/* ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef ANDROID_AUDIO_FLINGER_H #define ANDROID_AUDIO_FLINGER_H #include <stdint.h> #include <sys/types.h> #include <limits.h> #include <common_time/cc_helper.h> #include <media/IAudioFlinger.h> #include <media/IAudioFlingerClient.h> #include <media/IAudioTrack.h> #include <media/IAudioRecord.h> #include <media/AudioSystem.h> #include <media/AudioTrack.h> #include <utils/Atomic.h> #include <utils/Errors.h> #include <utils/threads.h> #include <utils/SortedVector.h> #include <utils/TypeHelpers.h> #include <utils/Vector.h> #include <binder/BinderService.h> #include <binder/MemoryDealer.h> #include <system/audio.h> #include <hardware/audio.h> #include <hardware/audio_policy.h> #include "AudioBufferProvider.h" #include "ExtendedAudioBufferProvider.h" #include "FastMixer.h" #include "NBAIO.h" #include "AudioWatchdog.h" #include <powermanager/IPowerManager.h> namespace android { class audio_track_cblk_t; class effect_param_cblk_t; class AudioMixer; class AudioBuffer; class AudioResampler; class FastMixer; // ---------------------------------------------------------------------------- // AudioFlinger has a hard-coded upper limit of 2 channels for capture and playback. // There is support for > 2 channel tracks down-mixed to 2 channel output via a down-mix effect. // Adding full support for > 2 channel capture or playback would require more than simply changing // this #define. There is an independent hard-coded upper limit in AudioMixer; // removing that AudioMixer limit would be necessary but insufficient to support > 2 channels. // The macro FCC_2 highlights some (but not all) places where there is are 2-channel assumptions. // Search also for "2", "left", "right", "[0]", "[1]", ">> 16", "<< 16", etc. #define FCC_2 2 // FCC_2 = Fixed Channel Count 2 static const nsecs_t kDefaultStandbyTimeInNsecs = seconds(3); class AudioFlinger : public BinderService<AudioFlinger>, public BnAudioFlinger { friend class BinderService<AudioFlinger>; // for AudioFlinger() public: static const char* getServiceName() { return "media.audio_flinger"; } virtual status_t dump(int fd, const Vector<String16>& args); // IAudioFlinger interface, in binder opcode order virtual sp<IAudioTrack> createTrack( pid_t pid, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, IAudioFlinger::track_flags_t flags, const sp<IMemory>& sharedBuffer, audio_io_handle_t output, pid_t tid, int *sessionId, status_t *status); virtual sp<IAudioRecord> openRecord( pid_t pid, audio_io_handle_t input, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, IAudioFlinger::track_flags_t flags, int *sessionId, status_t *status); virtual uint32_t sampleRate(audio_io_handle_t output) const; virtual int channelCount(audio_io_handle_t output) const; virtual audio_format_t format(audio_io_handle_t output) const; virtual size_t frameCount(audio_io_handle_t output) const; virtual uint32_t latency(audio_io_handle_t output) const; virtual status_t setMasterVolume(float value); virtual status_t setMasterMute(bool muted); virtual float masterVolume() const; virtual float masterVolumeSW() const; virtual bool masterMute() const; virtual status_t setStreamVolume(audio_stream_type_t stream, float value, audio_io_handle_t output); virtual status_t setStreamMute(audio_stream_type_t stream, bool muted); virtual float streamVolume(audio_stream_type_t stream, audio_io_handle_t output) const; virtual bool streamMute(audio_stream_type_t stream) const; virtual status_t setMode(audio_mode_t mode); virtual status_t setMicMute(bool state); virtual bool getMicMute() const; virtual status_t setParameters(audio_io_handle_t ioHandle, const String8& keyValuePairs); virtual String8 getParameters(audio_io_handle_t ioHandle, const String8& keys) const; virtual void registerClient(const sp<IAudioFlingerClient>& client); virtual size_t getInputBufferSize(uint32_t sampleRate, audio_format_t format, int channelCount) const; virtual audio_io_handle_t openOutput(audio_module_handle_t module, audio_devices_t *pDevices, uint32_t *pSamplingRate, audio_format_t *pFormat, audio_channel_mask_t *pChannelMask, uint32_t *pLatencyMs, audio_output_flags_t flags); virtual audio_io_handle_t openDuplicateOutput(audio_io_handle_t output1, audio_io_handle_t output2); virtual status_t closeOutput(audio_io_handle_t output); virtual status_t suspendOutput(audio_io_handle_t output); virtual status_t restoreOutput(audio_io_handle_t output); virtual audio_io_handle_t openInput(audio_module_handle_t module, audio_devices_t *pDevices, uint32_t *pSamplingRate, audio_format_t *pFormat, audio_channel_mask_t *pChannelMask); virtual status_t closeInput(audio_io_handle_t input); virtual status_t setStreamOutput(audio_stream_type_t stream, audio_io_handle_t output); virtual status_t setVoiceVolume(float volume); virtual status_t getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames, audio_io_handle_t output) const; virtual unsigned int getInputFramesLost(audio_io_handle_t ioHandle) const; virtual int newAudioSessionId(); virtual void acquireAudioSessionId(int audioSession); virtual void releaseAudioSessionId(int audioSession); virtual status_t queryNumberEffects(uint32_t *numEffects) const; virtual status_t queryEffect(uint32_t index, effect_descriptor_t *descriptor) const; virtual status_t getEffectDescriptor(const effect_uuid_t *pUuid, effect_descriptor_t *descriptor) const; virtual sp<IEffect> createEffect(pid_t pid, effect_descriptor_t *pDesc, const sp<IEffectClient>& effectClient, int32_t priority, audio_io_handle_t io, int sessionId, status_t *status, int *id, int *enabled); virtual status_t moveEffects(int sessionId, audio_io_handle_t srcOutput, audio_io_handle_t dstOutput); virtual audio_module_handle_t loadHwModule(const char *name); virtual status_t onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags); // end of IAudioFlinger interface class SyncEvent; typedef void (*sync_event_callback_t)(const wp<SyncEvent>& event) ; class SyncEvent : public RefBase { public: SyncEvent(AudioSystem::sync_event_t type, int triggerSession, int listenerSession, sync_event_callback_t callBack, void *cookie) : mType(type), mTriggerSession(triggerSession), mListenerSession(listenerSession), mCallback(callBack), mCookie(cookie) {} virtual ~SyncEvent() {} void trigger() { Mutex::Autolock _l(mLock); if (mCallback) mCallback(this); } bool isCancelled() { Mutex::Autolock _l(mLock); return (mCallback == NULL); } void cancel() {Mutex::Autolock _l(mLock); mCallback = NULL; } AudioSystem::sync_event_t type() const { return mType; } int triggerSession() const { return mTriggerSession; } int listenerSession() const { return mListenerSession; } void *cookie() const { return mCookie; } private: const AudioSystem::sync_event_t mType; const int mTriggerSession; const int mListenerSession; sync_event_callback_t mCallback; void * const mCookie; Mutex mLock; }; sp<SyncEvent> createSyncEvent(AudioSystem::sync_event_t type, int triggerSession, int listenerSession, sync_event_callback_t callBack, void *cookie); private: audio_mode_t getMode() const { return mMode; } bool btNrecIsOff() const { return mBtNrecIsOff; } AudioFlinger(); virtual ~AudioFlinger(); // call in any IAudioFlinger method that accesses mPrimaryHardwareDev status_t initCheck() const { return mPrimaryHardwareDev == NULL ? NO_INIT : NO_ERROR; } // RefBase virtual void onFirstRef(); audio_hw_device_t* findSuitableHwDev_l(audio_module_handle_t module, uint32_t devices); void