&MU2); MU2.Unlock(); GLOB = 2; // READ: no HB-relation between CV.Signal and CV2.Wait ! } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test95: TP."); printf("test95: TP. Check do_cv_signal/fake segment logic\n"); MyThreadArray mta(Thr1, Thr2, Thr3, Thr4); mta.Start(); mta.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 95); } // namespace test95 // test96: TN. tricky LockSet behaviour {{{1 // 3 threads access the same memory with three different // locksets: {A, B}, {B, C}, {C, A}. // These locksets have empty intersection namespace test96 { int GLOB = 0; Mutex A, B, C; void Thread1() { MutexLock a(&A); MutexLock b(&B); GLOB++; } void Thread2() { MutexLock b(&B); MutexLock c(&C); GLOB++; } void Thread3() { MutexLock a(&A); MutexLock c(&C); GLOB++; } void Run() { printf("test96: FP. tricky LockSet behaviour\n"); ANNOTATE_TRACE_MEMORY(&GLOB); MyThreadArray mta(Thread1, Thread2, Thread3); mta.Start(); mta.Join(); CHECK(GLOB == 3); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 96); } // namespace test96 namespace FalseNegativeOfFastModeTest { // {{{1 // This test shows false negative with --fast-mode=yes. const int HG_CACHELINE_SIZE = 64; StealthNotification n1, n2; const int ARRAY_SIZE = HG_CACHELINE_SIZE * 4 / sizeof(int); int array[ARRAY_SIZE]; int * GLOB = &array[ARRAY_SIZE/2]; /* We use sizeof(array) == 4 * HG_CACHELINE_SIZE to be sure that GLOB points to a memory inside a CacheLineZ which is inside array's memory range */ void Reader() { n1.wait(); CHECK(0 != *GLOB); n2.signal(); } TEST(PositiveTests, FalseNegativeOfFastModeTest) { MyThreadArray t(Reader); ANNOTATE_TRACE_MEMORY(GLOB); ANNOTATE_EXPECT_RACE_FOR_TSAN(GLOB, __FUNCTION__); t.Start(); *GLOB = 0x12345; n1.signal(); n2.wait(); t.Join(); } } // namespace // test99: TP. Unit test for a bug in LockWhen*. {{{1 namespace test99 { bool GLOB = false; Mutex mu; static void Thread1() { for (int i = 0; i < 100; i++) { mu.LockWhenWithTimeout(Condition(&ArgIsTrue, &GLOB), 5); GLOB = false; mu.Unlock(); usleep(10000); } } static void Thread2() { for (int i = 0; i < 100; i++) { mu.Lock(); mu.Unlock(); usleep(10000); } } void Run() { printf("test99: regression test for LockWhen*\n"); MyThreadArray t(Thread1, Thread2); t.Start(); t.Join(); } REGISTER_TEST(Run, 99); } // namespace test99 // test100: Test for initialization bit. {{{1 namespace test100 { int G1 = 0; int G2 = 0; int G3 = 0; int G4 = 0; void Creator() { G1 = 1; CHECK(G1); G2 = 1; G3 = 1; CHECK(G3); G4 = 1; } void Worker1() { usleep(100000); CHECK(G1); CHECK(G2); G3 = 3; G4 = 3; } void Worker2() { } void Run() { printf("test100: test for initialization bit. \n"); MyThreadArray t(Creator, Worker1, Worker2); ANNOTATE_TRACE_MEMORY(&G1); ANNOTATE_TRACE_MEMORY(&G2); ANNOTATE_TRACE_MEMORY(&G3); ANNOTATE_TRACE_MEMORY(&G4); t.Start(); t.Join(); } REGISTER_TEST2(Run, 100, FEATURE|EXCLUDE_FROM_ALL) } // namespace test100 // test101: TN. Two signals and two waits. {{{1 namespace test101 { Mutex MU; CondVar CV; int GLOB = 0; int C1 = 0, C2 = 0; void Signaller() { usleep(100000); MU.Lock(); C1 = 1; CV.Signal(); printf("signal\n"); MU.Unlock(); GLOB = 1; usleep(500000); MU.Lock(); C2 = 1; CV.Signal(); printf("signal\n"); MU.Unlock(); } void Waiter() { MU.Lock(); while(!C1) CV.Wait(&MU); printf("wait\n"); MU.Unlock(); MU.Lock(); while(!C2) CV.Wait(&MU); printf("wait\n"); MU.Unlock(); GLOB = 2; } void Run() { printf("test101: negative\n"); MyThreadArray t(Waiter, Signaller); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 101) } // namespace test101 // test102: --fast-mode=yes vs. --initialization-bit=yes {{{1 namespace test102 { const int HG_CACHELINE_SIZE = 64; Mutex MU; const int ARRAY_SIZE = HG_CACHELINE_SIZE * 4 / sizeof(int); int array[ARRAY_SIZE + 1]; int * GLOB = &array[ARRAY_SIZE/2]; /* We use sizeof(array) == 4 * HG_CACHELINE_SIZE to be sure that GLOB points to a memory inside a CacheLineZ which is inside array's memory range */ StealthNotification n1, n2, n3; void Reader() { n1.wait(); CHECK(777 == GLOB[0]); n2.signal(); n3.wait(); CHECK(777 == GLOB[1]); } void Run() { MyThreadArray t(Reader); ANNOTATE_EXPECT_RACE_FOR_TSAN(GLOB+0, "test102: TP. FN with --fast-mode=yes"); ANNOTATE_EXPECT_RACE_FOR_TSAN(GLOB+1, "test102: TP"); printf("test102: --fast-mode=yes vs. --initialization-bit=yes\n"); t.Start(); GLOB[0] = 777; n1.signal(); n2.wait(); GLOB[1] = 777; n3.signal(); t.Join(); } REGISTER_TEST2(Run, 102, FEATURE) } // namespace test102 // test103: Access different memory locations with different LockSets {{{1 namespace test103 { const int N_MUTEXES = 6; const int LOCKSET_INTERSECTION_SIZE = 3; int data[1 << LOCKSET_INTERSECTION_SIZE] = {0}; Mutex MU[N_MUTEXES]; inline int LS_to_idx (int ls) { return (ls >> (N_MUTEXES - LOCKSET_INTERSECTION_SIZE)) & ((1 << LOCKSET_INTERSECTION_SIZE) - 1); } void Worker() { for (int ls = 0; ls < (1 << N_MUTEXES); ls++) { if (LS_to_idx(ls) == 0) continue; for (int m = 0; m < N_MUTEXES; m++) if (ls & (1 << m)) MU[m].Lock(); data[LS_to_idx(ls)]++; for (int m = N_MUTEXES - 1; m >= 0; m--) if (ls & (1 << m)) MU[m].Unlock(); } } void Run() { printf("test103: Access different memory locations with different LockSets\n"); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 103, FEATURE) } // namespace test103 // test104: TP. Simple race (write vs write). Heap mem. {{{1 namespace test104 { int *GLOB = NULL; void Worker() { GLOB[42] = 1; } void Parent() { MyThread t(Worker); t.Start(); usleep(100000); GLOB[42] = 2; t.Join(); } void Run() { GLOB = (int*)malloc(128 * sizeof(int)); GLOB[42] = 0; ANNOTATE_EXPECT_RACE(&GLOB[42], "test104. TP."); ANNOTATE_TRACE_MEMORY(&GLOB[42]); printf("test104: positive\n"); Parent(); printf("\tGLOB=%d\n", GLOB[42]); free(GLOB); } REGISTER_TEST(Run, 104); } // namespace test104 // test105: Checks how stack grows. {{{1 namespace test105 { int GLOB = 0; void F1() { int ar[32]; // ANNOTATE_TRACE_MEMORY(&ar[0]); // ANNOTATE_TRACE_MEMORY(&ar[31]); ar[0] = 1; ar[31] = 1; CHECK(ar[0] == 1); } void Worker() { int ar[32]; // ANNOTATE_TRACE_MEMORY(&ar[0]); // ANNOTATE_TRACE_MEMORY(&ar[31]); ar[0] = 1; ar[31] = 1; CHECK(ar[0] == 1); F1(); } void Run() { printf("test105: negative\n"); Worker(); MyThread t(Worker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 105) } // namespace test105 // test107: Test for ANNOTATE_EXPECT_RACE {{{1 namespace test107 { int GLOB = 0; void Run() { printf("test107: negative\n"); ANNOTATE_EXPECT_RACE(&GLOB, "No race in fact. Just checking the tool."); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 107, FEATURE|EXCLUDE_FROM_ALL) } // namespace test107 // test108: TN. initialization of static object. {{{1 namespace test108 { // Here we have a function-level static object. // Starting from gcc 4 this is therad safe, // but is is not thread safe with many other compilers. // // Helgrind/ThreadSanitizer supports this kind of initialization by // intercepting __cxa_guard_acquire/__cxa_guard_release // and ignoring all accesses between them. // pthread_once is supported in the same manner. class Foo { public: Foo() { ANNOTATE_TRACE_MEMORY(&a_); a_ = 42; } void Check() const { CHECK(a_ == 42); } private: int a_; }; const Foo *GetFoo() { static const Foo *foo = new Foo(); return foo; } void Worker0() { GetFoo(); } void Worker() { usleep(200000); const Foo *foo = GetFoo(); foo->Check(); } void Run() { printf("test108: negative, initialization of static object\n"); MyThreadArray t(Worker0, Worker, Worker); t.Start(); t.Join(); } #ifdef __GNUC__ REGISTER_TEST2(Run, 108, FEATURE) #endif } // namespace test108 // test109: TN. Checking happens before between parent and child threads. {{{1 namespace test109 { // Check that the detector correctly connects // pthread_create with the new thread // and // thread exit with pthread_join const int N = 32; static int GLOB[N]; void Worker(void *a) { usleep(10000); // printf("--Worker : %ld %p\n", (int*)a - GLOB, (void*)pthread_self()); int *arg = (int*)a; (*arg)++; } void Run() { printf("test109: negative\n"); MyThread *t[N]; for (int i = 0; i < N; i++) { t[i] = new MyThread(Worker, &GLOB[i]); } for (int i = 0; i < N; i++) { ANNOTATE_TRACE_MEMORY(&GLOB[i]); GLOB[i] = 1; t[i]->Start(); // printf("--Started: %p\n", (void*)t[i]->tid()); } for (int i = 0; i < N; i++) { // printf("--Joining: %p\n", (void*)t[i]->tid()); t[i]->Join(); // printf("--Joined : %p\n", (void*)t[i]->tid()); GLOB[i]++; } for (int i = 0; i < N; i++) delete t[i]; printf("\tGLOB=%d\n", GLOB[13]); } REGISTER_TEST(Run, 109) } // namespace test109 // test111: TN. Unit test for a bug related to stack handling. {{{1 namespace test111 { char *GLOB = 0; bool COND = false; Mutex mu; const int N = 3000; void write_to_p(char *p, int val) { for (int i = 0; i < N; i++) p[i] = val; } void f1() { char some_stack[N]; write_to_p(some_stack, 1); mu.LockWhen(Condition(&ArgIsTrue, &COND)); mu.Unlock(); } void f2() { char some_stack[N]; char some_more_stack[N]; write_to_p(some_stack, 2); write_to_p(some_more_stack, 2); } void f0() { f2(); } void Worker1() { f0(); f1(); f2(); } void Worker2() { usleep(100000); mu.Lock(); COND = true; mu.Unlock(); } void Run() { printf("test111: regression test\n"); MyThreadArray t(Worker1, Worker1, Worker2); t.Start(); t.Join(); } REGISTER_TEST2(Run, 111, FEATURE) } // namespace test111 // test112: STAB. Test for ANNOTATE_PUBLISH_MEMORY_RANGE{{{1 namespace test112 { char *GLOB = 0; const int N = 64 * 5; Mutex mu; bool ready = false; // under mu int beg, end; // under mu Mutex mu1; void Worker() { bool is_ready = false; int b, e; while (!is_ready) { mu.Lock(); is_ready = ready; b = beg; e = end; mu.Unlock(); usleep(1000); } mu1.Lock(); for (int i = b; i < e; i++) { GLOB[i]++; } mu1.Unlock(); } void PublishRange(int b, int e) { MyThreadArray t(Worker, Worker); ready = false; // runs before other threads t.Start(); ANNOTATE_NEW_MEMORY(GLOB + b, e - b); ANNOTATE_TRACE_MEMORY(GLOB + b); for (int j = b; j < e; j++) { GLOB[j] = 0; } ANNOTATE_PUBLISH_MEMORY_RANGE(GLOB + b, e - b); // hand off mu.Lock(); ready = true; beg = b; end = e; mu.Unlock(); t.Join(); } void Run() { printf("test112: stability (ANNOTATE_PUBLISH_MEMORY_RANGE)\n"); GLOB = new char [N]; PublishRange(0, 10); PublishRange(3, 5); PublishRange(12, 13); PublishRange(10, 14); PublishRange(15, 17); PublishRange(16, 18); // do few more random publishes. for (int i = 0; i < 20; i++) { const int begin = rand() % N; const int size = (rand() % (N - begin)) + 1; CHECK(size > 0); CHECK(begin + size <= N); PublishRange(begin, begin + size); } printf("GLOB = %d\n", (int)GLOB[0]); } REGISTER_TEST2(Run, 112, STABILITY) } // namespace test112 // test113: PERF. A lot of lock/unlock calls. Many locks {{{1 namespace test113 { const int kNumIter = 100000; const int kNumLocks = 7; Mutex MU[kNumLocks]; TEST (StressTests, ManyLocksUnlocks2) { printf("test113: perf\n"); for (int i = 0; i < kNumIter; i++ ) { for (int j = 0; j < kNumLocks; j++) { if (i & (1 << j)) MU[j].Lock(); } for (int j = kNumLocks - 1; j >= 0; j--) { if (i & (1 << j)) MU[j].Unlock(); } } } } // namespace test113 // test114: STAB. Recursive static initialization. {{{1 namespace test114 { int Bar() { static int bar = 1; return bar; } int Foo() { static int foo = Bar(); return foo; } void Worker() { static int x = Foo(); CHECK(x == 1); } void Run() { printf("test114: stab\n"); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } #ifdef __GNUC__ REGISTER_TEST(Run, 114) #endif } // namespace test114 // test116: TN. some operations with string<> objects. {{{1 namespace test116 { void Worker() { string A[10], B[10], C[10]; for (int i = 0; i < 1000; i++) { for (int j = 0; j < 10; j++) { string &a = A[j]; string &b = B[j]; string &c = C[j]; a = "sdl;fkjhasdflksj df"; b = "sdf sdf;ljsd "; c = "'sfdf df"; c = b; a = c; b = a; swap(a,b); swap(b,c); } for (int j = 0; j < 10; j++) { string &a = A[j]; string &b = B[j]; string &c = C[j]; a.clear(); b.clear(); c.clear(); } } } void Run() { printf("test116: negative (strings)\n"); MyThreadArray t(Worker, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 116, FEATURE|EXCLUDE_FROM_ALL) } // namespace test116 // test117: TN. Many calls to function-scope static init. {{{1 namespace test117 { const int N = 50; int Foo() { usleep(20000); return 1; } void Worker(void *a) { static int foo = Foo(); CHECK(foo == 1); } void Run() { printf("test117: negative\n"); MyThread *t[N]; for (int i = 0; i < N; i++) { t[i] = new MyThread(Worker); } for (int i = 0; i < N; i++) { t[i]->Start(); } for (int i = 0; i < N; i++) { t[i]->Join(); } for (int i = 0; i < N; i++) delete t[i]; } #ifndef WIN32 // This is racey on Windows! REGISTER_TEST(Run, 117) #endif } // namespace test117 // test118 PERF: One signal, multiple waits. {{{1 namespace test118 { int GLOB = 0; const int kNumIter = 2000000; void Signaller() { usleep(50000); ANNOTATE_CONDVAR_SIGNAL(&GLOB); } void Waiter() { for (int i = 0; i < kNumIter; i++) { ANNOTATE_CONDVAR_WAIT(&GLOB); if (i == kNumIter / 2) usleep(100000); } } TEST(StressTests, OneSignalManyWaits) { printf("test118: perf\n"); MyThreadArray t(Signaller, Waiter, Signaller, Waiter); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } } // namespace test118 // test119: TP. Testing that malloc does not introduce any HB arc. {{{1 namespace test119 { int GLOB = 0; void Worker1() { GLOB = 1; free(malloc(123)); } void Worker2() { usleep(100000); free(malloc(345)); GLOB = 2; } void Run() { printf("test119: positive (checking if malloc creates HB arcs)\n"); if (!(Tsan_PureHappensBefore() && kMallocUsesMutex)) ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "true race"); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 119) } // namespace test119 // test120: TP. Thread1: write then read. Thread2: read. {{{1 namespace test120 { int GLOB = 0; void Thread1() { GLOB = 1; // write CHECK(GLOB); // read } void Thread2() { usleep(100000); CHECK(GLOB >= 0); // read } void Run() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "TP (T1: write then read, T2: read)"); printf("test120: positive\n"); MyThreadArray t(Thread1, Thread2); GLOB = 1; t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 120) } // namespace test120 namespace DoubleCheckedLocking { // {{{1 struct Foo { uintptr_t padding1[16]; uintptr_t a; uintptr_t padding2[16]; }; static Mutex mu; static Foo *foo; void InitMe() { if (!foo) { MutexLock lock(&mu); if (!foo) { ANNOTATE_EXPECT_RACE_FOR_TSAN(&foo, "Double-checked locking (ptr)"); foo = new Foo; if (Tsan_PureHappensBefore()) { // A pure h-b detector may or may not detect this. ANNOTATE_BENIGN_RACE(&foo->a, "real race"); } else { // ThreadSanitizer in full hybrid mode must detect it. ANNOTATE_EXPECT_RACE_FOR_TSAN(&foo->a, "Double-checked locking (obj)"); } foo->a = 42; } } } void UseMe() { InitMe(); CHECK(foo); if (foo->a != 42) { printf("foo->a = %d (should be 42)\n", (int)foo->a); } } void Worker1() { UseMe(); } void Worker2() { UseMe(); } void Worker3() { UseMe(); } TEST(PositiveTests, DoubleCheckedLocking1) { foo = NULL; MyThreadArray t1(Worker1, Worker2, Worker3); t1.Start(); t1.Join(); delete foo; } } // namespace DoubleCheckedLocking namespace DoubleCheckedLocking2 { // {{{1 struct Foo { uintptr_t padding1[16]; uintptr_t a; uintptr_t padding2[16]; }; Foo *foo; Mutex mu; void InitMe() { if (foo) return; Foo *x = new Foo; ANNOTATE_BENIGN_RACE(&x->a, "may or may not detect this race"); x->a = 42; { MutexLock lock(&mu); if (!foo) { foo = x; x = NULL; } } if (x) delete x; } void Worker() { InitMe(); CHECK(foo); CHECK(foo->a == 42); } TEST(PositiveTests, DoubleCheckedLocking2) { foo = NULL; ANNOTATE_EXPECT_RACE(&foo, "real race"); MyThreadArray t1(Worker, Worker, Worker, Worker); t1.Start(); t1.Join(); delete foo; } } // namespace DoubleCheckedLocking2 namespace PositiveTests_DifferentSizeAccessTest { // {{{1 uint64_t arr[1000]; size_t arr_index = 0; uint64_t *MEM; size_t size[3]; size_t offset[3]; void GenericWrite(size_t s, size_t off) { switch(s) { case 8: CHECK(off == 0); ((uint64_t*)MEM)[off] = 1; break; case 4: CHECK(off < 2); ((uint32_t*)MEM)[off] = 1; break; case 2: CHECK(off < 4); ((uint16_t*)MEM)[off] = 1; break; case 1: CHECK(off < 8); ((uint8_t*)MEM)[off] = 1; break; default: CHECK(0); break; } } void Thread1() { GenericWrite(size[0], offset[0]); } void Thread2() { GenericWrite(size[1], offset[1]); } bool TwoRangesIntersect(size_t beg1, size_t end1, size_t beg2, size_t end2) { if (beg1 <= beg2 && end1 > beg2) return true; if (beg2 <= beg1 && end2 > beg1) return true; return false; } void RunTwoThreads(size_t size1, size_t offset1, size_t size2, size_t offset2) { size[0] = size1; size[1] = size2; offset[0] = offset1; offset[1] = offset2; long beg1 = offset1 * size1; long end1 = beg1 + size1; long beg2 = offset2 * size2; long end2 = beg2 + size2; bool have_intersection = TwoRangesIntersect(beg1, end1, beg2, end2); char descr[1024]; MEM = &arr[arr_index++]; sprintf(descr, "Testing: [%ld, %ld) vs [%ld, %ld] (%s intersection); p=%p", beg1, end1, beg2, end2, have_intersection ? "have" : "no", MEM); fprintf(stderr, "%s\n", descr); char *racey_addr_beg = (char*)MEM + max(beg1, beg2); char *racey_addr_end = (char*)MEM + min(end1, end2); if (have_intersection) { ANNOTATE_EXPECT_RACE(racey_addr_beg, descr); if (racey_addr_end - racey_addr_beg >= 2) { // We expect a race on the first racey byte, but we may also see some // races in other bytes (e.g. if a 8-byte store is implemented via two // 4-byte stores on a 32-bit arch). Ignore these extra races. ANNOTATE_BENIGN_RACE_SIZED(racey_addr_beg+1, racey_addr_end - racey_addr_beg - 1, "race"); } } MyThreadArray t1(Thread1, Thread2); t1.Start(); t1.Join(); } void TestTwoSizes(size_t size1, size_t offset1, size_t size2, size_t offset2) { RunTwoThreads(size1, offset1, size2, offset2); RunTwoThreads(size2, offset2, size1, offset1); } TEST(PositiveTests, DifferentSizeAccessTest) { for(int size1_log = 3; size1_log >= 0; size1_log--) { for (int size2_log = size1_log; size2_log >= 0; size2_log--) { for (int off1 = 0; off1 < (1 << (3-size1_log)); off1++) { for (int off2 = 0; off2 < (1 << (3-size2_log)); off2++) { RunTwoThreads(1 << size1_log, off1, 1 << size2_log, off2); } } } } } const int kStressArrSize = 100; char stress_arr[kStressArrSize]; void StressWorker() { const int n = 100000; char foo[kStressArrSize]; memset(foo, 0, sizeof(foo)); for (int i = 0; i < n; i++) { memcpy(stress_arr + i % (kStressArrSize / 2), foo, i % (kStressArrSize / 3)); } } TEST(StressTests, DifferentSizeAccessStressTest) { ANNOTATE_BENIGN_RACE_SIZED(stress_arr, sizeof(stress_arr), "race"); MyThreadArray t(StressWorker, StressWorker, StressWorker); t.Start(); t.Join(); } } // namespace // test124: What happens if we delete an unlocked lock? {{{1 namespace test124 { // This test does not worg with pthreads (you can't call // pthread_mutex_destroy on a locked lock). int GLOB = 0; const int N = 1000; void Worker() { Mutex *a_large_local_array_of_mutexes; a_large_local_array_of_mutexes = new Mutex[N]; for (int i = 0; i < N; i++) { a_large_local_array_of_mutexes[i].Lock(); } delete []a_large_local_array_of_mutexes; GLOB = 1; } void Run() { printf("test124: negative\n"); MyThreadArray t(Worker, Worker, Worker); t.Start(); t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 124, FEATURE|EXCLUDE_FROM_ALL) } // namespace test124 // test126 TN: test for BlockingCounter {{{1 namespace test126 { BlockingCounter *blocking_counter; int GLOB = 0; void Worker() { CHECK(blocking_counter); CHECK(GLOB == 0); blocking_counter->DecrementCount(); } void Run() { printf("test126: negative\n"); MyThreadArray t(Worker, Worker, Worker); blocking_counter = new BlockingCounter(3); t.Start(); blocking_counter->Wait(); GLOB = 1; t.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST(Run, 126) } // namespace test126 // test127. Bad code: unlocking a mutex locked by another thread. {{{1 namespace test127 { Mutex mu; void Thread1() { mu.Lock(); usleep(1); // avoid tail call elimination } void Thread2() { usleep(100000); mu.Unlock(); usleep(1); // avoid tail call elimination } TEST(LockTests, UnlockingALockHeldByAnotherThread) { MyThreadArray t(Thread1, Thread2); t.Start(); t.Join(); } } // namespace test127 // test128. Suppressed code in concurrent accesses {{{1 // Please use --suppressions=unittest.supp flag when running this test. namespace test128 { Mutex mu; int GLOB = 0; void Worker() { usleep(100000); mu.Lock(); GLOB++; mu.Unlock(); } void ThisFunctionShouldBeSuppressed() { GLOB++; } void Run() { printf("test128: Suppressed code in concurrent accesses.\n"); MyThreadArray t(Worker, ThisFunctionShouldBeSuppressed); t.Start(); t.Join(); } REGISTER_TEST2(Run, 128, FEATURE | EXCLUDE_FROM_ALL) } // namespace test128 // test129: TN. Synchronization via ReaderLockWhen(). {{{1 namespace test129 { int GLOB = 0; Mutex MU; bool WeirdCondition(int* param) { *param = GLOB; // a write into Waiter's memory return GLOB > 0; } void Waiter() { int param = 0; MU.ReaderLockWhen(Condition(WeirdCondition, ¶m)); MU.ReaderUnlock(); CHECK(GLOB > 0); CHECK(param > 0); } void Waker() { usleep(100000); // Make sure the waiter blocks. MU.Lock(); GLOB++; MU.Unlock(); // calls ANNOTATE_CONDVAR_SIGNAL; } void Run() { printf("test129: Synchronization via ReaderLockWhen()\n"); MyThread mt(Waiter, NULL, "Waiter Thread"); mt.Start(); Waker(); mt.Join(); printf("\tGLOB=%d\n", GLOB); } REGISTER_TEST2(Run, 129, FEATURE); } // namespace test129 namespace NegativeTests_PerThreadTest { // {{{1 #ifdef TLS // This test verifies that the race detector handles // thread-local storage (TLS) correctly. // As of 09-03-30 ThreadSanitizer has a bug: // - Thread1 starts // - Thread1 touches per_thread_global // - Thread1 ends // - Thread2 starts (and there is no happens-before relation between it and // Thread1) // - Thread2 touches per_thread_global // It may happen so that Thread2 will have per_thread_global in the same address // as Thread1. Since there is no happens-before relation between threads, // ThreadSanitizer reports a race. // // test131 does the same for stack. static TLS int per_thread_global[10] = {0}; void RealWorker() { // Touch per_thread_global. per_thread_global[1]++; per_thread_global[9]++; errno++; } void Worker() { // Spawn few threads that touch per_thread_global. MyThreadArray t(RealWorker, RealWorker); t.Start(); t.Join(); } void Worker0() { usleep(0); Worker(); } void Worker1() { usleep(100000); Worker(); } void Worker2() { usleep(200000); Worker(); } void Worker3() { usleep(300000); Worker(); } #ifdef WIN32 TEST(NegativeTests, DISABLED_PerThreadTest) { // issue #23 #else TEST(NegativeTests, PerThreadTest) { #endif MyThreadArray t1(Worker0, Worker1, Worker2, Worker3); t1.Start(); t1.Join(); } #endif // TLS } // namespace test130 namespace NegativeTests_StackReuseTest { // {{{1 // Same as PerThreadTest, but for stack. void RealWorker() { // Touch stack. int stack_var = 0; stack_var++; } void Worker() { // Spawn few threads that touch stack. MyThreadArray t(RealWorker, RealWorker); t.Start(); t.Join(); } void Worker0() { usleep(0); Worker(); } void Worker1() { usleep(100000); Worker(); } void Worker2() { usleep(200000); Worker(); } void Worker3() { usleep(300000); Worker(); } TEST(NegativeTests, StackReuseTest) { MyThreadArray t(Worker0, Worker1, Worker2, Worker3); t.Start(); t.Join(); } TEST(NegativeTests, StackReuseWithFlushTest) { MyThreadArray t1(Worker0, Worker1, Worker2, Worker3); MyThreadArray t2(Worker0, Worker1, Worker2, Worker3); t1.Start(); ANNOTATE_FLUSH_STATE(); usleep(400000); t2.Start(); t2.Join(); t1.Join(); } } // namespace test131 // test132: TP. Simple race (write vs write). Works in fast-mode. {{{1 namespace test132 { int GLOB = 0; void Worker() { GLOB = 1; } void Run1() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test132"); printf("test132: positive; &GLOB=%p\n", &GLOB); ANNOTATE_TRACE_MEMORY(&GLOB); GLOB = 7; MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } void Run() { Run1(); } REGISTER_TEST(Run, 132); } // namespace test132 // test133: TP. Simple race (write vs write). Works in fast mode. {{{1 namespace test133 { // Same as test132, but everything is run from a separate thread spawned from // the main thread. int GLOB = 0; void Worker() { GLOB = 1; } void Run1() { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "test133"); printf("test133: positive; &GLOB=%p\n", &GLOB); ANNOTATE_TRACE_MEMORY(&GLOB); GLOB = 7; MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } void Run() { MyThread t(Run1); t.Start(); t.Join(); } REGISTER_TEST(Run, 133); } // namespace test133 // test134 TN. Swap. Variant of test79. {{{1 namespace test134 { #if 0 typedef __gnu_cxx::hash_map<int, int> map_t; #else typedef std::map<int, int> map_t; #endif map_t map; Mutex mu; // Here we use swap to pass map between threads. // The synchronization is correct, but w/o the annotation // any hybrid detector will complain. // Swap is very unfriendly to the lock-set (and hybrid) race detectors. // Since tmp is destructed outside the mutex, we need to have a happens-before // arc between any prior access to map and here. // Since the internals of tmp are created ouside the mutex and are passed to // other thread, we need to have a h-b arc between here and any future access. // These arcs can be created by HAPPENS_{BEFORE,AFTER} annotations, but it is // much simpler to apply pure-happens-before mode to the mutex mu. void Swapper() { map_t tmp; MutexLock lock(&mu); ANNOTATE_HAPPENS_AFTER(&map); // We swap the new empty map 'tmp' with 'map'. map.swap(tmp); ANNOTATE_HAPPENS_BEFORE(&map); // tmp (which is the old version of map) is destroyed here. } void Worker() { MutexLock lock(&mu); ANNOTATE_HAPPENS_AFTER(&map); map[1]++; ANNOTATE_HAPPENS_BEFORE(&map); } void Run() { printf("test134: negative (swap)\n"); // ********************** Shorter way: *********************** // ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&mu); MyThreadArray t(Worker, Worker, Swapper, Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST(Run, 134) } // namespace test134 // test137 TP. Races on stack variables. {{{1 namespace test137 { int GLOB = 0; ProducerConsumerQueue q(10); void Worker() { int stack; int *tmp = (int*)q.Get(); (*tmp)++; int *racey = &stack; q.Put(racey); (*racey)++; usleep(150000); // We may miss the races if we sleep less due to die_memory events... } void Run() { int tmp = 0; printf("test137: TP. Races on stack variables.