/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_MAT_H #define ANDROID_MAT_H #include "vec.h" #include "traits.h" // ----------------------------------------------------------------------- namespace android { template <typename TYPE, size_t C, size_t R> class mat; namespace helpers { template <typename TYPE, size_t C, size_t R> mat<TYPE, C, R>& doAssign( mat<TYPE, C, R>& lhs, typename TypeTraits<TYPE>::ParameterType rhs) { for (size_t i=0 ; i<C ; i++) for (size_t j=0 ; j<R ; j++) lhs[i][j] = (i==j) ? rhs : 0; return lhs; } template <typename TYPE, size_t C, size_t R, size_t D> mat<TYPE, C, R> PURE doMul( const mat<TYPE, D, R>& lhs, const mat<TYPE, C, D>& rhs) { mat<TYPE, C, R> res; for (size_t c=0 ; c<C ; c++) { for (size_t r=0 ; r<R ; r++) { TYPE v(0); for (size_t k=0 ; k<D ; k++) { v += lhs[k][r] * rhs[c][k]; } res[c][r] = v; } } return res; } template <typename TYPE, size_t R, size_t D> vec<TYPE, R> PURE doMul( const mat<TYPE, D, R>& lhs, const vec<TYPE, D>& rhs) { vec<TYPE, R> res; for (size_t r=0 ; r<R ; r++) { TYPE v(0); for (size_t k=0 ; k<D ; k++) { v += lhs[k][r] * rhs[k]; } res[r] = v; } return res; } template <typename TYPE, size_t C, size_t R> mat<TYPE, C, R> PURE doMul( const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) { mat<TYPE, C, R> res; for (size_t c=0 ; c<C ; c++) { for (size_t r=0 ; r<R ; r++) { res[c][r] = lhs[r] * rhs[c][0]; } } return res; } template <typename TYPE, size_t C, size_t R> mat<TYPE, C, R> PURE doMul( const mat<TYPE, C, R>& rhs, typename TypeTraits<TYPE>::ParameterType v) { mat<TYPE, C, R> res; for (size_t c=0 ; c<C ; c++) { for (size_t r=0 ; r<R ; r++) { res[c][r] = rhs[c][r] * v; } } return res; } template <typename TYPE, size_t C, size_t R> mat<TYPE, C, R> PURE doMul( typename TypeTraits<TYPE>::ParameterType v, const mat<TYPE, C, R>& rhs) { mat<TYPE, C, R> res; for (size_t c=0 ; c<C ; c++) { for (size_t r=0 ; r<R ; r++) { res[c][r] = v * rhs[c][r]; } } return res; } }; // namespace helpers // ----------------------------------------------------------------------- template <typename TYPE, size_t C, size_t R> class mat : public vec< vec<TYPE, R>, C > { typedef typename TypeTraits<TYPE>::ParameterType pTYPE; typedef vec< vec<TYPE, R>, C > base; public: // STL-like interface. typedef TYPE value_type; typedef TYPE& reference; typedef TYPE const& const_reference; typedef size_t size_type; size_type size() const { return R*C; } enum { ROWS = R, COLS = C }; // ----------------------------------------------------------------------- // default constructors mat() { } mat(const mat& rhs) : base(rhs) { } mat(const base& rhs) : base(rhs) { } // ----------------------------------------------------------------------- // conversion constructors // sets the diagonal to the value, off-diagonal to zero mat(pTYPE rhs) { helpers::doAssign(*this, rhs); } // ----------------------------------------------------------------------- // Assignment mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; } mat& operator=(const base& rhs) { base::operator=(rhs); return *this; } mat& operator=(pTYPE rhs) { return helpers::doAssign(*this, rhs); } // ----------------------------------------------------------------------- // non-member function declaration and definition friend inline mat PURE operator + (const mat& lhs, const mat& rhs) { return helpers::doAdd( static_cast<const base&>(lhs), static_cast<const base&>(rhs)); } friend inline mat PURE operator - (const mat& lhs, const mat& rhs) { return helpers::doSub( static_cast<const base&>(lhs), static_cast<const base&>(rhs)); } // matrix*matrix template <size_t D> friend mat PURE operator * ( const mat<TYPE, D, R>& lhs, const mat<TYPE, C, D>& rhs) { return helpers::doMul(lhs, rhs); } // matrix*vector friend vec<TYPE, R> PURE operator * ( const mat& lhs, const vec<TYPE, C>& rhs) { return helpers::doMul(lhs, rhs); } // vector*matrix friend mat PURE operator * ( const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) { return helpers::doMul(lhs, rhs); } // matrix*scalar friend inline mat PURE operator * (const mat& lhs, pTYPE v) { return helpers::doMul(lhs, v); } // scalar*matrix friend inline mat PURE operator * (pTYPE v, const mat& rhs) { return helpers::doMul(v, rhs); } // ----------------------------------------------------------------------- // streaming operator to set the columns of the matrix: // example: // mat33_t m; // m << v0 << v1 << v2; // column_builder<> stores the matrix and knows which