/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <assert.h> #include <math.h> #include <stdio.h> #include <string.h> #include "../include/lpicache.h" #include "../include/matrixsearch.h" #include "../include/mystdlib.h" #include "../include/ngram.h" #include "../include/userdict.h" namespace ime_pinyin { #define PRUMING_SCORE 8000.0 MatrixSearch::MatrixSearch() { inited_ = false; spl_trie_ = SpellingTrie::get_cpinstance(); reset_pointers_to_null(); pys_decoded_len_ = 0; mtrx_nd_pool_used_ = 0; dmi_pool_used_ = 0; xi_an_enabled_ = false; dmi_c_phrase_ = false; assert(kMaxSearchSteps > 0); max_sps_len_ = kMaxSearchSteps - 1; max_hzs_len_ = kMaxSearchSteps; } MatrixSearch::~MatrixSearch() { free_resource(); } void MatrixSearch::reset_pointers_to_null() { dict_trie_ = NULL; user_dict_ = NULL; spl_parser_ = NULL; share_buf_ = NULL; // The following four buffers are used for decoding, and they are based on // share_buf_, no need to delete them. mtrx_nd_pool_ = NULL; dmi_pool_ = NULL; matrix_ = NULL; dep_ = NULL; // Based on share_buf_, no need to delete them. npre_items_ = NULL; } bool MatrixSearch::alloc_resource() { free_resource(); dict_trie_ = new DictTrie(); user_dict_ = static_cast<AtomDictBase*>(new UserDict()); spl_parser_ = new SpellingParser(); size_t mtrx_nd_size = sizeof(MatrixNode) * kMtrxNdPoolSize; mtrx_nd_size = align_to_size_t(mtrx_nd_size) / sizeof(size_t); size_t dmi_size = sizeof(DictMatchInfo) * kDmiPoolSize; dmi_size = align_to_size_t(dmi_size) / sizeof(size_t); size_t matrix_size = sizeof(MatrixRow) * kMaxRowNum; matrix_size = align_to_size_t(matrix_size) / sizeof(size_t); size_t dep_size = sizeof(DictExtPara); dep_size = align_to_size_t(dep_size) / sizeof(size_t); // share_buf's size is determined by the buffers for search. share_buf_ = new size_t[mtrx_nd_size + dmi_size + matrix_size + dep_size]; if (NULL == dict_trie_ || NULL == user_dict_ || NULL == spl_parser_ || NULL == share_buf_) return false; // The buffers for search are based on the share buffer mtrx_nd_pool_ = reinterpret_cast<MatrixNode*>(share_buf_); dmi_pool_ = reinterpret_cast<DictMatchInfo*>(share_buf_ + mtrx_nd_size); matrix_ = reinterpret_cast<MatrixRow*>(share_buf_ + mtrx_nd_size + dmi_size); dep_ = reinterpret_cast<DictExtPara*> (share_buf_ + mtrx_nd_size + dmi_size + matrix_size); // The prediction buffer is also based on the share buffer. npre_items_ = reinterpret_cast<NPredictItem*>(share_buf_); npre_items_len_ = (mtrx_nd_size + dmi_size + matrix_size + dep_size) * sizeof(size_t) / sizeof(NPredictItem); return true; } void MatrixSearch::free_resource() { if (NULL != dict_trie_) delete dict_trie_; if (NULL != user_dict_) delete user_dict_; if (NULL != spl_parser_) delete spl_parser_; if (NULL != share_buf_) delete [] share_buf_; reset_pointers_to_null(); } bool MatrixSearch::init(const char *fn_sys_dict, const char *fn_usr_dict) { if (NULL == fn_sys_dict || NULL == fn_usr_dict) return false; if (!alloc_resource()) return false; if (!dict_trie_->load_dict(fn_sys_dict, 1, kSysDictIdEnd)) return false; // If engine fails to load the user dictionary, reset the user dictionary // to NULL. if (!user_dict_->load_dict(fn_usr_dict, kUserDictIdStart, kUserDictIdEnd)) { delete user_dict_; user_dict_ = NULL; } else{ user_dict_->set_total_lemma_count_of_others(NGram::kSysDictTotalFreq); } reset_search0(); inited_ = true; return true; } bool MatrixSearch::init_fd(int sys_fd, long start_offset, long length, const char *fn_usr_dict) { if (NULL == fn_usr_dict) return false; if (!alloc_resource()) return false; if (!dict_trie_->load_dict_fd(sys_fd, start_offset, length, 1, kSysDictIdEnd)) return false; if (!user_dict_->load_dict(fn_usr_dict, kUserDictIdStart, kUserDictIdEnd)) { delete user_dict_; user_dict_ = NULL; } else { user_dict_->set_total_lemma_count_of_others(NGram::kSysDictTotalFreq); } reset_search0(); inited_ = true; return true; } void MatrixSearch::set_max_lens(size_t max_sps_len, size_t max_hzs_len) { if (0 != max_sps_len) max_sps_len_ = max_sps_len; if (0 != max_hzs_len) max_hzs_len_ = max_hzs_len; } void MatrixSearch::close() { flush_cache(); free_resource(); inited_ = false; } void MatrixSearch::flush_cache() { if (NULL != user_dict_) user_dict_->flush_cache(); } void MatrixSearch::set_xi_an_switch(bool xi_an_enabled) { xi_an_enabled_ = xi_an_enabled; } bool MatrixSearch::get_xi_an_switch() { return xi_an_enabled_; } bool MatrixSearch::reset_search() { if (!inited_) return false; return reset_search0(); } bool MatrixSearch::reset_search0() { if (!inited_) return false; pys_decoded_len_ = 0; mtrx_nd_pool_used_ = 0; dmi_pool_used_ = 0; // Get a MatrixNode from the pool matrix_[0].mtrx_nd_pos = mtrx_nd_pool_used_; matrix_[0].mtrx_nd_num = 1; mtrx_nd_pool_used_ += 1; // Update the node, and make it to be a starting node MatrixNode *node = mtrx_nd_pool_ + matrix_[0].mtrx_nd_pos; node->id = 0; node->score = 0; node->from = NULL; node->step = 0; node->dmi_fr = (PoolPosType)-1; matrix_[0].dmi_pos = 0; matrix_[0].dmi_num = 0; matrix_[0].dmi_has_full_id = 1; matrix_[0].mtrx_nd_fixed = node; lma_start_[0] = 0; fixed_lmas_ = 0; spl_start_[0] = 0; fixed_hzs_ = 0; dict_trie_->reset_milestones(0, 0); if (NULL != user_dict_) user_dict_->reset_milestones(0, 0); return true; } bool MatrixSearch::reset_search(size_t ch_pos, bool clear_fixed_this_step, bool clear_dmi_this_step, bool clear_mtrx_this_step) { if (!inited_ || ch_pos > pys_decoded_len_ || ch_pos >= kMaxRowNum) return false; if (0 == ch_pos) { reset_search0(); } else { // Prepare mile stones of this step to clear. MileStoneHandle *dict_handles_to_clear = NULL; if (clear_dmi_this_step && matrix_[ch_pos].dmi_num > 0) { dict_handles_to_clear = dmi_pool_[matrix_[ch_pos].dmi_pos].dict_handles; } // If there are more steps, and this step is not allowed to clear, find // milestones of next step. if (pys_decoded_len_ > ch_pos && !clear_dmi_this_step) { dict_handles_to_clear = NULL; if (matrix_[ch_pos + 1].dmi_num > 0) { dict_handles_to_clear = dmi_pool_[matrix_[ch_pos + 1].dmi_pos].dict_handles; } } if (NULL != dict_handles_to_clear) { dict_trie_->reset_milestones(ch_pos, dict_handles_to_clear[0]); if (NULL != user_dict_) user_dict_->reset_milestones(ch_pos, dict_handles_to_clear[1]); } pys_decoded_len_ = ch_pos; if (clear_dmi_this_step) { dmi_pool_used_ = matrix_[ch_pos - 1].dmi_pos + matrix_[ch_pos - 1].dmi_num; matrix_[ch_pos].dmi_num = 0; } else { dmi_pool_used_ = matrix_[ch_pos].dmi_pos + matrix_[ch_pos].dmi_num; } if (clear_mtrx_this_step) { mtrx_nd_pool_used_ = matrix_[ch_pos - 1].mtrx_nd_pos + matrix_[ch_pos - 1].mtrx_nd_num; matrix_[ch_pos].mtrx_nd_num = 0; } else { mtrx_nd_pool_used_ = matrix_[ch_pos].mtrx_nd_pos + matrix_[ch_pos].mtrx_nd_num; } // Modify fixed_hzs_ if (fixed_hzs_ > 0 && ((kLemmaIdComposing != lma_id_[0]) || (kLemmaIdComposing == lma_id_[0] && spl_start_[c_phrase_.length] <= ch_pos))) { size_t fixed_ch_pos = ch_pos; if (clear_fixed_this_step) fixed_ch_pos = fixed_ch_pos > 0 ? fixed_ch_pos - 1 : 0; while (NULL == matrix_[fixed_ch_pos].mtrx_nd_fixed && fixed_ch_pos > 0) fixed_ch_pos--; fixed_lmas_ = 0; fixed_hzs_ = 0; if (fixed_ch_pos > 0) { while (spl_start_[fixed_hzs_] < fixed_ch_pos) fixed_hzs_++; assert(spl_start_[fixed_hzs_] == fixed_ch_pos); while (lma_start_[fixed_lmas_] < fixed_hzs_) fixed_lmas_++; assert(lma_start_[fixed_lmas_] == fixed_hzs_); } // Re-search the Pinyin string for the unlocked lemma // which was previously fixed. // // Prepare mile stones of this step to clear. MileStoneHandle *dict_handles_to_clear = NULL; if (clear_dmi_this_step && ch_pos == fixed_ch_pos && matrix_[fixed_ch_pos].dmi_num > 0) { dict_handles_to_clear = dmi_pool_[matrix_[fixed_ch_pos].dmi_pos].dict_handles; } // If there are more steps, and this step is not allowed to clear, find // milestones of next step. if (pys_decoded_len_ > fixed_ch_pos && !clear_dmi_this_step) { dict_handles_to_clear = NULL; if (matrix_[fixed_ch_pos + 1].dmi_num > 0) { dict_handles_to_clear = dmi_pool_[matrix_[fixed_ch_pos + 1].dmi_pos].dict_handles; } } if (NULL != dict_handles_to_clear) { dict_trie_->reset_milestones(fixed_ch_pos, dict_handles_to_clear[0]); if (NULL != user_dict_) user_dict_->reset_milestones(fixed_ch_pos, dict_handles_to_clear[1]); } pys_decoded_len_ = fixed_ch_pos; if (clear_dmi_this_step && ch_pos == fixed_ch_pos) { dmi_pool_used_ = matrix_[fixed_ch_pos - 1].dmi_pos + matrix_[fixed_ch_pos - 1].dmi_num; matrix_[fixed_ch_pos].dmi_num = 0; } else { dmi_pool_used_ = matrix_[fixed_ch_pos].dmi_pos + matrix_[fixed_ch_pos].dmi_num; } if (clear_mtrx_this_step && ch_pos == fixed_ch_pos) { mtrx_nd_pool_used_ = matrix_[fixed_ch_pos - 1].mtrx_nd_pos + matrix_[fixed_ch_pos - 1].mtrx_nd_num; matrix_[fixed_ch_pos].mtrx_nd_num = 0; } else { mtrx_nd_pool_used_ = matrix_[fixed_ch_pos].mtrx_nd_pos + matrix_[fixed_ch_pos].mtrx_nd_num; } for (uint16 re_pos = fixed_ch_pos; re_pos < ch_pos; re_pos++) { add_char(pys_[re_pos]); } } else if (fixed_hzs_ > 0 && kLemmaIdComposing == lma_id_[0]) { for (uint16 subpos = 0; subpos < c_phrase_.sublma_num; subpos++) { uint16 splpos_begin = c_phrase_.sublma_start[subpos]; uint16 splpos_end = c_phrase_.sublma_start[subpos + 1]; for (uint16 splpos = splpos_begin; splpos < splpos_end; splpos++) { // If ch_pos is in this spelling uint16 spl_start = c_phrase_.spl_start[splpos]; uint16 spl_end = c_phrase_.spl_start[splpos + 1]; if (ch_pos >= spl_start && ch_pos < spl_end) { // Clear everything after this position c_phrase_.chn_str[splpos] = static_cast<char16>('\0'); c_phrase_.sublma_start[subpos + 1] = splpos; c_phrase_.sublma_num = subpos + 1; c_phrase_.length = splpos; if (splpos == splpos_begin) { c_phrase_.sublma_num = subpos; } } } } // Extend the composing phrase. reset_search0(); dmi_c_phrase_ = true; uint16 c_py_pos = 0; while (c_py_pos < spl_start_[c_phrase_.length]) { bool b_ac_tmp = add_char(pys_[c_py_pos]); assert(b_ac_tmp); c_py_pos++; } dmi_c_phrase_ = false; lma_id_num_ = 1; fixed_lmas_ = 1; fixed_lmas_no1_[0] = 0; // A composing string is always modified. fixed_hzs_ = c_phrase_.length; lma_start_[1] = fixed_hzs_; lma_id_[0] = kLemmaIdComposing; matrix_[spl_start_[fixed_hzs_]].mtrx_nd_fixed = mtrx_nd_pool_ + matrix_[spl_start_[fixed_hzs_]].mtrx_nd_pos; } } return true; } void MatrixSearch::del_in_pys(size_t start, size_t len) { while (start < kMaxRowNum - len && '\0' != pys_[start]) { pys_[start] = pys_[start + len]; start++; } } size_t MatrixSearch::search(const char *py, size_t py_len) { if (!inited_ || NULL == py) return 0; // If the search Pinyin string is too long, it will be truncated. if (py_len > kMaxRowNum - 1) py_len = kMaxRowNum - 1; // Compare the new string with the previous one. Find their prefix to // increase search efficiency. size_t ch_pos = 0; for (ch_pos = 0; ch_pos < pys_decoded_len_; ch_pos++) { if ('\0' == py[ch_pos] || py[ch_pos] != pys_[ch_pos]) break; } bool clear_fix = true; if (ch_pos == pys_decoded_len_) clear_fix = false; reset_search(ch_pos, clear_fix, false, false); memcpy(pys_ + ch_pos, py + ch_pos, py_len - ch_pos); pys_[py_len] = '\0'; while ('\0' != pys_[ch_pos]) { if (!add_char(py[ch_pos])) { pys_decoded_len_ = ch_pos; break; } ch_pos++; } // Get spelling ids and starting positions. get_spl_start_id(); // If there are too many spellings, remove the last letter until the spelling // number is acceptable. while (spl_id_num_ > 9) { py_len--; reset_search(py_len, false, false, false); pys_[py_len] = '\0'; get_spl_start_id(); } prepare_candidates(); if (kPrintDebug0) { printf("--Matrix Node Pool Used: %d\n", mtrx_nd_pool_used_); printf("--DMI Pool Used: %d\n", dmi_pool_used_); if (kPrintDebug1) { for (PoolPosType pos = 0; pos < dmi_pool_used_; pos++) { debug_print_dmi(pos, 1); } } } return ch_pos; } size_t MatrixSearch::delsearch(size_t pos, bool is_pos_in_splid, bool clear_fixed_this_step) { if (!inited_) return 0; size_t reset_pos = pos; // Out of range for both Pinyin mode and Spelling id mode. if (pys_decoded_len_ <= pos) { del_in_pys(pos, 1); reset_pos = pys_decoded_len_; // Decode the string after the un-decoded position while ('\0' != pys_[reset_pos]) { if (!add_char(pys_[reset_pos])) { pys_decoded_len_ = reset_pos; break; } reset_pos++; } get_spl_start_id(); prepare_candidates(); return pys_decoded_len_; } // Spelling id mode, but out of range. if (is_pos_in_splid && spl_id_num_ <= pos) return pys_decoded_len_; // Begin to handle two modes respectively. // Pinyin mode by default size_t c_py_len = 0; // The length of composing phrase's Pinyin size_t del_py_len = 1; if (!is_pos_in_splid) { // Pinyin mode is only allowed to delete beyond the fixed lemmas. if (fixed_lmas_ > 0 && pos < spl_start_[lma_start_[fixed_lmas_]]) return pys_decoded_len_; del_in_pys(pos, 1); // If the deleted character is just the one after the last fixed lemma if (pos == spl_start_[lma_start_[fixed_lmas_]]) { // If all fixed lemmas have been merged, and the caller of the function // request to unlock the last fixed lemma. if (kLemmaIdComposing == lma_id_[0] && clear_fixed_this_step) { // Unlock the last sub lemma in the composing phrase. Because it is not // easy to unlock it directly. Instead, we re-decode the modified // composing phrase. c_phrase_.sublma_num--; c_phrase_.length = c_phrase_.sublma_start[c_phrase_.sublma_num]; reset_pos = spl_start_[c_phrase_.length]; c_py_len = reset_pos; } } } else { del_py_len = spl_start_[pos + 1] - spl_start_[pos]; del_in_pys(spl_start_[pos], del_py_len); if (pos >= lma_start_[fixed_lmas_]) { c_py_len = 0; reset_pos = spl_start_[pos + 1] - del_py_len; } else { c_py_len = spl_start_[lma_start_[fixed_lmas_]] - del_py_len; reset_pos = c_py_len; if (c_py_len > 0) merge_fixed_lmas(pos); } } if (c_py_len > 0) { assert(c_phrase_.length > 0 && c_py_len == c_phrase_.spl_start[c_phrase_.sublma_start[c_phrase_.sublma_num]]); // The composing phrase is valid, reset all search space, // and begin a new search which will only extend the composing // phrase. reset_search0(); dmi_c_phrase_ = true; // Extend the composing phrase. uint16 c_py_pos = 0; while (c_py_pos < c_py_len) { bool b_ac_tmp = add_char(pys_[c_py_pos]); assert(b_ac_tmp); c_py_pos++; } dmi_c_phrase_ = false; // Fixd the composing phrase as the first choice. lma_id_num_ = 1; fixed_lmas_ = 1; fixed_lmas_no1_[0] = 0; // A composing string is always modified. fixed_hzs_ = c_phrase_.length; lma_start_[1] = fixed_hzs_; lma_id_[0] = kLemmaIdComposing; matrix_[spl_start_[fixed_hzs_]].mtrx_nd_fixed = mtrx_nd_pool_ + matrix_[spl_start_[fixed_hzs_]].mtrx_nd_pos; } else { // Reseting search only clear pys_decoded_len_, but the string is kept. reset_search(reset_pos, clear_fixed_this_step, false, false); } // Decode the string after the delete position. while ('\0' != pys_[reset_pos]) { if (!add_char(pys_[reset_pos])) { pys_decoded_len_ = reset_pos; break; } reset_pos++; } get_spl_start_id(); prepare_candidates(); return pys_decoded_len_; } size_t MatrixSearch::get_candidate_num() { if (!inited_ || 0 == pys_decoded_len_ || 0 == matrix_[pys_decoded_len_].mtrx_nd_num) return 0; return 1 + lpi_total_; } char16* MatrixSearch::get_candidate(size_t cand_id, char16 *cand_str, size_t