purgeStaleEffects_l(); // standby delay for MIXER and DUPLICATING playback threads is read from property // ro.audio.flinger_standbytime_ms or defaults to kDefaultStandbyTimeInNsecs static nsecs_t mStandbyTimeInNsecs; // Internal dump utilites. status_t dumpPermissionDenial(int fd, const Vector<String16>& args); status_t dumpClients(int fd, const Vector<String16>& args); status_t dumpInternals(int fd, const Vector<String16>& args); // --- Client --- class Client : public RefBase { public: Client(const sp<AudioFlinger>& audioFlinger, pid_t pid); virtual ~Client(); sp<MemoryDealer> heap() const; pid_t pid() const { return mPid; } sp<AudioFlinger> audioFlinger() const { return mAudioFlinger; } bool reserveTimedTrack(); void releaseTimedTrack(); private: Client(const Client&); Client& operator = (const Client&); const sp<AudioFlinger> mAudioFlinger; const sp<MemoryDealer> mMemoryDealer; const pid_t mPid; Mutex mTimedTrackLock; int mTimedTrackCount; }; // --- Notification Client --- class NotificationClient : public IBinder::DeathRecipient { public: NotificationClient(const sp<AudioFlinger>& audioFlinger, const sp<IAudioFlingerClient>& client, pid_t pid); virtual ~NotificationClient(); sp<IAudioFlingerClient> audioFlingerClient() const { return mAudioFlingerClient; } // IBinder::DeathRecipient virtual void binderDied(const wp<IBinder>& who); private: NotificationClient(const NotificationClient&); NotificationClient& operator = (const NotificationClient&); const sp<AudioFlinger> mAudioFlinger; const pid_t mPid; const sp<IAudioFlingerClient> mAudioFlingerClient; }; class TrackHandle; class RecordHandle; class RecordThread; class PlaybackThread; class MixerThread; class DirectOutputThread; class DuplicatingThread; class Track; class RecordTrack; class EffectModule; class EffectHandle; class EffectChain; struct AudioStreamOut; struct AudioStreamIn; class ThreadBase : public Thread { public: enum type_t { MIXER, // Thread class is MixerThread DIRECT, // Thread class is DirectOutputThread DUPLICATING, // Thread class is DuplicatingThread RECORD // Thread class is RecordThread }; ThreadBase (const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id, uint32_t device, type_t type); virtual ~ThreadBase(); status_t dumpBase(int fd, const Vector<String16>& args); status_t dumpEffectChains(int fd, const Vector<String16>& args); void clearPowerManager(); // base for record and playback class TrackBase : public ExtendedAudioBufferProvider, public RefBase { public: enum track_state { IDLE, TERMINATED, FLUSHED, STOPPED, // next 2 states are currently used for fast tracks only STOPPING_1, // waiting for first underrun STOPPING_2, // waiting for presentation complete RESUMING, ACTIVE, PAUSING, PAUSED }; TrackBase(ThreadBase *thread, const sp<Client>& client, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, const sp<IMemory>& sharedBuffer, int sessionId); virtual ~TrackBase(); virtual status_t start(AudioSystem::sync_event_t event = AudioSystem::SYNC_EVENT_NONE, int triggerSession = 0) = 0; virtual void stop() = 0; sp<IMemory> getCblk() const { return mCblkMemory; } audio_track_cblk_t* cblk() const { return mCblk; } int sessionId() const { return mSessionId; } virtual status_t setSyncEvent(const sp<SyncEvent>& event); protected: TrackBase(const TrackBase&); TrackBase& operator = (const TrackBase&); // AudioBufferProvider interface virtual status_t getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts) = 0; virtual void releaseBuffer(AudioBufferProvider::Buffer* buffer); // ExtendedAudioBufferProvider interface is only needed for Track, // but putting it in TrackBase avoids the complexity of virtual inheritance virtual size_t framesReady() const { return SIZE_MAX; } audio_format_t format() const { return mFormat; } int channelCount() const { return mChannelCount; } uint32_t channelMask() const { return mChannelMask; } int sampleRate() const; // FIXME inline after cblk sr moved void* getBuffer(uint32_t offset, uint32_t frames) const; bool isStopped() const { return (mState == STOPPED || mState == FLUSHED); } // for fast tracks only bool isStopping() const { return mState == STOPPING_1 || mState == STOPPING_2; } bool isStopping_1() const { return mState == STOPPING_1; } bool isStopping_2() const { return mState == STOPPING_2; } bool isTerminated() const { return mState == TERMINATED; } bool step(); void reset(); const wp<ThreadBase> mThread; /*const*/ sp<Client> mClient; // see explanation at ~TrackBase() why not const sp<IMemory> mCblkMemory; audio_track_cblk_t* mCblk; void* mBuffer; void* mBufferEnd; uint32_t mFrameCount; // we don't really need a lock for these track_state mState; const uint32_t mSampleRate; // initial sample rate only; for tracks which // support dynamic rates, the current value is in control block const audio_format_t mFormat; bool mStepServerFailed; const int mSessionId; uint8_t mChannelCount; uint32_t mChannelMask; Vector < sp<SyncEvent> >mSyncEvents; }; class ConfigEvent { public: ConfigEvent() : mEvent(0), mParam(0) {} int mEvent; int mParam; }; class PMDeathRecipient : public IBinder::DeathRecipient { public: PMDeathRecipient(const wp<ThreadBase>& thread) : mThread(thread) {} virtual ~PMDeathRecipient() {} // IBinder::DeathRecipient virtual void binderDied(const wp<IBinder>& who); private: PMDeathRecipient(const PMDeathRecipient&); PMDeathRecipient& operator = (const PMDeathRecipient&); wp<ThreadBase> mThread; }; virtual status_t initCheck() const = 0; type_t type() const { return mType; } uint32_t sampleRate() const { return mSampleRate; } int channelCount() const { return mChannelCount; } audio_format_t format() const { return mFormat; } // Called by AudioFlinger::frameCount(audio_io_handle_t output) and effects, // and returns the normal mix buffer's frame count. No API for HAL frame count. size_t frameCount() const { return mNormalFrameCount; } void wakeUp() { mWaitWorkCV.broadcast(); } // Should be "virtual status_t requestExitAndWait()" and override same // method in Thread, but Thread::requestExitAndWait() is not yet virtual. void exit(); virtual bool checkForNewParameters_l() = 0; virtual status_t setParameters(const String8& keyValuePairs); virtual String8 getParameters(const String8& keys) = 0; virtual void audioConfigChanged_l(int event, int param = 0) = 0; void sendConfigEvent(int event, int param = 0); void sendConfigEvent_l(int event, int param = 0); void processConfigEvents(); audio_io_handle_t id() const { return mId;} bool standby() const { return mStandby; } uint32_t device() const { return mDevice; } virtual audio_stream_t* stream() const = 0; sp<EffectHandle> createEffect_l( const sp<AudioFlinger::Client>& client, const sp<IEffectClient>& effectClient, int32_t priority, int sessionId, effect_descriptor_t *desc, int *enabled, status_t *status); void disconnectEffect(const sp< EffectModule>& effect, const wp<EffectHandle>& handle, bool unpinIfLast); // return values for hasAudioSession (bit field) enum effect_state { EFFECT_SESSION = 0x1, // the audio session corresponds to at least one // effect TRACK_SESSION = 0x2 // the audio session corresponds to at least one // track }; // get effect chain corresponding to session Id. sp<EffectChain> getEffectChain(int sessionId); // same as getEffectChain() but must be called with ThreadBase mutex locked sp<EffectChain> getEffectChain_l(int sessionId); // add an effect chain to the chain list (mEffectChains) virtual status_t addEffectChain_l(const sp<EffectChain>& chain) = 0; // remove an effect chain