column to set template<size_t PREV_COLUMN> struct column_builder { mat& matrix; column_builder(mat& matrix) : matrix(matrix) { } }; // operator << is not a method of column_builder<> so we can // overload it for unauthorized values (partial specialization // not allowed in class-scope). // we just set the column and return the next column_builder<> template<size_t PREV_COLUMN> friend column_builder<PREV_COLUMN+1> operator << ( const column_builder<PREV_COLUMN>& lhs, const vec<TYPE, R>& rhs) { lhs.matrix[PREV_COLUMN+1] = rhs; return column_builder<PREV_COLUMN+1>(lhs.matrix); } // we return void here so we get a compile-time error if the // user tries to set too many columns friend void operator << ( const column_builder<C-2>& lhs, const vec<TYPE, R>& rhs) { lhs.matrix[C-1] = rhs; } // this is where the process starts. we set the first columns and // return the next column_builder<> column_builder<0> operator << (const vec<TYPE, R>& rhs) { (*this)[0] = rhs; return column_builder<0>(*this); } }; // Specialize column matrix so they're exactly equivalent to a vector template <typename TYPE, size_t R> class mat<TYPE, 1, R> : public vec<TYPE, R> { typedef vec<TYPE, R> base; public: // STL-like interface. typedef TYPE value_type; typedef TYPE& reference; typedef TYPE const& const_reference; typedef size_t size_type; size_type size() const { return R; } enum { ROWS = R, COLS = 1 }; mat() { } mat(const base& rhs) : base(rhs) { } mat(const mat& rhs) : base(rhs) { } mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); } mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; } mat& operator=(const base& rhs) { base::operator=(rhs); return *this; } mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); } // we only have one column, so ignore the index const base& operator[](size_t) const { return *this; } base& operator[](size_t) { return *this; } void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; } }; // ----------------------------------------------------------------------- // matrix functions // transpose. this handles matrices of matrices inline int PURE transpose(int v) { return v; } inline float PURE transpose(float v) { return v; } inline double PURE transpose(double v) { return v; } // Transpose a matrix template <typename TYPE, size_t C, size_t R> mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) { mat<TYPE, R, C> r; for (size_t i=0 ; i<R ; i++) for (size_t j=0 ; j<C ; j++) r[i][j] = transpose(m[j][i]); return r; } // Calculate the trace of a matrix template <typename TYPE, size_t C> static TYPE trace(const mat<TYPE, C, C>& m) { TYPE t; for (size_t i=0 ; i<C ; i++) t += m[i][i]; return t; } // Test positive-semidefiniteness of a matrix template <typename TYPE, size_t C> static bool isPositiveSemidefinite(const mat<TYPE, C, C>& m, TYPE tolerance) { for (size_t i=0 ; i<C ; i++) if (m[i][i] < 0) return false; for (size_t i=0 ; i<C ; i++) for (size_t j=i+1 ; j<C ; j++) if (fabs(m[i][j] - m[j][i]) > tolerance) return false; return true; } // Transpose a vector template < template<typename T, size_t S> class VEC, typename TYPE, size_t SIZE > mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) { mat<TYPE, SIZE, 1> r; for (size_t i=0 ; i<SIZE ; i++) r[i][0] = transpose(v[i]); return r; } // ----------------------------------------------------------------------- // "dumb" matrix inversion template<typename T, size_t N> mat<T, N, N> PURE invert(const mat<T, N, N>& src) { T t; size_t swap; mat<T, N, N> tmp(src); mat<T, N, N> inverse(1); for (size_t i=0 ; i<N ; i++) { // look for largest element in column swap = i; for (size_t j=i+1 ; j<N ; j++) { if (fabs(tmp[j][i]) > fabs(tmp[i][i])) { swap = j; } } if (swap != i) { /* swap rows. */ for (size_t k=0 ; k<N ; k++) { t = tmp[i][k]; tmp[i][k] = tmp[swap][k]; tmp[swap][k] = t; t = inverse[i][k]; inverse[i][k] = inverse[swap][k]; inverse[swap][k] = t; } } t = 1 / tmp[i][i]; for (size_t k=0 ; k<N ; k++) { tmp[i][k] *= t; inverse[i][k] *= t; } for (size_t j=0 ; j<N ; j++) { if (j != i) { t = tmp[j][i]; for (size_t k=0 ; k<N ; k++) { tmp[j][k] -= tmp[i][k] * t; inverse[j][k] -= inverse[i][k] * t; } } } } return inverse; } // ----------------------------------------------------------------------- typedef mat<float, 2, 2> mat22_t; typedef mat<float, 3, 3> mat33_t; typedef mat<float, 4, 4> mat44_t; // ----------------------------------------------------------------------- }; // namespace android #endif /* ANDROID_MAT_H */