\n"); q.Put(&tmp); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); q.Get(); } REGISTER_TEST2(Run, 137, FEATURE | EXCLUDE_FROM_ALL) } // namespace test137 namespace ThreadPoolFNTests { // {{{1 // When using thread pools, two concurrent callbacks might be scheduled // onto the same executor thread. As a result, unnecessary happens-before // relation may be introduced between callbacks. // If we set the number of executor threads to 1, any known data // race detector will be silent. // However, the a similar situation may happen with any number of // executor threads (with some probability). void Worker(int *var) { usleep(100000); *var = 42; } TEST(ThreadPoolFNTests, OneProducerOneConsumer) { int RACEY = 0; printf("FN. Two closures hit the same thread in ThreadPool.\n"); ThreadPool tp(1); tp.StartWorkers(); tp.Add(NewCallback(Worker, &RACEY)); tp.Add(NewCallback(Worker, &RACEY)); } void PutWorkerOn(ThreadPool *tp, int *var) { usleep(100000); tp->Add(NewCallback(Worker, var)); usleep(100000); } TEST(ThreadPoolFNTests, TwoProducersOneConsumer) { int RACEY = 0; printf("FN. Two closures hit the same thread in ThreadPool.\n"); ThreadPool consumers_tp(1); consumers_tp.StartWorkers(); ThreadPool producers_tp(2); producers_tp.StartWorkers(); producers_tp.Add(NewCallback(PutWorkerOn, &consumers_tp, &RACEY)); producers_tp.Add(NewCallback(PutWorkerOn, &consumers_tp, &RACEY)); } } // namespace ThreadPoolFNTests // test139: FN. A true race hidden by reference counting annotation. {{{1 namespace test139 { int GLOB = 0; RefCountedClass *obj; void Worker1() { GLOB++; // First access. obj->Unref(); } void Worker2() { usleep(100000); obj->Unref(); GLOB++; // Second access. } void Run() { printf("test139: FN. A true race hidden by reference counting annotation.\n"); obj = new RefCountedClass; obj->AnnotateUnref(); obj->Ref(); obj->Ref(); MyThreadArray mt(Worker1, Worker2); mt.Start(); mt.Join(); } REGISTER_TEST2(Run, 139, FEATURE) } // namespace test139 // Simple FIFO queue annotated with PCQ annotations. {{{1 class FifoMessageQueue { public: FifoMessageQueue() { ANNOTATE_PCQ_CREATE(this); } ~FifoMessageQueue() { ANNOTATE_PCQ_DESTROY(this); } // Send a message. 'message' should be positive. void Put(int message) { CHECK(message); MutexLock lock(&mu_); ANNOTATE_PCQ_PUT(this); q_.push(message); } // Return the message from the queue and pop it // or return 0 if there are no messages. int Get() { MutexLock lock(&mu_); if (q_.empty()) return 0; int res = q_.front(); q_.pop(); ANNOTATE_PCQ_GET(this); return res; } private: Mutex mu_; queue<int> q_; }; // test142: TN. Check PCQ_* annotations. {{{1 namespace test142 { // Putter writes to array[i] and sends a message 'i'. // Getters receive messages and read array[message]. // PCQ_* annotations calm down the hybrid detectors. const int N = 1000; int array[N+1]; FifoMessageQueue q; void Putter() { for (int i = 1; i <= N; i++) { array[i] = i*i; q.Put(i); usleep(1000); } } void Getter() { int non_zero_received = 0; for (int i = 1; i <= N; i++) { int res = q.Get(); if (res > 0) { CHECK(array[res] = res * res); non_zero_received++; } usleep(1000); } #ifndef WIN32 #ifdef OS_darwin printf("T=%p: non_zero_received=%d\n", (void*)pthread_self(), non_zero_received); #else printf("T=%d: non_zero_received=%d\n", (int)pthread_self(), non_zero_received); #endif #endif } void Run() { printf("test142: tests PCQ annotations\n"); MyThreadArray t(Putter, Getter, Getter); t.Start(); t.Join(); } REGISTER_TEST(Run, 142) } // namespace test142 // test143: TP. Check PCQ_* annotations. {{{1 namespace test143 { // True positive. // We have a race on GLOB between Putter and one of the Getters. // Pure h-b will not see it. // If FifoMessageQueue was annotated using HAPPENS_BEFORE/AFTER, the race would // be missed too. // PCQ_* annotations do not hide this race. int GLOB = 0; StealthNotification n; FifoMessageQueue q; void Putter() { GLOB = 1; q.Put(1); n.signal(); } void Getter() { n.wait(); q.Get(); CHECK(GLOB == 1); // Race here } void Run() { q.Put(1); if (!Tsan_PureHappensBefore()) { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "true races"); } printf("test143: tests PCQ annotations (true positive)\n"); MyThreadArray t(Putter, Getter, Getter); t.Start(); t.Join(); } REGISTER_TEST(Run, 143); } // namespace test143 // test144: Unit-test for a bug in fast-mode {{{1 namespace test144 { struct Foo { int a, b; } ALIGNED(64); struct Foo GLOB; int &RACEY = GLOB.a; void Worker() { RACEY++; } void Run() { printf("test144: fast-mode bug\n"); ANNOTATE_TRACE_MEMORY(&RACEY); ANNOTATE_EXPECT_RACE_FOR_TSAN(&RACEY, "Real race"); // This line resets GLOB's creator_tid (bug). ANNOTATE_NEW_MEMORY(&GLOB.b, sizeof(GLOB.b)); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST(Run, 144); } // namespace test144 // test145: Unit-test for a bug in fast-mode {{{1 namespace test145 { // A variation of test144 for dynamic memory. struct Foo { int a, b; } ALIGNED(64); struct Foo *GLOB; int *RACEY = NULL; void Worker() { (*RACEY)++; } void Run() { printf("test145: fast-mode bug\n"); GLOB = new Foo; RACEY = &(GLOB->a); ANNOTATE_TRACE_MEMORY(RACEY); ANNOTATE_EXPECT_RACE_FOR_TSAN(RACEY, "Real race"); // This line resets GLOB's creator_tid (bug). ANNOTATE_NEW_MEMORY(&(GLOB->b), sizeof(GLOB->b)); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); delete GLOB; } REGISTER_TEST(Run, 145); } // namespace test145 // test147: allocating 1.5G of mem in one chunk. {{{1 namespace test147 { void Run() { printf("test147: malloc 1.5G\n"); free(malloc((1 << 30) + (1 << 29))); } REGISTER_TEST(Run, 147) } // namespace test147 // test148: FN. 3 threads, h-b hides race between T1 and T3. {{{1 namespace test148 { int GLOB = 0; int COND = 0; Mutex mu; CondVar cv; void Signaller() { usleep(1000000); GLOB = 1; mu.Lock(); COND = 1; cv.Signal(); mu.Unlock(); } void Waiter() { mu.Lock(); while (COND == 0) cv.Wait(&mu); ANNOTATE_CONDVAR_LOCK_WAIT(&cv, &mu); GLOB = 2; mu.Unlock(); } void Racer() { usleep(2000000); mu.Lock(); GLOB = 3; mu.Unlock(); } void Run() { printf("test148: FN. 3 threads, h-b hides race between T1 and T3.\n"); MyThreadArray mta(Signaller, Waiter, Racer); mta.Start(); mta.Join(); } REGISTER_TEST(Run, 148) } // namespace test148 // test149: allocate and memset lots of of mem in several chunks. {{{1 namespace test149 { void Run() { int kChunkSize = 1 << 26; printf("test149: malloc 8x%dM\n", kChunkSize / (1 << 20)); void *mem[8]; for (int i = 0; i < 8; i++) { mem[i] = malloc(kChunkSize); memset(mem[i], 0, kChunkSize); printf("+"); } for (int i = 0; i < 8; i++) { free(mem[i]); printf("-"); } printf(" Done\n"); } REGISTER_TEST2(Run, 149, EXCLUDE_FROM_ALL) // TODO(kcc): enable it back } // namespace test149 // test150: race which is detected after one of the thread has joined. {{{1 namespace test150 { int GLOB = 0; StealthNotification n; void Writer1() { GLOB++; } void Writer2() { n.wait(); GLOB++; } TEST(PositiveTests, RaceDetectedAfterJoin) { ANNOTATE_EXPECT_RACE_FOR_TSAN(&GLOB, "real race"); MyThread t1(Writer1); MyThread t2(Writer2); t1.Start(); t2.Start(); t1.Join(); n.signal(); t2.Join(); printf("\tGLOB=%d\n", GLOB); } } // namespace test150 // test151: stress for the size of vector time clock. {{{1 namespace test151 { int kNumThreads = 100; int kNumSegments = 5000000; void Void() { } void Run() { printf("test151: stress\n"); printf("Creating %d threads\n", kNumThreads); for (int i = 0; i < kNumThreads; i++) { MyThread t(Void); t.Start(); t.Join(); } printf("Creating %d segments\n", kNumSegments); for (int i = 0; i < kNumSegments; i++) { if (i % (kNumSegments / 50) == 0) printf("."); ANNOTATE_HAPPENS_BEFORE(NULL); } printf(" done\n"); } REGISTER_TEST2(Run, 