from the chain list (mEffectChains) virtual size_t removeEffectChain_l(const sp<EffectChain>& chain) = 0; // lock all effect chains Mutexes. Must be called before releasing the // ThreadBase mutex before processing the mixer and effects. This guarantees the // integrity of the chains during the process. // Also sets the parameter 'effectChains' to current value of mEffectChains. void lockEffectChains_l(Vector< sp<EffectChain> >& effectChains); // unlock effect chains after process void unlockEffectChains(const Vector< sp<EffectChain> >& effectChains); // set audio mode to all effect chains void setMode(audio_mode_t mode); // get effect module with corresponding ID on specified audio session sp<AudioFlinger::EffectModule> getEffect(int sessionId, int effectId); sp<AudioFlinger::EffectModule> getEffect_l(int sessionId, int effectId); // add and effect module. Also creates the effect chain is none exists for // the effects audio session status_t addEffect_l(const sp< EffectModule>& effect); // remove and effect module. Also removes the effect chain is this was the last // effect void removeEffect_l(const sp< EffectModule>& effect); // detach all tracks connected to an auxiliary effect virtual void detachAuxEffect_l(int effectId) {} // returns either EFFECT_SESSION if effects on this audio session exist in one // chain, or TRACK_SESSION if tracks on this audio session exist, or both virtual uint32_t hasAudioSession(int sessionId) = 0; // the value returned by default implementation is not important as the // strategy is only meaningful for PlaybackThread which implements this method virtual uint32_t getStrategyForSession_l(int sessionId) { return 0; } // suspend or restore effect according to the type of effect passed. a NULL // type pointer means suspend all effects in the session void setEffectSuspended(const effect_uuid_t *type, bool suspend, int sessionId = AUDIO_SESSION_OUTPUT_MIX); // check if some effects must be suspended/restored when an effect is enabled // or disabled void checkSuspendOnEffectEnabled(const sp<EffectModule>& effect, bool enabled, int sessionId = AUDIO_SESSION_OUTPUT_MIX); void checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect, bool enabled, int sessionId = AUDIO_SESSION_OUTPUT_MIX); virtual status_t setSyncEvent(const sp<SyncEvent>& event) = 0; virtual bool isValidSyncEvent(const sp<SyncEvent>& event) = 0; mutable Mutex mLock; protected: // entry describing an effect being suspended in mSuspendedSessions keyed vector class SuspendedSessionDesc : public RefBase { public: SuspendedSessionDesc() : mRefCount(0) {} int mRefCount; // number of active suspend requests effect_uuid_t mType; // effect type UUID }; void acquireWakeLock(); void acquireWakeLock_l(); void releaseWakeLock(); void releaseWakeLock_l(); void setEffectSuspended_l(const effect_uuid_t *type, bool suspend, int sessionId = AUDIO_SESSION_OUTPUT_MIX); // updated mSuspendedSessions when an effect suspended or restored void updateSuspendedSessions_l(const effect_uuid_t *type, bool suspend, int sessionId); // check if some effects must be suspended when an effect chain is added void checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain); friend class AudioFlinger; // for mEffectChains const type_t mType; // Used by parameters, config events, addTrack_l, exit Condition mWaitWorkCV; const sp<AudioFlinger> mAudioFlinger; uint32_t mSampleRate; size_t mFrameCount; // output HAL, direct output, record size_t mNormalFrameCount; // normal mixer and effects uint32_t mChannelMask; uint16_t mChannelCount; size_t mFrameSize; audio_format_t mFormat; // Parameter sequence by client: binder thread calling setParameters(): // 1. Lock mLock // 2. Append to mNewParameters // 3. mWaitWorkCV.signal // 4. mParamCond.waitRelative with timeout // 5. read mParamStatus // 6. mWaitWorkCV.signal // 7. Unlock // // Parameter sequence by server: threadLoop calling checkForNewParameters_l(): // 1. Lock mLock // 2. If there is an entry in mNewParameters proceed ... // 2. Read first entry in mNewParameters // 3. Process // 4. Remove first entry from mNewParameters // 5. Set mParamStatus // 6. mParamCond.signal // 7. mWaitWorkCV.wait with timeout (this is to avoid overwriting mParamStatus) // 8. Unlock Condition mParamCond; Vector<String8> mNewParameters; status_t mParamStatus; Vector<ConfigEvent> mConfigEvents; bool mStandby; const audio_io_handle_t mId; Vector< sp<EffectChain> > mEffectChains; uint32_t mDevice; // output device for PlaybackThread // input + output devices for RecordThread static const int kNameLength = 16; // prctl(PR_SET_NAME) limit char mName[kNameLength]; sp<IPowerManager> mPowerManager; sp<IBinder> mWakeLockToken; const sp<PMDeathRecipient> mDeathRecipient; // list of suspended effects per session and per type. The first vector is // keyed by session ID, the second by type UUID timeLow field KeyedVector< int, KeyedVector< int, sp<SuspendedSessionDesc> > > mSuspendedSessions; }; struct stream_type_t { stream_type_t() : volume(1.0f), mute(false) { } float volume; bool mute; }; // --- PlaybackThread --- class PlaybackThread : public ThreadBase { public: enum mixer_state { MIXER_IDLE, // no active tracks MIXER_TRACKS_ENABLED, // at least one active track, but no track has any data ready MIXER_TRACKS_READY // at least one active track, and at least one track has data // standby mode does not have an enum value // suspend by audio policy manager is orthogonal to mixer state }; // playback track class Track : public TrackBase, public VolumeProvider { public: Track( PlaybackThread *thread, const sp<Client>& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, const sp<IMemory>& sharedBuffer, int sessionId, IAudioFlinger::track_flags_t flags); virtual ~Track(); static void appendDumpHeader(String8& result); void dump(char* buffer, size_t size); virtual status_t start(AudioSystem::sync_event_t event = AudioSystem::SYNC_EVENT_NONE, int triggerSession = 0); virtual void stop(); void pause(); void flush(); void destroy(); void mute(bool); int name() const { return mName; } audio_stream_type_t streamType() const { return mStreamType; } status_t attachAuxEffect(int EffectId); void setAuxBuffer(int EffectId, int32_t *buffer); int32_t *auxBuffer() const { return mAuxBuffer; } void setMainBuffer(int16_t *buffer) { mMainBuffer = buffer; } int16_t *mainBuffer() const { return mMainBuffer; } int auxEffectId() const { return mAuxEffectId; } // implement FastMixerState::VolumeProvider interface virtual uint32_t getVolumeLR(); virtual status_t setSyncEvent(const sp<SyncEvent>& event); protected: // for numerous friend class PlaybackThread; friend class MixerThread; friend class DirectOutputThread; Track(const Track&); Track& operator = (const Track&); // AudioBufferProvider interface virtual status_t getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts = kInvalidPTS); // releaseBuffer() not overridden virtual size_t framesReady() const; bool isMuted() const { return mMute; } bool isPausing() const { return mState == PAUSING; } bool isPaused() const { return mState == PAUSED; } bool isResuming() const { return mState == RESUMING; } bool isReady() const; void setPaused() { mState = PAUSED; } void reset(); bool isOutputTrack() const { return (mStreamType == AUDIO_STREAM_CNT); } sp<IMemory> sharedBuffer() const { return mSharedBuffer; } bool presentationComplete(size_t framesWritten, size_t audioHalFrames); public: void triggerEvents(AudioSystem::sync_event_t type); virtual bool isTimedTrack() const { return false; } bool isFastTrack() const { return (mFlags & IAudioFlinger::TRACK_FAST) != 0; } protected: // we don't really need a lock for these volatile bool mMute; // FILLED state is used for suppressing volume ramp at begin of playing enum {FS_INVALID, FS_FILLING, FS_FILLED, FS_ACTIVE}; mutable uint8_t mFillingUpStatus; int8_t mRetryCount; const sp<IMemory> mSharedBuffer; bool mResetDone; const audio_stream_type_t mStreamType; int mName; // track name on the normal mixer, // allocated statically at track creation time, // and is even allocated (though unused) for fast tracks // FIXME don't allocate track name for fast tracks int16_t *mMainBuffer; int32_t *mAuxBuffer; int mAuxEffectId; bool mHasVolumeController; size_t mPresentationCompleteFrames; // number of frames written to the audio HAL // when this track will be fully rendered private: IAudioFlinger::track_flags_t mFlags; // The following fields are only for fast tracks, and should be in a subclass int mFastIndex; // index within FastMixerState::mFastTracks[]; // either mFastIndex == -1 if not isFastTrack() // or 0 < mFastIndex < FastMixerState::kMaxFast because // index 0 is reserved for normal mixer's submix; // index is allocated statically at track creation time // but the slot is only used if track is active FastTrackUnderruns mObservedUnderruns; // Most recently observed value of // mFastMixerDumpState.mTracks[mFastIndex].mUnderruns uint32_t mUnderrunCount; // Counter of total number of underruns, never reset volatile float mCachedVolume; // combined master volume and stream type volume; // 'volatile' means accessed without lock or // barrier, but is read/written atomically }; // end of Track class TimedTrack : public Track { public: static sp<TimedTrack> create(PlaybackThread *thread, const sp<Client>& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, const sp<IMemory>& sharedBuffer, int sessionId); ~TimedTrack(); class TimedBuffer { public: TimedBuffer(); TimedBuffer(const sp<IMemory>& buffer, int64_t pts); const sp<IMemory>& buffer() const { return mBuffer; } int64_t pts() const { return mPTS; } uint32_t position() const { return mPosition; } void setPosition(uint32_t pos) { mPosition = pos; } private: sp<IMemory> mBuffer; int64_t mPTS; uint32_t mPosition; }; // Mixer facing methods. virtual bool isTimedTrack() const { return true; } virtual size_t framesReady() const; // AudioBufferProvider interface virtual status_t getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts); virtual void releaseBuffer(AudioBufferProvider::Buffer* buffer); // Client/App facing methods. status_t allocateTimedBuffer(size_t size, sp<IMemory>* buffer); status_t queueTimedBuffer(const sp<IMemory>& buffer, int64_t pts); status_t setMediaTimeTransform(const LinearTransform& xform, TimedAudioTrack::TargetTimeline target); private: TimedTrack(PlaybackThread *thread, const sp<Client>& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, const sp<IMemory>& sharedBuffer, int sessionId); void timedYieldSamples_l(AudioBufferProvider::Buffer* buffer); void timedYieldSilence_l(uint32_t numFrames, AudioBufferProvider::Buffer* buffer); void trimTimedBufferQueue_l(); void trimTimedBufferQueueHead_l(const char* logTag); void updateFramesPendingAfterTrim_l(const TimedBuffer& buf, const char* logTag); uint64_t mLocalTimeFreq; LinearTransform mLocalTimeToSampleTransform; LinearTransform mMediaTimeToSampleTransform; sp<MemoryDealer> mTimedMemoryDealer; Vector<TimedBuffer> mTimedBufferQueue; bool mQueueHeadInFlight; bool mTrimQueueHeadOnRelease; uint32_t mFramesPendingInQueue; uint8_t* mTimedSilenceBuffer; uint32_t mTimedSilenceBufferSize; mutable Mutex mTimedBufferQueueLock; bool mTimedAudioOutputOnTime; CCHelper mCCHelper; Mutex mMediaTimeTransformLock; LinearTransform mMediaTimeTransform; bool mMediaTimeTransformValid; TimedAudioTrack::TargetTimeline mMediaTimeTransformTarget; }; // playback track class OutputTrack : public Track { public: class Buffer: public AudioBufferProvider::Buffer { public: int16_t *mBuffer; }; OutputTrack(PlaybackThread *thread, DuplicatingThread *sourceThread, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount); virtual ~OutputTrack(); virtual status_t start(AudioSystem::sync_event_t event = AudioSystem::SYNC_EVENT_NONE, int triggerSession = 0); virtual void stop(); bool write(int16_t* data, uint32_t frames); bool bufferQueueEmpty() const { return mBufferQueue.size() == 0; } bool isActive() const { return mActive; } const wp<ThreadBase>& thread() const { return mThread; } private: enum { NO_MORE_BUFFERS = 0x80000001, // same in AudioTrack.h, ok to be different value }; status_t obtainBuffer(AudioBufferProvider::Buffer* buffer, uint32_t waitTimeMs); void clearBufferQueue(); // Maximum number of pending buffers allocated by OutputTrack::write() static const uint8_t kMaxOverFlowBuffers = 10; Vector < Buffer* > mBufferQueue; AudioBufferProvider::Buffer mOutBuffer; bool mActive; DuplicatingThread* const mSourceThread; // for waitTimeMs() in write() }; // end of OutputTrack PlaybackThread (const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device, type_t type); virtual ~PlaybackThread(); status_t dump(int fd, const Vector<String16>& args); // Thread virtuals virtual status_t readyToRun(); virtual bool threadLoop(); // RefBase virtual void onFirstRef(); protected: // Code snippets that were lifted up out of threadLoop() virtual void threadLoop_mix() = 0; virtual void threadLoop_sleepTime() = 0; virtual void threadLoop_write(); virtual void threadLoop_standby(); virtual void threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove); // prepareTracks_l reads and writes mActiveTracks, and returns // the pending set of tracks to remove via Vector 'tracksToRemove'. The caller // is responsible for clearing or destroying this Vector later on, when it // is safe to do so. That will drop the final ref count and destroy the tracks. virtual mixer_state prepareTracks_l(Vector< sp<Track> > *tracksToRemove) = 0; public: virtual status_t initCheck() const { return (mOutput == NULL) ? NO_INIT : NO_ERROR; } // return estimated latency in milliseconds, as reported by HAL uint32_t latency() const; // same, but lock must already be held uint32_t latency_l() const; void setMasterVolume(float value); void setMasterMute(bool muted); void setStreamVolume(audio_stream_type_t stream, float value); void setStreamMute(audio_stream_type_t stream, bool muted); float streamVolume(audio_stream_type_t stream) const; sp<Track> createTrack_l( const sp<AudioFlinger::Client>& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, const sp<IMemory>& sharedBuffer, int sessionId, IAudioFlinger::track_flags_t flags, pid_t tid, status_t *status); AudioStreamOut* getOutput() const; AudioStreamOut* clearOutput(); virtual audio_stream_t* stream() const; void suspend() { mSuspended++; } void restore() { if (mSuspended > 0) mSuspended--; } bool isSuspended() const { return (mSuspended > 0); } virtual String8 getParameters(const String8& keys); virtual void audioConfigChanged_l(int event, int param = 0); status_t getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames); int16_t *mixBuffer() const { return mMixBuffer; }; virtual void detachAuxEffect_l(int effectId); status_t attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId); status_t attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId); virtual status_t addEffectChain_l(const sp<EffectChain>& chain); virtual size_t removeEffectChain_l(const