151, PERFORMANCE | EXCLUDE_FROM_ALL) // TODO(kcc): enable } // namespace test151 // test152: atexit -> exit creates a h-b arc. {{{1 namespace test152 { int GLOB = 0; MyThread *t; void AtExitCallback() { GLOB++; } void AtExitThread() { GLOB++; atexit(AtExitCallback); } TEST(NegativeTests, AtExitTest) { t = new MyThread(AtExitThread); t->Start(); // We don't join it. } } // namespace test152 // test153: test for vanilla pthread_spinlock_t {{{1 namespace test153 { #ifndef NO_SPINLOCK // pthread_spinlock_t is tricky because pthread_spin_unlock and // pthread_spin_init are the same symbol. int GLOB = 0; pthread_spinlock_t lock; void Worker1() { pthread_spin_lock(&lock); GLOB++; pthread_spin_unlock(&lock); } void Worker2() { while (pthread_spin_trylock(&lock) != 0) { } GLOB++; pthread_spin_unlock(&lock); } void Run() { printf("test153: pthread_spin_t\n"); for (int i = 0; i < 3; i++) { // test few times on the same lock to check how init/destroy are handled. pthread_spin_init(&lock, 0); MyThreadArray t(Worker1, Worker1, Worker2, Worker2); t.Start(); t.Join(); pthread_spin_destroy(&lock); } } REGISTER_TEST(Run, 153) #endif // NO_SPINLOCK } // namespace test153 // test154: long test with lots of races. {{{1 namespace test154 { const int kNumIters = 100000; const int kArraySize = 100000; int *arr; void RaceyAccess(int *a) { (*a)++; } void RaceyLoop() { for (int j = 0; j < kArraySize; j++) { RaceyAccess(&arr[j]); } } void Worker() { for (int i = 0; i < kNumIters; i++) { usleep(1); printf("."); if ((i % 40) == 39) printf("\n"); RaceyLoop(); } } void Run() { arr = new int[kArraySize]; printf("test154: positive; long test with lots of races\n"); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); delete arr; } REGISTER_TEST2(Run, 154, EXCLUDE_FROM_ALL) } // namespace test154 namespace PositiveTests_RaceInMemcpy { // {{{1 char *GLOB; void DoMemcpy() { memcpy(GLOB, GLOB + 1, 1); } void DoMemmove() { memmove(GLOB, GLOB + 1, 1); } void Write0() { GLOB[0] = 'z'; } void DoStrlen() { CHECK(strlen(GLOB) == 3); } void DoStrcpy() { CHECK(strcpy(GLOB, "zzz") == GLOB); } void DoStrchr() { CHECK(strchr(GLOB, 'o') == (GLOB + 1)); } void DoMemchr() { CHECK(memchr(GLOB, 'o', 4) == (GLOB + 1)); } void DoStrrchr() { CHECK(strrchr(GLOB, '!') == NULL); } void DoStrcmp() { CHECK(strcmp(GLOB, "xxx") != 0); } void DoStrncmp() { CHECK(strncmp(GLOB, "xxx", 3) != 0); } void RunThreads(void (*f1)(void), void (*f2)(void), char *mem) { GLOB = mem; strcpy(GLOB, "foo"); ANNOTATE_EXPECT_RACE_FOR_TSAN(GLOB, "expected race"); MyThreadArray t(f1, f2); t.Start(); t.Join(); } TEST(PositiveTests, RaceInMemcpy) { static char mem[4]; RunThreads(DoMemcpy, DoMemcpy, mem); } TEST(PositiveTests, RaceInMemmove) { static char mem[4]; RunThreads(DoMemmove, DoMemmove, mem); } TEST(PositiveTests, RaceInStrlen1) { static char mem[4]; RunThreads(DoStrlen, Write0, mem); } TEST(PositiveTests, RaceInStrlen2) { static char mem[4]; RunThreads(Write0, DoStrlen, mem); } TEST(PositiveTests, RaceInStrcpy) { static char mem[4]; RunThreads(Write0, DoStrcpy, mem); } TEST(PositiveTests, RaceInStrchr) { static char mem[4]; RunThreads(Write0, DoStrchr, mem); } TEST(PositiveTests, RaceInMemchr) { static char mem[4]; RunThreads(Write0, DoMemchr, mem); } TEST(PositiveTests, RaceInStrrchr) { static char mem[4]; RunThreads(Write0, DoStrrchr, mem); } TEST(PositiveTests, RaceInStrcmp) { static char mem[4]; RunThreads(Write0, DoStrcmp, mem); } TEST(PositiveTests, RaceInStrncmp) { static char mem[4]; RunThreads(Write0, DoStrncmp, mem); } } // namespace // test157: TN. Test for stack traces (using ANNOTATE_NO_OP). {{{1 namespace test157 { void func3() { ANNOTATE_NO_OP((void*)__LINE__); } void func2() { func3(); } void func1() { func2(); } void Worker1() { func1(); ANNOTATE_NO_OP((void*)__LINE__); } void Worker2() { func2(); ANNOTATE_NO_OP((void*)__LINE__); } void Worker3() { func3(); ANNOTATE_NO_OP((void*)__LINE__); } void Run() { ANNOTATE_NO_OP((void*)__LINE__); printf("test157: negative\n"); ANNOTATE_NO_OP((void*)__LINE__); MyThreadArray t(Worker1, Worker2, Worker3); ANNOTATE_NO_OP((void*)__LINE__); t.Start(); ANNOTATE_NO_OP((void*)__LINE__); t.Join(); ANNOTATE_NO_OP((void*)__LINE__); } REGISTER_TEST(Run, 157); } // namespace test157 namespace MemoryTypes { // {{{1 void WriteChar(void *param) { *(char*)param = 1; usleep(500000); // let other threads hit this before exiting. } void RaceOnMemory(void (*callback)(void *), char *mem) { ANNOTATE_FLUSH_EXPECTED_RACES(); ANNOTATE_EXPECT_RACE(mem, "race"); MyThread t1(callback, mem), t2(callback, mem); t1.Start(); t2.Start(); t1.Join(); t2.Join(); CHECK(*mem == 1); ANNOTATE_FLUSH_EXPECTED_RACES(); } void RaceOnLocalStack(void (*callback)(void *)) { char object_on_stack = 0; // We may have had races on the main stack before -- forget about them. ANNOTATE_NEW_MEMORY(&object_on_stack, 1); RaceOnMemory(callback, &object_on_stack); } // create a new function to make reports different. void WriteChar1(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnMainThreadStack) { RaceOnLocalStack(WriteChar1); } void WriteChar2(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnNonMainThreadStack) { MyThread t((void (*)(void*))(RaceOnLocalStack), (void*)WriteChar2); t.Start(); t.Join(); } void WriteChar3(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnMallocedMemory) { char *mem = (char*)malloc(100); RaceOnMemory(WriteChar3, mem+42); free(mem); } void WriteChar4(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnCallocedMemory) { char *mem = (char*)calloc(30, 4); RaceOnMemory(WriteChar4, mem+42); free(mem); } void WriteChar5(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnMemoryFromNew) { char *mem = new char; RaceOnMemory(WriteChar5, mem); delete mem; } void WriteChar6(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnMemoryFromNewA) { char *mem = new char [100]; RaceOnMemory(WriteChar6, mem+42); delete [] mem; } void WriteChar7(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnMemoryFromNewNoThrow) { char *mem = new (std::nothrow) char; RaceOnMemory(WriteChar7, mem); operator delete (mem, std::nothrow); } void WriteChar8(void *param) { WriteChar(param); } TEST(MemoryTypes, RaceOnMemoryFromNewNoThrowA) { char *mem = new (std::nothrow) char [100]; RaceOnMemory(WriteChar8, mem+42); operator delete [] (mem, std::nothrow); } void AllocateAndDeallocateUsingVariousAllocs() { for (int i = 0; i < 10000; i++) { char *p; switch (i % 5) { case 0: p = (char*)malloc(10); free(p); break; case 1: p = new char; delete p; break; case 2: p = new char [10]; delete [] p; case 3: p = new (std::nothrow) char; operator delete (p, std::nothrow); break; case 4: p = new (std::nothrow) char[10]; operator delete [](p, std::nothrow); break; } } } TEST(MemoryTypes, VariousAllocs) { void (*f)(void) = AllocateAndDeallocateUsingVariousAllocs; MyThreadArray t(f, f, f, f); t.Start(); t.Join(); } void ReallocThread() { void *ptr = NULL; for (int i = 8; i < 128; i++) { int size = (1 << (i / 8)) - 1; ptr = realloc(ptr, size); ANNOTATE_TRACE_MEMORY(ptr); memset(ptr, 42, size); } free(ptr); } TEST(MemoryTypes, Reallocs) { MyThreadArray t(ReallocThread, ReallocThread, ReallocThread, ReallocThread); t.Start(); t.Join(); } } // namespace namespace StressTests_ThreadTree { //{{{1 int GLOB = 0; // Worker(N) will do 2^N increments of GLOB, each increment in a separate thread void Worker(int depth) { CHECK(depth >= 0); if (depth > 0) { MyThread t1((MyThread::worker_t)Worker, (void*)(intptr_t)(depth - 1)); MyThread t2((MyThread::worker_t)Worker, (void*)(intptr_t)(depth - 1)); t1.Start(); t2.Start(); t1.Join(); t2.Join(); } else { GLOB++; // Race here } } TEST(StressTests, ThreadTree3) { ANNOTATE_EXPECT_RACE(&GLOB, "StressTests.ThreadTree3 race"); ANNOTATE_TRACE_MEMORY(&GLOB); Worker(3); } TEST(StressTests, DISABLED_ThreadTree7) { ANNOTATE_EXPECT_RACE(&GLOB, "StressTests.ThreadTree7 race"); ANNOTATE_TRACE_MEMORY(&GLOB); Worker(7); } } // namespace test313 namespace StressTests_StartAndJoinManyThreads { //{{{1 void Worker() { } // Too slow. Need to run it separately. TEST(StressTests, StartAndJoinManyThreads) { ANNOTATE_FLUSH_STATE(); for (int i = 0; i < 1100; i++) { if ((i % 100) == 0) printf("."); MyThread t1(Worker); MyThread t2(Worker); t1.Start(); t2.Start(); t1.Join(); t2.Join(); } printf("\n"); } } // namespace namespace StressTests_ManyAccesses { // {{{1 #ifndef NO_BARRIER const int kArrayLen = 128; // Small size, so that everything fits into cache. const int kNumIter = 1024 * 1024 * 2; int thread_id; int *array = NULL; Barrier *barrier; void IncrementMe(int *x) { (*x)++; } void NoRaceWorker() { int id = AtomicIncrement(&thread_id, 1); barrier->Block(); int *ptr = array + id * (kArrayLen + 64); // pad to avoid false sharing. for (int it = 0; it < kNumIter; it++) { for (int i = 0; i < kArrayLen; i++) { IncrementMe(ptr + i); } } } void RunThreads(int n_threads, void (*f)(void)) { thread_id = -1; barrier = new Barrier(n_threads); // Allocate a lot so that operator new uses mmap, unless forced to use brk. array = new int[(kArrayLen + 64) * n_threads + (1 << 22)]; printf("ptr = %p\n", array); MyThread **t = new MyThread*[n_threads]; for (int i = 0; i < n_threads; i++) t[i] = new MyThread(NoRaceWorker); for (int i = 0; i < n_threads; i++) t[i]->Start(); for (int i = 0; i < n_threads; i++) t[i]->Join(); for (int i = 0; i < n_threads; i++) delete t[i]; delete [] t; delete [] array; } // Just one thread. TEST(StressTests, DISABLED_ManyAccessesNoRace1Test) { RunThreads(1, NoRaceWorker); } // 2 threads accessing different memory. TEST(StressTests, DISABLED_ManyAccessesNoRace2Test) { RunThreads(2, NoRaceWorker); } // 4 threads accessing different memory. TEST(StressTests, DISABLED_ManyAccessesNoRace4Test) { RunThreads(4, NoRaceWorker); } // 8 threads accessing different memory. TEST(StressTests, DISABLED_ManyAccessesNoRace8Test) { RunThreads(8, NoRaceWorker); } // 16 threads accessing different memory. TEST(StressTests, DISABLED_ManyAccessesNoRace16Test) { RunThreads(16, NoRaceWorker); } #endif // NO_BARRIER } // namespace namespace NegativeTests_EnableRaceDetectionTest { // {{{1 const size_t size = 10000; const size_t n_iter = 1000; int GLOB[size]; void Worker() { for (size_t i = 0; i < n_iter; i++) { for (size_t j = 0; j < size; j++) { GLOB[j]++; } } } TEST(NegativeTests, EnableRaceDetectionTest) { ANNOTATE_ENABLE_RACE_DETECTION(0); MyThreadArray t(Worker, Worker, Worker, Worker); t.Start(); t.Join(); ANNOTATE_ENABLE_RACE_DETECTION(1); } } namespace PositiveTests_MopVsFree { // {{{1 int *p; const int kIdx = 77; StealthNotification n; void Read() { CHECK(p[kIdx] == 777); n.signal(); } void Free() { n.wait(); free(p); } TEST(PositiveTests, ReadVsFree) { p = (int*)malloc(100 * sizeof(int)); p[kIdx] = 777; ANNOTATE_EXPECT_RACE(&p[kIdx], "race: read vs free"); MyThreadArray t(Read, Free); t.Start(); t.Join(); } } // namespace namespace ManySmallObjectsTest { // {{{1 void Worker() { const int N = 1 << 21; struct T { int a, b, c, d; T() : a(1), b(2), c(3), d(4) { } }; T **a = new T*[N]; for (int i = 0; i < N; i++) { if ((i % (N / 16)) == 0) printf("+"); a[i] = new T; CHECK(a[i]->a == 1); } printf("\n"); for (int i = 0; i < N; i++) { if ((i % (N / 16)) == 0) printf("-"); delete a[i]; } printf("\n"); delete [] a; } TEST(StressTests, DISABLED_ManySmallObjectsOneThreadTest) { Worker(); } TEST(StressTests, DISABLED_ManySmallObjectsTwoThreadsTest) { MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } } // namespace namespace RepPrefixedInstructionsTest { //{{{1 #if defined (__GNUC__) && (defined(ARCH_x86) || defined(ARCH_amd64)) void rep_clr_1(uint8_t *s, long n) { intptr_t d0, d1; __asm__ __volatile__ ( "rep ; stosb" : "=&c" (d0), "=&D" (d1) : "a" (0), "1" (s), "0" (n) : "memory"); } uint8_t mem1[1000]; void Clr1_0_10() { rep_clr_1(mem1+ 0, 10); } void Clr1_10_10() { rep_clr_1(mem1+10, 10); } void Clr1_10_0() { rep_clr_1(mem1+10, 0); } void Clr1_25_1() { rep_clr_1(mem1+25, 1); } void Clr1_25_0() { rep_clr_1(mem1+25, 0); } void Clr1_50_30() { rep_clr_1(mem1+50, 30); } void Clr1_60_0() { rep_clr_1(mem1+60, 0); } void Clr1_60_1() { rep_clr_1(mem1+60, 1); } void Clr1_70_10() { rep_clr_1(mem1+70, 10); } void RunThreads(void (*f1)(void), void (*f2)(void)) { MyThreadArray t(f1, f2); t.Start(); t.Join(); } TEST(NegativeTests, RepSanityTest) { memset(mem1, 0xff, sizeof(mem1)); rep_clr_1(mem1, 0); CHECK(mem1[0] != 0); rep_clr_1(mem1, 1); CHECK(mem1[0] == 0); CHECK(mem1[1] != 0); rep_clr_1(mem1, 5); CHECK(mem1[4] == 0); CHECK(mem1[5] != 0); } TEST(NegativeTests, RepNegativeTest) { memset(mem1, 0xff, sizeof(mem1)); RunThreads(Clr1_0_10, Clr1_10_10); RunThreads(Clr1_10_0, Clr1_10_10); RunThreads(Clr1_25_0, Clr1_25_1); RunThreads(Clr1_50_30, Clr1_60_0); } TEST(PositiveTests, RepPositive1Test) { memset(mem1, 0xff, sizeof(mem1)); ANNOTATE_EXPECT_RACE(mem1+10, "real race"); for (int i = 11; i < 20; i++) ANNOTATE_BENIGN_RACE(mem1 + i, ""); RunThreads(Clr1_10_10, Clr1_10_10); } TEST(PositiveTests, RepPositive2Test) { memset(mem1, 0xff, sizeof(mem1)); ANNOTATE_EXPECT_RACE(mem1+25, "real race"); RunThreads(Clr1_25_1, Clr1_25_1); } TEST(PositiveTests, RepPositive3Test) { memset(mem1, 0xff, sizeof(mem1)); ANNOTATE_EXPECT_RACE(mem1+60, "real race"); RunThreads(Clr1_50_30, Clr1_60_1); } TEST(PositiveTests, RepPositive4Test) { memset(mem1, 0xff, sizeof(mem1)); ANNOTATE_EXPECT_RACE(mem1+70, "real race"); for (int i = 71; i < 80; i++) ANNOTATE_BENIGN_RACE(mem1 + i, ""); RunThreads(Clr1_50_30, Clr1_70_10); } #endif // __GNUC__ ... } // namespace // test400: Demo of a simple false positive. {{{1 namespace test400 { static Mutex mu; static vector<int> *vec; // GUARDED_BY(mu); void InitAllBeforeStartingThreads() { vec = new vector<int>; vec->push_back(1); vec->push_back(2); } void Thread1() { MutexLock lock(&mu); vec->pop_back(); } void Thread2() { MutexLock lock(&mu); vec->pop_back(); } //---- Sub-optimal code --------- size_t NumberOfElementsLeft() { MutexLock lock(&mu); return vec->size(); } void WaitForAllThreadsToFinish_InefficientAndTsanUnfriendly() { while(NumberOfElementsLeft()) { ; // sleep or print or do nothing. } // It is now safe to access vec w/o lock. // But a hybrid detector (like ThreadSanitizer) can't see it. // Solutions: // 1. Use pure happens-before detector (e.g. "tsan --pure-happens-before") // 2. Call ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&mu) // in InitAllBeforeStartingThreads() // 3. (preferred) Use WaitForAllThreadsToFinish_Good() (see below). CHECK(vec->empty()); delete vec; } //----- Better code ----------- bool NoElementsLeft(vector<int> *v) { return v->empty(); } void WaitForAllThreadsToFinish_Good() { mu.LockWhen(Condition(NoElementsLeft, vec)); mu.Unlock(); // It is now safe to access vec w/o lock. CHECK(vec->empty()); delete vec; } void Run() { MyThreadArray t(Thread1, Thread2); InitAllBeforeStartingThreads(); t.Start(); WaitForAllThreadsToFinish_InefficientAndTsanUnfriendly(); // WaitForAllThreadsToFinish_Good(); t.Join(); } REGISTER_TEST2(Run, 400, RACE_DEMO) } // namespace test400 // test401: Demo of false positive caused by reference counting. {{{1 namespace test401 { // A simplified example of reference counting. // DecRef() does ref count increment in a way unfriendly to race detectors. // DecRefAnnotated() does the same in a friendly way. static vector<int> *vec; static int ref_count; void InitAllBeforeStartingThreads(int number_of_threads) { vec = new vector<int>; vec->push_back(1); ref_count = number_of_threads; } // Correct, but unfriendly to race detectors. int DecRef() { return AtomicIncrement(&ref_count, -1); } // Correct and friendly to race detectors. int DecRefAnnotated() { ANNOTATE_HAPPENS_BEFORE(&ref_count); int res = AtomicIncrement(&ref_count, -1); if (res == 0) { ANNOTATE_HAPPENS_AFTER(&ref_count); } return res; } void ThreadWorker() { CHECK(ref_count > 0); CHECK(vec->size() == 1); if (DecRef() == 0) { // Use DecRefAnnotated() instead! // No one uses vec now ==> delete it. delete vec; // A false race may be reported here. vec = NULL; } } void Run() { MyThreadArray t(ThreadWorker, ThreadWorker, ThreadWorker); InitAllBeforeStartingThreads(3 /*number of threads*/); t.Start(); t.Join(); CHECK(vec == 0); } REGISTER_TEST2(Run, 401, RACE_DEMO) } // namespace test401 // test502: produce lots of segments without cross-thread relations {{{1 namespace test502 { /* * This test produces ~1Gb of memory usage when run with the following options: * * --tool=helgrind * --trace-after-race=0 * --num-callers=2 * --more-context=no */ Mutex MU; int GLOB = 0; void TP() { for (int i = 0; i < 750000; i++) { MU.Lock(); GLOB++; MU.Unlock(); } } void Run() { MyThreadArray t(TP, TP); printf("test502: produce lots of segments without cross-thread relations\n"); t.Start(); t.Join(); } REGISTER_TEST2(Run, 502, MEMORY_USAGE | PRINT_STATS | EXCLUDE_FROM_ALL | PERFORMANCE) } // namespace test502 // test503: produce lots of segments with simple HB-relations {{{1 // HB cache-miss rate is ~55% namespace test503 { // |- | | | | | // | \| | | | | // | |- | | | | // | | \| | | | // | | |- | | | // | | | \| | | // | | | |- | | // | | | | \| | // | | | | |- | // | | | | | \| // | | | | | |---- //->| | | | | | // |- | | | | | // | \| | | | | // ... const int N_threads = 32; const int ARRAY_SIZE = 128; int GLOB[ARRAY_SIZE]; ProducerConsumerQueue *Q[N_threads]; int GLOB_limit = 100000; int count = -1; void Worker(){ int myId = AtomicIncrement(&count, 1); ProducerConsumerQueue &myQ = *Q[myId], &nextQ = *Q[(myId+1) % N_threads]; // this code produces a new SS with each new segment while (myQ.Get() != NULL) { for (int i = 0; i < ARRAY_SIZE; i++) GLOB[i]++; if (myId == 0 && GLOB[0] > GLOB_limit) { // Stop all threads for (int i = 0; i < N_threads; i++) Q[i]->Put(NULL); } else nextQ.Put(GLOB); } } void Run() { printf("test503: produce lots of segments with simple HB-relations\n"); for (int i = 0; i < N_threads; i++) Q[i] = new ProducerConsumerQueue(1); Q[0]->Put(GLOB); { ThreadPool pool(N_threads); pool.StartWorkers(); for (int i = 0; i < N_threads; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. for (int i = 0; i < N_threads; i++) delete Q[i]; } REGISTER_TEST2(Run, 503, MEMORY_USAGE | PRINT_STATS | PERFORMANCE | EXCLUDE_FROM_ALL) } // namespace test503 // test504: force massive cache fetch-wback (50% misses, mostly CacheLineZ) {{{1 namespace test504 { #if !defined(WINE) and !defined(ANDROID) // Valgrind+wine hate large static objects const int N_THREADS = 2, HG_CACHELINE_COUNT = 1 << 16, HG_CACHELINE_SIZE = 1 << 6, HG_CACHE_SIZE = HG_CACHELINE_COUNT * HG_CACHELINE_SIZE; // int gives us ~4x speed of the byte test // 4x array size gives us // total multiplier of 16x over the cachesize // so we can neglect the cached-at-the-end memory const int ARRAY_SIZE = 4 * HG_CACHE_SIZE, ITERATIONS = 30; int array[ARRAY_SIZE]; int count = 0; Mutex count_mu; void Worker() { count_mu.Lock(); int myId = ++count; count_mu.Unlock(); // all threads write to different memory locations, // so no synchronization mechanisms are needed int lower_bound = ARRAY_SIZE * (myId-1) / N_THREADS, upper_bound = ARRAY_SIZE * ( myId ) / N_THREADS; for (int j = 0; j < ITERATIONS; j++) for (int i = lower_bound; i < upper_bound; i += HG_CACHELINE_SIZE / sizeof(array[0])) { array[i] = i; // each array-write generates a cache miss } } void Run() { printf("test504: force massive CacheLineZ fetch-wback\n"); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 504, PERFORMANCE | PRINT_STATS | EXCLUDE_FROM_ALL) #endif // WINE } // namespace test504 // test505: force massive cache fetch-wback (60% misses) {{{1 // modification of test504 - more threads, byte accesses and lots of mutexes // so it produces lots of CacheLineF misses (30-50% of CacheLineZ misses) namespace test505 { #if !defined(WINE) and !defined(ANDROID) // Valgrind+wine hate large static objects const int N_THREADS = 2, HG_CACHELINE_COUNT = 1 << 16, HG_CACHELINE_SIZE = 1 << 6, HG_CACHE_SIZE = HG_CACHELINE_COUNT * HG_CACHELINE_SIZE; const int ARRAY_SIZE = 4 * HG_CACHE_SIZE, ITERATIONS = 3; int64_t array[ARRAY_SIZE]; int count = 0; Mutex count_mu; void Worker() { const int N_MUTEXES = 5; Mutex mu[N_MUTEXES]; count_mu.Lock(); int myId = ++count; count_mu.Unlock(); // all threads write to different memory locations, // so no synchronization mechanisms are needed int lower_bound = ARRAY_SIZE * (myId-1) / N_THREADS, upper_bound = ARRAY_SIZE * ( myId ) / N_THREADS; for (int j = 0; j < ITERATIONS; j++) for (int mutex_id = 0; mutex_id < N_MUTEXES; mutex_id++) { Mutex *m = & mu[mutex_id]; m->Lock(); for (int i = lower_bound + mutex_id, cnt = 0; i < upper_bound; i += HG_CACHELINE_SIZE / sizeof(array[0]), cnt++) { array[i] = i; // each array-write generates a cache miss } m->Unlock(); } } void Run() { printf("test505: force massive CacheLineF fetch-wback\n"); MyThreadArray t(Worker, Worker); t.Start(); t.Join(); } REGISTER_TEST2(Run, 505, PERFORMANCE | PRINT_STATS | EXCLUDE_FROM_ALL) #endif // WINE } // namespace test505 // test506: massive HB's using Barriers {{{1 // HB cache miss is ~40% // segments consume 10x more memory than SSs // modification of test39 namespace test506 { #ifndef NO_BARRIER // Same as test17 but uses Barrier class (pthread_barrier_t). int GLOB = 0; const int N_threads = 64, ITERATIONS = 1000; Barrier *barrier[ITERATIONS]; Mutex MU; void Worker() { for (int i = 0; i < ITERATIONS; i++) { MU.Lock(); GLOB++; MU.Unlock(); barrier[i]->Block(); } } void Run() { printf("test506: massive HB's using Barriers\n"); for (int i = 0; i < ITERATIONS; i++) { barrier[i] = new Barrier(N_threads); } { ThreadPool pool(N_threads); pool.StartWorkers(); for (int i = 0; i < N_threads; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. CHECK(GLOB == N_threads * ITERATIONS); for (int i = 0; i < ITERATIONS; i++) { delete barrier[i]; } } REGISTER_TEST2(Run, 506, PERFORMANCE | PRINT_STATS | EXCLUDE_FROM_ALL); #endif // NO_BARRIER } // namespace test506 // test507: vgHelgrind_initIterAtFM/stackClear benchmark {{{1 // vgHelgrind_initIterAtFM/stackClear consume ~8.5%/5.5% CPU namespace test507 { const int N_THREADS = 1, BUFFER_SIZE = 1, ITERATIONS = 1 << 20; void Foo() { struct T { char temp; T() { ANNOTATE_RWLOCK_CREATE(&temp); } ~T() { ANNOTATE_RWLOCK_DESTROY(&temp); } } s[BUFFER_SIZE]; s->temp = '\0'; } void Worker() { for (int j = 0; j < ITERATIONS; j++) { Foo(); } } void Run() { printf("test507: vgHelgrind_initIterAtFM/stackClear benchmark\n"); { ThreadPool pool(N_THREADS); pool.StartWorkers(); for (int i = 0; i < N_THREADS; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. } REGISTER_TEST2(Run, 507, EXCLUDE_FROM_ALL); } // namespace test507 // test508: cmp_WordVecs_for_FM benchmark {{{1 // 50+% of CPU consumption by cmp_WordVecs_for_FM namespace test508 { const int N_THREADS = 1, BUFFER_SIZE = 1 << 10, ITERATIONS = 1 << 9; void Foo() { struct T { char temp; T() { ANNOTATE_RWLOCK_CREATE(&temp); } ~T() { ANNOTATE_RWLOCK_DESTROY(&temp); } } s[BUFFER_SIZE]; s->temp = '\0'; } void Worker() { for (int j = 0; j < ITERATIONS; j++) { Foo(); } } void Run() { printf("test508: cmp_WordVecs_for_FM benchmark\n"); { ThreadPool pool(N_THREADS); pool.StartWorkers(); for (int i = 0; i < N_THREADS; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. } REGISTER_TEST2(Run, 508, EXCLUDE_FROM_ALL); } // namespace test508 // test509: avl_find_node benchmark {{{1 // 10+% of CPU consumption by avl_find_node namespace test509 { const int N_THREADS = 16, ITERATIONS = 1 << 8; void Worker() { std::vector<Mutex*> mu_list; for (int i = 0; i < ITERATIONS; i++) { Mutex * mu = new Mutex(); mu_list.push_back(mu); mu->Lock(); } for (int i = ITERATIONS - 1; i >= 0; i--) { Mutex * mu = mu_list[i]; mu->Unlock(); delete mu; } } void Run() { printf("test509: avl_find_node benchmark\n"); { ThreadPool pool(N_THREADS); pool.StartWorkers(); for (int i = 0; i < N_THREADS; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. } REGISTER_TEST2(Run, 509, EXCLUDE_FROM_ALL); } // namespace test509 // test510: SS-recycle test {{{1 // this tests shows the case where only ~1% of SS are recycled namespace test510 { const int N_THREADS = 16, ITERATIONS = 1 << 10; int GLOB = 0; void Worker() { usleep(100000); for (int i = 0; i < ITERATIONS; i++) { ANNOTATE_CONDVAR_SIGNAL((void*)0xDeadBeef); GLOB++; usleep(10); } } void Run() { //ANNOTATE_BENIGN_RACE(&GLOB, "Test"); printf("test510: SS-recycle test\n"); { ThreadPool pool(N_THREADS); pool.StartWorkers(); for (int i = 0; i < N_THREADS; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. } REGISTER_TEST2(Run, 510, MEMORY_USAGE | PRINT_STATS | EXCLUDE_FROM_ALL); } // namespace test510 // test511: Segment refcounting test ('1' refcounting) {{{1 namespace test511 { int GLOB = 0; void Run () { for (int i = 0; i < 300; i++) { ANNOTATE_CONDVAR_SIGNAL(&GLOB); usleep(1000); GLOB++; ANNOTATE_CONDVAR_WAIT(&GLOB); } } REGISTER_TEST2(Run, 511, MEMORY_USAGE | PRINT_STATS | EXCLUDE_FROM_ALL); } // namespace test511 // test512: Access the same memory with big intersecting LockSets {{{1 namespace test512 { const int N_MUTEXES = 128; const int DATA_SIZE = 1024; Mutex mu[N_MUTEXES]; int GLOB[DATA_SIZE]; void TP() { Mutex thread_mu; thread_mu.Lock(); for (int j = 0; j < 10; j++) { for (int m = 0; m < N_MUTEXES; m++) mu[m].Lock(); for (int i = 0; i < 3000; i++) { ANNOTATE_CONDVAR_SIGNAL(&GLOB); // Force new segment for (int k = 0; k < DATA_SIZE; k++) GLOB[k] = 42; } for (int m = 0; m < N_MUTEXES; m++) mu[m].Unlock(); } thread_mu.Unlock(); } void Run() { MyThreadArray t(TP, TP); printf("test512: Access the same memory with big intersecting LockSets.