sp<EffectChain>& chain); virtual uint32_t hasAudioSession(int sessionId); virtual uint32_t getStrategyForSession_l(int sessionId); virtual status_t setSyncEvent(const sp<SyncEvent>& event); virtual bool isValidSyncEvent(const sp<SyncEvent>& event); protected: int16_t* mMixBuffer; uint32_t mSuspended; // suspend count, > 0 means suspended int mBytesWritten; private: // mMasterMute is in both PlaybackThread and in AudioFlinger. When a // PlaybackThread needs to find out if master-muted, it checks it's local // copy rather than the one in AudioFlinger. This optimization saves a lock. bool mMasterMute; void setMasterMute_l(bool muted) { mMasterMute = muted; } protected: SortedVector< wp<Track> > mActiveTracks; // FIXME check if this could be sp<> // Allocate a track name for a given channel mask. // Returns name >= 0 if successful, -1 on failure. virtual int getTrackName_l(audio_channel_mask_t channelMask) = 0; virtual void deleteTrackName_l(int name) = 0; // Time to sleep between cycles when: virtual uint32_t activeSleepTimeUs() const; // mixer state MIXER_TRACKS_ENABLED virtual uint32_t idleSleepTimeUs() const = 0; // mixer state MIXER_IDLE virtual uint32_t suspendSleepTimeUs() const = 0; // audio policy manager suspended us // No sleep when mixer state == MIXER_TRACKS_READY; relies on audio HAL stream->write() // No sleep in standby mode; waits on a condition // Code snippets that are temporarily lifted up out of threadLoop() until the merge void checkSilentMode_l(); // Non-trivial for DUPLICATING only virtual void saveOutputTracks() { } virtual void clearOutputTracks() { } // Cache various calculated values, at threadLoop() entry and after a parameter change virtual void cacheParameters_l(); virtual uint32_t correctLatency(uint32_t latency) const; private: friend class AudioFlinger; // for numerous PlaybackThread(const Client&); PlaybackThread& operator = (const PlaybackThread&); status_t addTrack_l(const sp<Track>& track); void destroyTrack_l(const sp<Track>& track); void removeTrack_l(const sp<Track>& track); void readOutputParameters(); virtual status_t dumpInternals(int fd, const Vector<String16>& args); status_t dumpTracks(int fd, const Vector<String16>& args); SortedVector< sp<Track> > mTracks; // mStreamTypes[] uses 1 additional stream type internally for the OutputTrack used by DuplicatingThread stream_type_t mStreamTypes[AUDIO_STREAM_CNT + 1]; AudioStreamOut *mOutput; float mMasterVolume; nsecs_t mLastWriteTime; int mNumWrites; int mNumDelayedWrites; bool mInWrite; // FIXME rename these former local variables of threadLoop to standard "m" names nsecs_t standbyTime; size_t mixBufferSize; // cached copies of activeSleepTimeUs() and idleSleepTimeUs() made by cacheParameters_l() uint32_t activeSleepTime; uint32_t idleSleepTime; uint32_t sleepTime; // mixer status returned by prepareTracks_l() mixer_state mMixerStatus; // current cycle // previous cycle when in prepareTracks_l() mixer_state mMixerStatusIgnoringFastTracks; // FIXME or a separate ready state per track // FIXME move these declarations into the specific sub-class that needs them // MIXER only bool longStandbyExit; uint32_t sleepTimeShift; // same as AudioFlinger::mStandbyTimeInNsecs except for DIRECT which uses a shorter value nsecs_t standbyDelay; // MIXER only nsecs_t maxPeriod; // DUPLICATING only uint32_t writeFrames; private: // The HAL output sink is treated as non-blocking, but current implementation is blocking sp<NBAIO_Sink> mOutputSink; // If a fast mixer is present, the blocking pipe sink, otherwise clear sp<NBAIO_Sink> mPipeSink; // The current sink for the normal mixer to write it's (sub)mix, mOutputSink or mPipeSink sp<NBAIO_Sink> mNormalSink; // For dumpsys sp<NBAIO_Sink> mTeeSink; sp<NBAIO_Source> mTeeSource; uint32_t mScreenState; // cached copy of gScreenState public: virtual bool hasFastMixer() const = 0; virtual FastTrackUnderruns getFastTrackUnderruns(size_t fastIndex) const { FastTrackUnderruns dummy; return dummy; } protected: // accessed by both binder threads and within threadLoop(), lock on mutex needed unsigned mFastTrackAvailMask; // bit i set if fast track [i] is available }; class MixerThread : public PlaybackThread { public: MixerThread (const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device, type_t type = MIXER); virtual ~MixerThread(); // Thread virtuals void invalidateTracks(audio_stream_type_t streamType); virtual bool checkForNewParameters_l(); virtual status_t dumpInternals(int fd, const Vector<String16>& args); protected: virtual mixer_state prepareTracks_l(Vector< sp<Track> > *tracksToRemove); virtual int getTrackName_l(audio_channel_mask_t channelMask); virtual void deleteTrackName_l(int name); virtual uint32_t idleSleepTimeUs() const; virtual uint32_t suspendSleepTimeUs() const; virtual void cacheParameters_l(); // threadLoop snippets virtual void threadLoop_write(); virtual void threadLoop_standby(); virtual void threadLoop_mix(); virtual void threadLoop_sleepTime(); virtual void threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove); virtual uint32_t correctLatency(uint32_t latency) const; AudioMixer* mAudioMixer; // normal mixer private: #ifdef SOAKER Thread* mSoaker; #endif // one-time initialization, no locks required FastMixer* mFastMixer; // non-NULL if there is also a fast mixer sp<AudioWatchdog> mAudioWatchdog; // non-0 if there is an audio watchdog thread // contents are not guaranteed to be consistent, no locks required FastMixerDumpState mFastMixerDumpState; #ifdef STATE_QUEUE_DUMP StateQueueObserverDump mStateQueueObserverDump; StateQueueMutatorDump mStateQueueMutatorDump; #endif AudioWatchdogDump mAudioWatchdogDump; // accessible only within the threadLoop(), no locks required // mFastMixer->sq() // for mutating and pushing state int32_t mFastMixerFutex; // for cold idle public: virtual bool hasFastMixer() const { return mFastMixer != NULL; } virtual FastTrackUnderruns getFastTrackUnderruns(size_t fastIndex) const { ALOG_ASSERT(fastIndex < FastMixerState::kMaxFastTracks); return mFastMixerDumpState.mTracks[fastIndex].mUnderruns; } }; class DirectOutputThread : public PlaybackThread { public: DirectOutputThread (const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device); virtual ~DirectOutputThread(); // Thread virtuals virtual bool checkForNewParameters_l(); protected: virtual int getTrackName_l(audio_channel_mask_t channelMask); virtual void deleteTrackName_l(int name); virtual uint32_t activeSleepTimeUs() const; virtual uint32_t idleSleepTimeUs() const; virtual uint32_t suspendSleepTimeUs() const; virtual void cacheParameters_l(); // threadLoop snippets virtual mixer_state prepareTracks_l(Vector< sp<Track> > *tracksToRemove); virtual void threadLoop_mix(); virtual void threadLoop_sleepTime(); // volumes last sent to audio HAL with stream->set_volume() float mLeftVolFloat; float mRightVolFloat; private: // prepareTracks_l() tells threadLoop_mix() the name of the single active track sp<Track> mActiveTrack; public: virtual bool hasFastMixer() const { return false; } }; class DuplicatingThread : public MixerThread { public: DuplicatingThread (const sp<AudioFlinger>& audioFlinger, MixerThread* mainThread, audio_io_handle_t id); virtual ~DuplicatingThread(); // Thread virtuals void addOutputTrack(MixerThread* thread); void removeOutputTrack(MixerThread* thread); uint32_t waitTimeMs() const { return mWaitTimeMs; } protected: virtual uint32_t activeSleepTimeUs() const; private: bool outputsReady(const SortedVector< sp<OutputTrack> > &outputTracks); protected: // threadLoop snippets virtual void threadLoop_mix(); virtual void threadLoop_sleepTime(); virtual void threadLoop_write(); virtual void threadLoop_standby(); virtual void cacheParameters_l(); private: // called from threadLoop, addOutputTrack, removeOutputTrack virtual void updateWaitTime_l(); protected: virtual void saveOutputTracks(); virtual void clearOutputTracks(); private: uint32_t mWaitTimeMs; SortedVector < sp<OutputTrack> > outputTracks; SortedVector < sp<OutputTrack> > mOutputTracks; public: virtual bool hasFastMixer() const { return false; } }; PlaybackThread *checkPlaybackThread_l(audio_io_handle_t output) const; MixerThread *checkMixerThread_l(audio_io_handle_t output) const; RecordThread *checkRecordThread_l(audio_io_handle_t input) const; // no range check, AudioFlinger::mLock held bool streamMute_l(audio_stream_type_t stream) const { return mStreamTypes[stream].mute; } // no range check, doesn't check per-thread stream volume, AudioFlinger::mLock held float streamVolume_l(audio_stream_type_t stream) const { return mStreamTypes[stream].volume; } void audioConfigChanged_l(int event, audio_io_handle_t ioHandle, const void *param2); // allocate an audio_io_handle_t, session ID, or effect ID uint32_t nextUniqueId(); status_t moveEffectChain_l(int sessionId, PlaybackThread *srcThread, PlaybackThread *dstThread, bool reRegister); // return thread associated with primary hardware device, or NULL PlaybackThread *primaryPlaybackThread_l() const; uint32_t primaryOutputDevice_l() const; sp<PlaybackThread> getEffectThread_l(int sessionId, int EffectId); // server side of the client's IAudioTrack class TrackHandle : public android::BnAudioTrack { public: TrackHandle(const sp<PlaybackThread::Track>& track); virtual ~TrackHandle(); virtual sp<IMemory> getCblk() const; virtual status_t start(); virtual void stop(); virtual void flush(); virtual void mute(bool); virtual void pause(); virtual status_t attachAuxEffect(int effectId); virtual status_t allocateTimedBuffer(size_t size, sp<IMemory>* buffer); virtual status_t queueTimedBuffer(const sp<IMemory>& buffer, int64_t pts); virtual status_t setMediaTimeTransform(const LinearTransform& xform, int target); virtual status_t onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags); private: const sp<PlaybackThread::Track> mTrack; }; void removeClient_l(pid_t pid); void removeNotificationClient(pid_t pid); // record thread class RecordThread : public ThreadBase, public AudioBufferProvider { public: // record track class RecordTrack : public TrackBase { public: RecordTrack(RecordThread *thread, const sp<Client>& client, uint32_t sampleRate, audio_format_t format, uint32_t channelMask, int frameCount, int sessionId); virtual ~RecordTrack(); virtual status_t start(AudioSystem::sync_event_t event = AudioSystem::SYNC_EVENT_NONE, int triggerSession = 0); virtual void stop(); bool overflow() { bool tmp = mOverflow; mOverflow = false; return tmp; } bool setOverflow() { bool tmp = mOverflow; mOverflow = true; return tmp; } void dump(char* buffer, size_t size); private: friend class AudioFlinger; // for mState RecordTrack(const RecordTrack&); RecordTrack& operator = (const RecordTrack&); // AudioBufferProvider interface virtual status_t getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts = kInvalidPTS); // releaseBuffer() not overridden bool mOverflow; }; RecordThread(const sp<AudioFlinger>& audioFlinger, AudioStreamIn *input, uint32_t sampleRate, uint32_t channels, audio_io_handle_t id, uint32_t device); virtual ~RecordThread(); // Thread virtual bool threadLoop(); virtual status_t readyToRun(); // RefBase virtual void onFirstRef(); virtual status_t initCheck() const { return (mInput == NULL) ? NO_INIT : NO_ERROR; } sp<AudioFlinger::RecordThread::RecordTrack> createRecordTrack_l( const sp<AudioFlinger::Client>& client, uint32_t sampleRate, audio_format_t format, int channelMask, int frameCount, int sessionId, status_t *status); status_t start(RecordTrack* recordTrack, AudioSystem::sync_event_t event, int triggerSession); void stop(RecordTrack* recordTrack); status_t dump(int fd, const Vector<String16>& args); AudioStreamIn* getInput() const; AudioStreamIn* clearInput(); virtual audio_stream_t* stream() const; // AudioBufferProvider interface virtual status_t getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts); virtual void releaseBuffer(AudioBufferProvider::Buffer* buffer); virtual bool checkForNewParameters_l(); virtual String8 getParameters(const String8& keys); virtual void audioConfigChanged_l(int event, int param = 0); void readInputParameters(); virtual unsigned int getInputFramesLost(); virtual status_t addEffectChain_l(const sp<EffectChain>& chain); virtual size_t removeEffectChain_l(const sp<EffectChain>& chain); virtual uint32_t hasAudioSession(int sessionId); RecordTrack* track(); virtual status_t setSyncEvent(const sp<SyncEvent>& event); virtual bool isValidSyncEvent(const sp<SyncEvent>& event); static void syncStartEventCallback(const wp<SyncEvent>& event); void handleSyncStartEvent(const sp<SyncEvent>& event); private: void clearSyncStartEvent(); RecordThread(); AudioStreamIn *mInput; RecordTrack* mTrack; sp<RecordTrack> mActiveTrack; Condition mStartStopCond; AudioResampler *mResampler; int32_t *mRsmpOutBuffer; int16_t *mRsmpInBuffer; size_t mRsmpInIndex; size_t mInputBytes; const int mReqChannelCount; const uint32_t mReqSampleRate; ssize_t mBytesRead; // sync event triggering actual audio capture. Frames read before this event will // be dropped and therefore not read by the application. sp<SyncEvent> mSyncStartEvent; // number of captured frames to drop after the start sync event has been received. // when < 0, maximum frames to drop before starting capture even if sync event is // not received ssize_t mFramestoDrop; }; // server side of the client's IAudioRecord class RecordHandle : public android::BnAudioRecord { public: RecordHandle(const sp<RecordThread::RecordTrack>& recordTrack); virtual ~RecordHandle(); virtual sp<IMemory> getCblk() const; virtual status_t start(int event, int triggerSession); virtual void stop(); virtual status_t onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags); private: const sp<RecordThread::RecordTrack> mRecordTrack; }; //--- Audio Effect Management // EffectModule and EffectChain classes both have their own mutex to protect // state changes or resource modifications. Always respect the following order // if multiple mutexes must be acquired to avoid cross deadlock: // AudioFlinger -> ThreadBase -> EffectChain -> EffectModule // The EffectModule class is a wrapper object controlling the effect engine implementation // in the effect library. It prevents concurrent calls to process() and command() functions // from different client threads. It keeps a list of EffectHandle objects corresponding // to all client applications using this effect and notifies applications of effect state, // control or parameter changes. It manages the activation state machine to send appropriate // reset, enable, disable commands to effect engine and provide volume // ramping when effects are activated/deactivated. // When controlling an auxiliary effect, the EffectModule also provides an input buffer used by // the attached track(s) to accumulate their auxiliary channel. class EffectModule: public RefBase { public: EffectModule(ThreadBase *thread, const wp<AudioFlinger::EffectChain>& chain, effect_descriptor_t *desc, int