\n"); t.Start(); t.Join(); } REGISTER_TEST2(Run, 512, EXCLUDE_FROM_ALL | PERFORMANCE) } // namespace test512 // test513: --fast-mode benchmark {{{1 namespace test513 { const int N_THREADS = 2, HG_CACHELINE_SIZE = 1 << 6, ARRAY_SIZE = HG_CACHELINE_SIZE * 512, MUTEX_ID_BITS = 8, MUTEX_ID_MASK = (1 << MUTEX_ID_BITS) - 1; // Each thread has its own cacheline and tackles with it intensively const int ITERATIONS = 1024; int array[N_THREADS][ARRAY_SIZE]; int count = 0; Mutex count_mu; Mutex mutex_arr[N_THREADS][MUTEX_ID_BITS]; void Worker() { count_mu.Lock(); int myId = count++; count_mu.Unlock(); // all threads write to different memory locations for (int j = 0; j < ITERATIONS; j++) { int mutex_mask = j & MUTEX_ID_BITS; for (int m = 0; m < MUTEX_ID_BITS; m++) if (mutex_mask & (1 << m)) mutex_arr[myId][m].Lock(); for (int i = 0; i < ARRAY_SIZE; i++) { array[myId][i] = i; } for (int m = 0; m < MUTEX_ID_BITS; m++) if (mutex_mask & (1 << m)) mutex_arr[myId][m].Unlock(); } } void Run() { printf("test513: --fast-mode benchmark\n"); { ThreadPool pool(N_THREADS); pool.StartWorkers(); for (int i = 0; i < N_THREADS; i++) { pool.Add(NewCallback(Worker)); } } // all folks are joined here. } REGISTER_TEST2(Run, 513, PERFORMANCE | PRINT_STATS | EXCLUDE_FROM_ALL) } // namespace test513 namespace ThreadChainTest { // {{{1 Reg test for thread creation void Thread1() { } void Thread2() { MyThread t(Thread1); t.Start(); t.Join(); } void Thread3() { MyThread t(Thread2); t.Start(); t.Join(); } void Thread4() { MyThread t(Thread3); t.Start(); t.Join(); } TEST(RegTests, ThreadChainTest) { Thread4(); } } // namespace #ifndef ANDROID // GTest does not support ASSERT_DEBUG_DEATH. namespace SimpleDeathTest { // {{{1 Make sure that the tool handles death tests correctly #ifdef WIN32 TEST(DeathTests, DISABLED_SimpleDeathTest) { #else TEST(DeathTests, SimpleDeathTest) { #endif ASSERT_DEBUG_DEATH(CHECK(false), ""); } } // namespace #endif namespace IgnoreTests { // {{{1 Test how the tool works with indirect calls to fun_r functions int GLOB = 0; void (*f)() = NULL; void NotIgnoredRacey() { GLOB++; } void FunRFunction() { NotIgnoredRacey(); usleep(1); // avoid tail call elimination } void DoDirectCall() { FunRFunction(); usleep(1); // avoid tail call elimination } void DoIndirectCall() { (*f)(); usleep(1); // avoid tail call elimination } TEST(IgnoreTests, DirectCallToFunR) { MyThreadArray mta(DoDirectCall, DoDirectCall); mta.Start(); mta.Join(); } TEST(IgnoreTests, IndirectCallToFunR) { f = FunRFunction; MyThreadArray mta(DoIndirectCall, DoIndirectCall); mta.Start(); mta.Join(); } } // namespace namespace MutexNotPhbTests { int GLOB = 0; Mutex mu; StealthNotification n; void SignalThread() { GLOB = 1; mu.Lock(); mu.Unlock(); n.signal(); } void WaitThread() { n.wait(); mu.Lock(); mu.Unlock(); GLOB = 2; } TEST(MutexNotPhbTests, MutexNotPhbTest) { ANNOTATE_NOT_HAPPENS_BEFORE_MUTEX(&mu); ANNOTATE_EXPECT_RACE(&GLOB, "MutexNotPhbTest. TP."); MyThreadArray mta(SignalThread, WaitThread); mta.Start(); mta.Join(); } } // namespace namespace RaceVerifierTests_Simple { int GLOB = 0; void Worker1() { GLOB = 1; } void Worker2() { GLOB = 2; } TEST(RaceVerifierTests, Simple) { ANNOTATE_EXPECT_RACE(&GLOB, "SimpleRace."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace namespace RaceVerifierTests_Unverifiable { StealthNotification n; int GLOB = 0; void Worker1() { if (!GLOB) GLOB = 1; n.signal(); } void Worker2() { n.wait(); GLOB = 2; } TEST(RaceVerifierTests, Unverifiable) { ANNOTATE_EXPECT_RACE(&GLOB, "SimpleRace. UNVERIFIABLE."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace namespace RaceVerifierTests_ManyRacesInOneTrace { StealthNotification n; int array[2]; void Worker1() { array[0] = 1; array[1] = 2; } void Worker2() { array[1] = array[0]; } TEST(RaceVerifierTests, ManyRacesInOneTrace) { ANNOTATE_EXPECT_RACE(array + 0, "RaceVerifierTests_ManyRacesInOneTrace: race 1."); ANNOTATE_EXPECT_RACE(array + 1, "RaceVerifierTests_ManyRacesInOneTrace: race 2."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace namespace PrintfTests_Simple { void Worker1() { // This one is a printf() => vfprintf() fprintf(stderr, "Hello from a thread: %d\n", 2); // This one is a puts() fprintf(stderr, "Hello from a thread\n"); fprintf(stdout, "Hello from a thread: %d\n", 2); fprintf(stdout, "Hello from a thread\n"); } TEST(PrintfTests, DISABLED_Simple) { MyThreadArray t(Worker1, Worker1); t.Start(); t.Join(); } } // namespace namespace PrintfTests_RaceOnFwriteArgument { char s[] = "abracadabra\n"; void Worker1() { fwrite(s, 1, sizeof(s) - 1, stdout); } void Worker2() { s[3] = 'z'; } TEST(PrintfTests, RaceOnFwriteArgument) { ANNOTATE_TRACE_MEMORY(s + 3); ANNOTATE_EXPECT_RACE(s + 3, "PrintfTests_RaceOnFwriteArgument."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace namespace PrintfTests_RaceOnPutsArgument { char s[] = "abracadabra"; void Worker1() { puts(s); } void Worker2() { s[3] = 'z'; } TEST(PrintfTests, RaceOnPutsArgument) { ANNOTATE_TRACE_MEMORY(s + 3); ANNOTATE_EXPECT_RACE(s + 3, "PrintfTests_RaceOnPutsArgument."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace namespace PrintfTests_RaceOnPrintfArgument { volatile char s[] = "abracadabra"; volatile char s2[] = "abracadabra"; void Worker1() { fprintf(stdout, "printing a string: %s\n", s); fprintf(stderr, "printing a string: %s\n", s2); } void Worker2() { s[3] = 'z'; s2[3] = 'z'; } TEST(PrintfTests, DISABLED_RaceOnPrintfArgument) { ANNOTATE_EXPECT_RACE(s + 3, "PrintfTests_RaceOnPrintfArgument (stdout)."); ANNOTATE_EXPECT_RACE(s2 + 3, "PrintfTests_RaceOnPrintfArgument (stderr)."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace // Apparently, %n is not supported in windows #ifndef WIN32 namespace PrintfTests_RaceOnOutputArgument { volatile char s[] = "abracadabra"; volatile int a = 0; void Worker1() { fprintf(stdout, "printing a string: %s%n\n", s, &a); } void Worker2() { fprintf(stdout, "the other thread have already printed %d characters\n", a); } TEST(PrintfTests, DISABLED_RaceOnOutputArgument) { ANNOTATE_EXPECT_RACE(&a, "PrintfTests_RaceOnOutputArgument:int."); MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace #endif namespace PrintfTests_Fflush { volatile char s[] = "abracadabra"; volatile int a = 0; void Worker1() { fflush(NULL); } void Worker2() { fflush(NULL); } TEST(PrintfTests, DISABLED_Fflush) { MyThreadArray t(Worker1, Worker2); t.Start(); t.Join(); } } // namespace namespace BenignRaceTest { // {{{1 const int kArrayLen = 97; char X[kArrayLen]; char *P; int counter; void Worker() { (*P)++; ANNOTATE_HAPPENS_BEFORE(P); AtomicIncrement(&counter, -1); } TEST(NegativeTests, BenignRaceTest) { ThreadPool pool1(1); ThreadPool pool2(1); ThreadPool pool3(1); pool1.StartWorkers(); pool2.StartWorkers(); pool3.StartWorkers(); ANNOTATE_BENIGN_RACE(&counter, ""); const int kNIter = 1000; for (int i = 0; i < kNIter; i++) { counter = 3; long len = (i % (kArrayLen / 3)) + 1; long beg = i % (kArrayLen - len); long end = beg + len; CHECK(beg < kArrayLen); CHECK(end <= kArrayLen); bool is_expected = i % 2; long pos = i % len; P = X + beg + pos; CHECK(P < X + kArrayLen); // printf("[%d] b=%ld e=%ld p=%ld is_expected=%d\n", // i, beg, end, pos, is_expected); ANNOTATE_NEW_MEMORY(X, kArrayLen); if (is_expected) { ANNOTATE_EXPECT_RACE(P, "expected race in BenignRaceTest"); } else { ANNOTATE_BENIGN_RACE_SIZED(X + beg, len, ""); } if ((i % (kNIter / 10)) == 0) { ANNOTATE_FLUSH_STATE(); } pool1.Add(NewCallback(Worker)); pool2.Add(NewCallback(Worker)); pool3.Add(NewCallback(Worker)); while(AtomicIncrement(&counter, 0) != 0) usleep(1000); ANNOTATE_HAPPENS_AFTER(P); ANNOTATE_FLUSH_EXPECTED_RACES(); } } } namespace StressTests_FlushStateTest { // {{{1 // Stress test for FlushState which happens in parallel with some work. const int N = 1000; int array[N]; void Flusher() { for (int i = 0; i < 10; i++) { usleep(1000); ANNOTATE_FLUSH_STATE(); } } void Write1(int i) { array[i]++; } void Write2(int i) { array[i]--; } int Read1(int i) { volatile int z = array[i]; return z; } int Read2(int i) { volatile int z = array[i]; return z; } void Worker() { for (int iter = 0; iter < 10; iter++) { usleep(1000); for (int i = 0; i < N; i++) { Write1(i); Write2(i); Read1(i); Read2(i); } } } TEST(StressTests, FlushStateTest) { MyThreadArray t(Flusher, Worker, Worker, Worker); t.Start(); t.Join(); } } // namespace // End {{{1 // vim:shiftwidth=2:softtabstop=2:expandtab:foldmethod=marker