id, int sessionId); virtual ~EffectModule(); enum effect_state { IDLE, RESTART, STARTING, ACTIVE, STOPPING, STOPPED, DESTROYED }; int id() const { return mId; } void process(); void updateState(); status_t command(uint32_t cmdCode, uint32_t cmdSize, void *pCmdData, uint32_t *replySize, void *pReplyData); void reset_l(); status_t configure(); status_t init(); effect_state state() const { return mState; } uint32_t status() { return mStatus; } int sessionId() const { return mSessionId; } status_t setEnabled(bool enabled); bool isEnabled() const; bool isProcessEnabled() const; void setInBuffer(int16_t *buffer) { mConfig.inputCfg.buffer.s16 = buffer; } int16_t *inBuffer() { return mConfig.inputCfg.buffer.s16; } void setOutBuffer(int16_t *buffer) { mConfig.outputCfg.buffer.s16 = buffer; } int16_t *outBuffer() { return mConfig.outputCfg.buffer.s16; } void setChain(const wp<EffectChain>& chain) { mChain = chain; } void setThread(const wp<ThreadBase>& thread) { mThread = thread; } const wp<ThreadBase>& thread() { return mThread; } status_t addHandle(const sp<EffectHandle>& handle); void disconnect(const wp<EffectHandle>& handle, bool unpinIfLast); size_t removeHandle (const wp<EffectHandle>& handle); effect_descriptor_t& desc() { return mDescriptor; } wp<EffectChain>& chain() { return mChain; } status_t setDevice(uint32_t device); status_t setVolume(uint32_t *left, uint32_t *right, bool controller); status_t setMode(audio_mode_t mode); status_t start(); status_t stop(); void setSuspended(bool suspended); bool suspended() const; sp<EffectHandle> controlHandle(); bool isPinned() const { return mPinned; } void unPin() { mPinned = false; } status_t dump(int fd, const Vector<String16>& args); protected: friend class AudioFlinger; // for mHandles bool mPinned; // Maximum time allocated to effect engines to complete the turn off sequence static const uint32_t MAX_DISABLE_TIME_MS = 10000; EffectModule(const EffectModule&); EffectModule& operator = (const EffectModule&); status_t start_l(); status_t stop_l(); mutable Mutex mLock; // mutex for process, commands and handles list protection wp<ThreadBase> mThread; // parent thread wp<EffectChain> mChain; // parent effect chain int mId; // this instance unique ID int mSessionId; // audio session ID effect_descriptor_t mDescriptor;// effect descriptor received from effect engine effect_config_t mConfig; // input and output audio configuration effect_handle_t mEffectInterface; // Effect module C API status_t mStatus; // initialization status effect_state mState; // current activation state Vector< wp<EffectHandle> > mHandles; // list of client handles // First handle in mHandles has highest priority and controls the effect module uint32_t mMaxDisableWaitCnt; // maximum grace period before forcing an effect off after // sending disable command. uint32_t mDisableWaitCnt; // current process() calls count during disable period. bool mSuspended; // effect is suspended: temporarily disabled by framework }; // The EffectHandle class implements the IEffect interface. It provides resources // to receive parameter updates, keeps track of effect control // ownership and state and has a pointer to the EffectModule object it is controlling. // There is one EffectHandle object for each application controlling (or using) // an effect module. // The EffectHandle is obtained by calling AudioFlinger::createEffect(). class EffectHandle: public android::BnEffect { public: EffectHandle(const sp<EffectModule>& effect, const sp<AudioFlinger::Client>& client, const sp<IEffectClient>& effectClient, int32_t priority); virtual ~EffectHandle(); // IEffect virtual status_t enable(); virtual status_t disable(); virtual status_t command(uint32_t cmdCode, uint32_t cmdSize, void *pCmdData, uint32_t *replySize, void *pReplyData); virtual void disconnect(); private: void disconnect(bool unpinIfLast); public: virtual sp<IMemory> getCblk() const { return mCblkMemory; } virtual status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags); // Give or take control of effect module // - hasControl: true if control is given, false if removed // - signal: true client app should be signaled of change, false otherwise // - enabled: state of the effect when control is passed void setControl(bool hasControl, bool signal, bool enabled); void commandExecuted(uint32_t cmdCode, uint32_t cmdSize, void *pCmdData, uint32_t replySize, void *pReplyData); void setEnabled(bool enabled); bool enabled() const { return mEnabled; } // Getters int id() const { return mEffect->id(); } int priority() const { return mPriority; } bool hasControl() const { return mHasControl; } sp<EffectModule> effect() const { return mEffect; } void dump(char* buffer, size_t size); protected: friend class AudioFlinger; // for mEffect, mHasControl, mEnabled EffectHandle(const EffectHandle&); EffectHandle& operator =(const EffectHandle&); sp<EffectModule> mEffect; // pointer to controlled EffectModule sp<IEffectClient> mEffectClient; // callback interface for client notifications /*const*/ sp<Client> mClient; // client for shared memory allocation, see disconnect() sp<IMemory> mCblkMemory; // shared memory for control block effect_param_cblk_t* mCblk; // control block for deferred parameter setting via shared memory uint8_t* mBuffer; // pointer to parameter area in shared memory int mPriority; // client application priority to control the effect bool mHasControl; // true if this handle is controlling the effect bool mEnabled; // cached enable state: needed when the effect is // restored after being suspended }; // the EffectChain class represents a group of effects associated to one audio session. // There can be any number of EffectChain objects per output mixer thread (PlaybackThread). // The EffecChain with session ID 0 contains global effects applied to the output mix. // Effects in this chain can be insert or auxiliary. Effects in other chains (attached to tracks) // are insert only. The EffectChain maintains an ordered list of effect module, the order corresponding // in the effect process order. When attached to a track (session ID != 0), it also provide it's own // input buffer used by the track as accumulation buffer. class EffectChain: public RefBase { public: EffectChain(const wp<ThreadBase>& wThread, int sessionId); EffectChain(ThreadBase *thread, int sessionId); virtual ~EffectChain(); // special key used for an entry in mSuspendedEffects keyed vector // corresponding to a suspend all request. static const int kKeyForSuspendAll = 0; // minimum duration during which we force calling effect process when last track on // a session is stopped or removed to allow effect tail to be rendered static const int kProcessTailDurationMs = 1000; void process_l(); void lock() { mLock.lock(); } void unlock() { mLock.unlock(); } status_t addEffect_l(const sp<EffectModule>& handle); size_t removeEffect_l(const sp<EffectModule>& handle); int sessionId() const { return mSessionId; } void setSessionId(int sessionId) { mSessionId = sessionId; } sp<EffectModule> getEffectFromDesc_l(effect_descriptor_t *descriptor); sp<EffectModule> getEffectFromId_l(int id); sp<EffectModule> getEffectFromType_l(const effect_uuid_t *type); bool setVolume_l(uint32_t *left, uint32_t *right); void setDevice_l(uint32_t device); void setMode_l(audio_mode_t mode); void setInBuffer(int16_t *buffer, bool ownsBuffer = false) { mInBuffer = buffer; mOwnInBuffer = ownsBuffer; } int16_t *inBuffer() const { return mInBuffer; } void setOutBuffer(int16_t *buffer) { mOutBuffer = buffer; } int16_t *outBuffer() const { return mOutBuffer; } void incTrackCnt() { android_atomic_inc(&mTrackCnt); } void decTrackCnt() { android_atomic_dec(&mTrackCnt); } int32_t trackCnt() const { return mTrackCnt;} void incActiveTrackCnt() { android_atomic_inc(&mActiveTrackCnt); mTailBufferCount = mMaxTailBuffers; } void decActiveTrackCnt() { android_atomic_dec(&mActiveTrackCnt); } int32_t activeTrackCnt() const { return mActiveTrackCnt;} uint32_t strategy() const { return mStrategy; } void setStrategy(uint32_t strategy) { mStrategy = strategy; } // suspend effect of the given type void setEffectSuspended_l(const effect_uuid_t *type, bool suspend); // suspend all eligible effects void setEffectSuspendedAll_l(bool suspend); // check if effects should be suspend or restored when a given effect is enable or disabled void checkSuspendOnEffectEnabled(const sp<EffectModule>& effect, bool enabled); void clearInputBuffer(); status_t dump(int fd, const Vector<String16>& args); protected: friend class AudioFlinger; // for mThread, mEffects EffectChain(const EffectChain&); EffectChain& operator =(const EffectChain&); class SuspendedEffectDesc : public RefBase { public: SuspendedEffectDesc() : mRefCount(0) {} int mRefCount; effect_uuid_t mType; wp<EffectModule> mEffect; }; // get a list of effect modules to suspend when an effect of the type // passed is enabled. void getSuspendEligibleEffects(Vector< sp<EffectModule> > &effects); // get an effect module if it is currently enable sp<EffectModule> getEffectIfEnabled(const effect_uuid_t *type); // true if the effect whose descriptor is passed can be suspended // OEMs can modify the rules implemented in this method to exclude specific effect // types or implementations from the suspend/restore mechanism. bool isEffectEligibleForSuspend(const effect_descriptor_t& desc); void clearInputBuffer_l(sp<ThreadBase> thread); wp<ThreadBase> mThread; // parent mixer thread Mutex mLock; // mutex protecting effect list Vector< sp<EffectModule> > mEffects; // list of effect modules int mSessionId; // audio session ID int16_t *mInBuffer; // chain input buffer int16_t *mOutBuffer; // chain output buffer volatile int32_t mActiveTrackCnt; // number of active tracks connected volatile int32_t mTrackCnt; // number of tracks connected int32_t mTailBufferCount; // current effect tail buffer count int32_t mMaxTailBuffers; // maximum effect tail buffers bool mOwnInBuffer; // true if the chain owns its input buffer int mVolumeCtrlIdx; // index of insert effect having control over volume uint32_t mLeftVolume; // previous volume on left channel uint32_t mRightVolume; // previous volume on right channel uint32_t mNewLeftVolume; // new volume on left channel uint32_t mNewRightVolume; // new volume on right channel uint32_t mStrategy; // strategy for this effect chain // mSuspendedEffects lists all effects currently suspended in the chain. // Use effect type UUID timelow field as key. There is no real risk of identical // timeLow fields among effect type UUIDs. // Updated by updateSuspendedSessions_l() only. KeyedVector< int, sp<SuspendedEffectDesc> > mSuspendedEffects; }; // AudioStreamOut and AudioStreamIn are immutable, so their fields are const. // For emphasis, we could also make all pointers to them be "const *", // but that would clutter the code unnecessarily. struct AudioStreamOut { audio_hw_device_t* const hwDev; audio_stream_out_t* const stream; AudioStreamOut(audio_hw_device_t *dev, audio_stream_out_t *out) : hwDev(dev), stream(out) {} }; struct AudioStreamIn { audio_hw_device_t* const hwDev; audio_stream_in_t* const stream; AudioStreamIn(audio_hw_device_t *dev, audio_stream_in_t *in) : hwDev(dev), stream(in) {} }; // for mAudioSessionRefs only struct AudioSessionRef { AudioSessionRef(int sessionid, pid_t pid) : mSessionid(sessionid), mPid(pid), mCnt(1) {} const int mSessionid; const pid_t mPid; int mCnt; }; enum master_volume_support { // MVS_NONE: // Audio HAL has no support for master volume, either setting or // getting. All master volume control must be implemented in SW by the // AudioFlinger mixing core. MVS_NONE, // MVS_SETONLY: // Audio HAL has support for setting master volume, but not for getting // master volume (original HAL design did not include a getter). // AudioFlinger needs to keep track of the last set master volume in // addition to needing to set an initial, default, master volume at HAL // load time. MVS_SETONLY, // MVS_FULL: // Audio HAL has support both for setting and getting master volume. // AudioFlinger should send all set and get master volume requests // directly to the HAL. MVS_FULL, }; class AudioHwDevice { public: AudioHwDevice(const char *moduleName, audio_hw_device_t *hwDevice) : mModuleName(strdup(moduleName)), mHwDevice(hwDevice){} ~AudioHwDevice() { free((void *)mModuleName); } const char *moduleName() const { return mModuleName; } audio_hw_device_t *hwDevice() const { return mHwDevice; } private: const char * const mModuleName; audio_hw_device_t * const mHwDevice; }; mutable Mutex mLock; DefaultKeyedVector< pid_t, wp<Client> > mClients; // see ~Client() mutable Mutex mHardwareLock; // NOTE: If both mLock and mHardwareLock mutexes must be held, // always take mLock before mHardwareLock // These two fields are immutable after onFirstRef(), so no lock needed to access audio_hw_device_t* mPrimaryHardwareDev; // mAudioHwDevs[0] or NULL DefaultKeyedVector<audio_module_handle_t, AudioHwDevice*> mAudioHwDevs; // for dump, indicates which hardware operation is currently in progress (but not stream ops) enum hardware_call_state { AUDIO_HW_IDLE = 0, // no operation in progress AUDIO_HW_INIT, // init_check AUDIO_HW_OUTPUT_OPEN, // open_output_stream AUDIO_HW_OUTPUT_CLOSE, // unused AUDIO_HW_INPUT_OPEN, // unused AUDIO_HW_INPUT_CLOSE, // unused AUDIO_HW_STANDBY, // unused AUDIO_HW_SET_MASTER_VOLUME, // set_master_volume AUDIO_HW_GET_ROUTING, // unused AUDIO_HW_SET_ROUTING, // unused AUDIO_HW_GET_MODE, // unused AUDIO_HW_SET_MODE, // set_mode AUDIO_HW_GET_MIC_MUTE, // get_mic_mute AUDIO_HW_SET_MIC_MUTE, // set_mic_mute AUDIO_HW_SET_VOICE_VOLUME, // set_voice_volume AUDIO_HW_SET_PARAMETER, // set_parameters AUDIO_HW_GET_INPUT_BUFFER_SIZE, // get_input_buffer_size AUDIO_HW_GET_MASTER_VOLUME, // get_master_volume AUDIO_HW_GET_PARAMETER, // get_parameters }; mutable hardware_call_state mHardwareStatus; // for dump only DefaultKeyedVector< audio_io_handle_t, sp<PlaybackThread> > mPlaybackThreads; stream_type_t mStreamTypes[AUDIO_STREAM_CNT]; // both are protected by mLock float mMasterVolume; float mMasterVolumeSW; master_volume_support mMasterVolumeSupportLvl; bool mMasterMute; DefaultKeyedVector< audio_io_handle_t, sp<RecordThread> > mRecordThreads; DefaultKeyedVector< pid_t, sp<NotificationClient> > mNotificationClients; volatile int32_t mNextUniqueId; // updated by android_atomic_inc audio_mode_t mMode; bool mBtNrecIsOff; // protected by mLock Vector<AudioSessionRef*> mAudioSessionRefs; float masterVolume_l() const; float masterVolumeSW_l() const { return mMasterVolumeSW; } bool masterMute_l() const { return mMasterMute; } audio_module_handle_t loadHwModule_l(const char *name); Vector < sp<SyncEvent> > mPendingSyncEvents; // sync events awaiting for a session // to be created private: sp<Client> registerPid_l(pid_t pid); // always returns non-0 }; // ---------------------------------------------------------------------------- }; // namespace android #endif // ANDROID_AUDIO_FLINGER_H