max_len) { if (!inited_ || 0 == pys_decoded_len_ || NULL == cand_str) return NULL; if (0 == cand_id) { return get_candidate0(cand_str, max_len, NULL, false); } else { cand_id--; } // For this case: the current sentence is a word only, and the user fixed it, // so the result will be fixed to the sentence space, and // lpi_total_ will be set to 0. if (0 == lpi_total_) { return get_candidate0(cand_str, max_len, NULL, false); } LemmaIdType id = lpi_items_[cand_id].id; char16 s[kMaxLemmaSize + 1]; uint16 s_len = lpi_items_[cand_id].lma_len; if (s_len > 1) { s_len = get_lemma_str(id, s, kMaxLemmaSize + 1); } else { // For a single character, Hanzi is ready. s[0] = lpi_items_[cand_id].hanzi; s[1] = static_cast<char16>(0); } if (s_len > 0 && max_len > s_len) { utf16_strncpy(cand_str, s, s_len); cand_str[s_len] = (char16)'\0'; return cand_str; } return NULL; } void MatrixSearch::update_dict_freq() { if (NULL != user_dict_) { // Update the total frequency of all lemmas, including system lemmas and // user dictionary lemmas. size_t total_freq = user_dict_->get_total_lemma_count(); dict_trie_->set_total_lemma_count_of_others(total_freq); } } bool MatrixSearch::add_lma_to_userdict(uint16 lma_fr, uint16 lma_to, float score) { if (lma_to - lma_fr <= 1 || NULL == user_dict_) return false; char16 word_str[kMaxLemmaSize + 1]; uint16 spl_ids[kMaxLemmaSize]; uint16 spl_id_fr = 0; for (uint16 pos = lma_fr; pos < lma_to; pos++) { LemmaIdType lma_id = lma_id_[pos]; if (is_user_lemma(lma_id)) { user_dict_->update_lemma(lma_id, 1, true); } uint16 lma_len = lma_start_[pos + 1] - lma_start_[pos]; utf16_strncpy(spl_ids + spl_id_fr, spl_id_ + lma_start_[pos], lma_len); uint16 tmp = get_lemma_str(lma_id, word_str + spl_id_fr, kMaxLemmaSize + 1 - spl_id_fr); assert(tmp == lma_len); tmp = get_lemma_splids(lma_id, spl_ids + spl_id_fr, lma_len, true); if (tmp != lma_len) { return false; } spl_id_fr += lma_len; } assert(spl_id_fr <= kMaxLemmaSize); return user_dict_->put_lemma(static_cast<char16*>(word_str), spl_ids, spl_id_fr, 1); } void MatrixSearch::debug_print_dmi(PoolPosType dmi_pos, uint16 nest_level) { if (dmi_pos >= dmi_pool_used_) return; DictMatchInfo *dmi = dmi_pool_ + dmi_pos; if (1 == nest_level) { printf("-----------------%d\'th DMI node begin----------->\n", dmi_pos); } if (dmi->dict_level > 1) { debug_print_dmi(dmi->dmi_fr, nest_level + 1); } printf("---%d\n", dmi->dict_level); printf(" MileStone: %x, %x\n", dmi->dict_handles[0], dmi->dict_handles[1]); printf(" Spelling : %s, %d\n", SpellingTrie::get_instance(). get_spelling_str(dmi->spl_id), dmi->spl_id); printf(" Total Pinyin Len: %d\n", dmi->splstr_len); if (1 == nest_level) { printf("<----------------%d\'th DMI node end--------------\n\n", dmi_pos); } } bool MatrixSearch::try_add_cand0_to_userdict() { size_t new_cand_num = get_candidate_num(); if (fixed_hzs_ > 0 && 1 == new_cand_num) { float score_from = 0; uint16 lma_id_from = 0; uint16 pos = 0; bool modified = false; while (pos < fixed_lmas_) { if (lma_start_[pos + 1] - lma_start_[lma_id_from] > static_cast<uint16>(kMaxLemmaSize)) { float score_to_add = mtrx_nd_pool_[matrix_[spl_start_[lma_start_[pos]]] .mtrx_nd_pos].score - score_from; if (modified) { score_to_add += 1.0; if (score_to_add > NGram::kMaxScore) { score_to_add = NGram::kMaxScore; } add_lma_to_userdict(lma_id_from, pos, score_to_add); } lma_id_from = pos; score_from += score_to_add; // Clear the flag for next user lemma. modified = false; } if (0 == fixed_lmas_no1_[pos]) { modified = true; } pos++; } // Single-char word is not allowed to add to userdict. if (lma_start_[pos] - lma_start_[lma_id_from] > 1) { float score_to_add = mtrx_nd_pool_[matrix_[spl_start_[lma_start_[pos]]] .mtrx_nd_pos].score - score_from; if (modified) { score_to_add += 1.0; if (score_to_add > NGram::kMaxScore) { score_to_add = NGram::kMaxScore; } add_lma_to_userdict(lma_id_from, pos, score_to_add); } } } return true; } // Choose a candidate, and give new candidates for next step. // If user finishes selection, we will try to communicate with user dictionary // to add new items or update score of some existing items. // // Basic rule: // 1. If user selects the first choice: // 1.1. If the first choice is not a sentence, instead, it is a lemma: // 1.1.1. If the first choice is a user lemma, notify the user // dictionary that a user lemma is hit, and add occuring count // by 1. // 1.1.2. If the first choice is a system lemma, do nothing. // 1.2. If the first choice is a sentence containing more than one lemma: // 1.2.1. The whole sentence will be added as a user lemma. If the // sentence contains user lemmas, -> hit, and add occuring count // by 1. size_t MatrixSearch::choose(size_t cand_id) { if (!inited_ || 0 == pys_decoded_len_) return 0; if (0 == cand_id) { fixed_hzs_ = spl_id_num_; matrix_[spl_start_[fixed_hzs_]].mtrx_nd_fixed = mtrx_nd_pool_ + matrix_[spl_start_[fixed_hzs_]].mtrx_nd_pos; for (size_t pos = fixed_lmas_; pos < lma_id_num_; pos++) { fixed_lmas_no1_[pos] = 1; } fixed_lmas_ = lma_id_num_; lpi_total_ = 0; // Clean all other candidates. // 1. It is the first choice if (1 == lma_id_num_) { // 1.1. The first choice is not a sentence but a lemma if (is_user_lemma(lma_id_[0])) { // 1.1.1. The first choice is a user lemma, notify the user dictionary // that it is hit. if (NULL != user_dict_) user_dict_->update_lemma(lma_id_[0], 1, true); } else { // 1.1.2. do thing for a system lemma. } } else { // 1.2. The first choice is a sentence. // 1.2.1 Try to add the whole sentence to user dictionary, the whole // sentence may be splitted into many items. if (NULL != user_dict_) { try_add_cand0_to_userdict(); } } update_dict_freq(); return 1; } else { cand_id--; } // 2. It is not the full sentence candidate. // Find the length of the candidate. LemmaIdType id_chosen = lpi_items_[cand_id].id; LmaScoreType score_chosen = lpi_items_[cand_id].psb; size_t cand_len = lpi_items_[cand_id].lma_len; assert(cand_len > 0); // Notify the atom dictionary that this item is hit. if (is_user_lemma(id_chosen)) { if (NULL != user_dict_) { user_dict_->update_lemma(id_chosen, 1, true); } update_dict_freq(); } // 3. Fixed the chosen item. // 3.1 Get the steps number. size_t step_fr = spl_start_[fixed_hzs_]; size_t step_to = spl_start_[fixed_hzs_ + cand_len]; // 3.2 Save the length of the original string. size_t pys_decoded_len = pys_decoded_len_; // 3.2 Reset the space of the fixed part. reset_search(step_to, false, false, true); // 3.3 For the last character of the fixed part, the previous DMI // information will be kept, while the MTRX information will be re-extended, // and only one node will be extended. matrix_[step_to].mtrx_nd_num = 0; LmaPsbItem lpi_item; lpi_item.psb = score_chosen; lpi_item.id = id_chosen; PoolPosType step_to_dmi_fr = match_dmi(step_to, spl_id_ + fixed_hzs_, cand_len); assert(step_to_dmi_fr != static_cast<PoolPosType>(-1)); extend_mtrx_nd(matrix_[step_fr].mtrx_nd_fixed, &lpi_item, 1, step_to_dmi_fr, step_to); matrix_[step_to].mtrx_nd_fixed = mtrx_nd_pool_ + matrix_[step_to].mtrx_nd_pos; mtrx_nd_pool_used_ = matrix_[step_to].mtrx_nd_pos + matrix_[step_to].mtrx_nd_num; if (id_chosen == lma_id_[fixed_lmas_]) fixed_lmas_no1_[fixed_lmas_] = 1; else fixed_lmas_no1_[fixed_lmas_] = 0; lma_id_[fixed_lmas_] = id_chosen; lma_start_[fixed_lmas_ + 1] = lma_start_[fixed_lmas_] + cand_len; fixed_lmas_++; fixed_hzs_ = fixed_hzs_ + cand_len; while (step_to != pys_decoded_len) { bool b = add_char(pys_[step_to]); assert(b); step_to++; } if (fixed_hzs_ < spl_id_num_) { prepare_candidates(); } else { lpi_total_ = 0; if (NULL != user_dict_) { try_add_cand0_to_userdict(); } } return get_candidate_num(); } size_t MatrixSearch::cancel_last_choice() { if (!inited_ || 0 == pys_decoded_len_) return 0; size_t step_start = 0; if (fixed_hzs_ > 0) { size_t step_end = spl_start_[fixed_hzs_]; MatrixNode *end_node = matrix_[step_end].mtrx_nd_fixed; assert(NULL != end_node); step_start = end_node->from->step; if (step_start > 0) { DictMatchInfo *dmi = dmi_pool_ + end_node->dmi_fr; fixed_hzs_ -= dmi->dict_level; } else { fixed_hzs_ = 0; } reset_search(step_start, false, false, false); while (pys_[step_start] != '\0') { bool b = add_char(pys_[step_start]); assert(b); step_start++; } prepare_candidates(); } return get_candidate_num(); } size_t MatrixSearch::get_fixedlen() { if (!inited_ || 0 == pys_decoded_len_) return 0; return fixed_hzs_; } bool MatrixSearch::prepare_add_char(char ch) { if (pys_decoded_len_ >= kMaxRowNum - 1 || (!spl_parser_->is_valid_to_parse(ch) && ch != '\'')) return false; if (dmi_pool_used_ >= kDmiPoolSize) return false; pys_[pys_decoded_len_] = ch; pys_decoded_len_++; MatrixRow *mtrx_this_row = matrix_ + pys_decoded_len_; mtrx_this_row->mtrx_nd_pos = mtrx_nd_pool_used_; mtrx_this_row->mtrx_nd_num = 0; mtrx_this_row->dmi_pos = dmi_pool_used_; mtrx_this_row->dmi_num = 0; mtrx_this_row->dmi_has_full_id = 0; return true; } bool MatrixSearch::is_split_at(uint16 pos) { return !spl_parser_->is_valid_to_parse(pys_[pos - 1]); } void MatrixSearch::fill_dmi(DictMatchInfo *dmi, MileStoneHandle *handles, PoolPosType dmi_fr, uint16 spl_id, uint16 node_num, unsigned char dict_level, bool splid_end_split, unsigned char splstr_len, unsigned char all_full_id) { dmi->dict_handles[0] = handles[0]; dmi->dict_handles[1] = handles[1]; dmi->dmi_fr = dmi_fr; dmi->spl_id = spl_id; dmi->dict_level = dict_level; dmi->splid_end_split = splid_end_split ? 1 : 0; dmi->splstr_len = splstr_len; dmi->all_full_id = all_full_id; dmi->c_phrase = 0; } bool MatrixSearch::add_char(char ch) { if (!prepare_add_char(ch)) return false; return add_char_qwerty(); } bool MatrixSearch::add_char_qwerty() { matrix_[pys_decoded_len_].mtrx_nd_num = 0; bool spl_matched = false; uint16 longest_ext = 0; // Extend the search matrix, from the oldest unfixed row. ext_len means // extending length. for (uint16 ext_len = kMaxPinyinSize + 1; ext_len > 0; ext_len--) { if (ext_len > pys_decoded_len_ - spl_start_[fixed_hzs_]) continue; // Refer to the declaration of the variable dmi_has_full_id for the // explanation of this piece of code. In one word, it is used to prevent // from the unwise extending of "shoud ou" but allow the reasonable // extending of "heng ao", "lang a", etc. if (ext_len > 1 && 0 != longest_ext && 0 == matrix_[pys_decoded_len_ - ext_len].dmi_has_full_id) { if (xi_an_enabled_) continue; else break; } uint16 oldrow = pys_decoded_len_ - ext_len; // 0. If that row is before the last fixed step, ignore. if (spl_start_[fixed_hzs_] > oldrow) continue; // 1. Check if that old row has valid MatrixNode. If no, means that row is // not a boundary, either a word boundary or a spelling boundary. // If it is for extending composing phrase, it's OK to ignore the 0. if (0 == matrix_[oldrow].mtrx_nd_num && !dmi_c_phrase_) continue; // 2. Get spelling id(s) for the last ext_len chars. uint16 spl_idx; bool is_pre = false; spl_idx = spl_parser_->get_splid_by_str(pys_ + oldrow, ext_len, &is_pre); if (is_pre) spl_matched = true; if (0 == spl_idx) continue; bool splid_end_split = is_split_at(oldrow + ext_len); // 3. Extend the DMI nodes of that old row // + 1 is to extend an extra node from the root for (PoolPosType dmi_pos = matrix_[oldrow].dmi_pos; dmi_pos < matrix_[oldrow].dmi_pos + matrix_[oldrow].dmi_num + 1; dmi_pos++) { DictMatchInfo *dmi = dmi_pool_ + dmi_pos; if (dmi_pos == matrix_[oldrow].dmi_pos + matrix_[oldrow].dmi_num) { dmi = NULL; // The last one, NULL means extending from the root. } else { // If the dmi is covered by the fixed arrange, ignore it. if (fixed_hzs_ > 0 && pys_decoded_len_ - ext_len - dmi->splstr_len < spl_start_[fixed_hzs_]) { continue; } // If it is not in mode for composing phrase, and the source DMI node // is marked for composing phrase, ignore this node. if (dmi->c_phrase != 0 && !dmi_c_phrase_) { continue; } } // For example, if "gao" is extended, "g ao" is not allowed. // or "zh" has been passed, "z h" is not allowed. // Both word and word-connection will be prevented. if (longest_ext > ext_len) { if (NULL == dmi && 0 == matrix_[oldrow].dmi_has_full_id) { continue; } // "z h" is not allowed. if (NULL != dmi && spl_trie_->is_half_id(dmi->spl_id)) { continue; } } dep_->splids_extended = 0; if (NULL != dmi) { uint16 prev_ids_num = dmi->dict_level; if ((!dmi_c_phrase_ && prev_ids_num >= kMaxLemmaSize) || (dmi_c_phrase_ && prev_ids_num >= kMaxRowNum)) { continue; } DictMatchInfo *d = dmi; while (d) { dep_->splids[--prev_ids_num] = d->spl_id; if ((PoolPosType)-1 == d->dmi_fr) break; d = dmi_pool_ + d->dmi_fr; } assert(0 == prev_ids_num); dep_->splids_extended = dmi->dict_level; } dep_->splids[dep_->splids_extended] = spl_idx; dep_->ext_len = ext_len; dep_->splid_end_split = splid_end_split; dep_->id_num = 1; dep_->id_start = spl_idx; if (spl_trie_->is_half_id(spl_idx)) { // Get the full id list dep_->id_num = spl_trie_->half_to_full(spl_idx, &(dep_->id_start)); assert(dep_->id_num > 0); } uint16 new_dmi_num; new_dmi_num = extend_dmi(dep_, dmi); if (new_dmi_num > 0) { if (dmi_c_phrase_) { dmi_pool_[dmi_pool_used_].c_phrase = 1; } matrix_[pys_decoded_len_].dmi_num += new_dmi_num; dmi_pool_used_ += new_dmi_num; if (!spl_trie_->is_half_id(spl_idx)) matrix_[pys_decoded_len_].dmi_has_full_id = 1; } // If get candiate lemmas, try to extend the path if (lpi_total_ > 0) { uint16 fr_row; if (NULL == dmi) { fr_row = oldrow; } else { assert(oldrow >= dmi->splstr_len); fr_row = oldrow - dmi->splstr_len; } for (PoolPosType mtrx_nd_pos = matrix_[fr_row].mtrx_nd_pos; mtrx_nd_pos < matrix_[fr_row].mtrx_nd_pos + matrix_[fr_row].mtrx_nd_num; mtrx_nd_pos++) { MatrixNode *mtrx_nd = mtrx_nd_pool_ + mtrx_nd_pos; extend_mtrx_nd(mtrx_nd, lpi_items_, lpi_total_, dmi_pool_used_ - new_dmi_num, pys_decoded_len_); if (longest_ext == 0) longest_ext = ext_len; } } } // for dmi_pos } // for ext_len mtrx_nd_pool_used_ += matrix_[pys_decoded_len_].mtrx_nd_num; if (dmi_c_phrase_) return true; return (matrix_[pys_decoded_len_].mtrx_nd_num != 0 || spl_matched); } void MatrixSearch::prepare_candidates() { // Get candiates from the first un-fixed step. uint16 lma_size_max = kMaxLemmaSize; if (lma_size_max > spl_id_num_ - fixed_hzs_) lma_size_max = spl_id_num_ - fixed_hzs_; uint16 lma_size = lma_size_max; // If the full sentense candidate's unfixed part may be the same with a normal // lemma. Remove the lemma candidate in this case. char16 fullsent[kMaxLemmaSize + 1]; char16 *pfullsent = NULL; uint16 sent_len; pfullsent = get_candidate0(fullsent, kMaxLemmaSize + 1, &sent_len, true); // If the unfixed part contains more than one ids, it is not necessary to // check whether a lemma's string is the same to the unfixed part of the full // sentence candidate, so, set it to NULL; if (sent_len > kMaxLemmaSize) pfullsent = NULL; lpi_total_ = 0; size_t lpi_num_full_match = 0; // Number of items which are fully-matched. while (lma_size > 0) { size_t lma_num; lma_num = get_lpis(spl_id_ + fixed_hzs_, lma_size, lpi_items_ + lpi_total_, size_t(kMaxLmaPsbItems - lpi_total_), pfullsent, lma_size == lma_size_max); if (lma_num > 0) { lpi_total_ += lma_num; // For next lemma candidates which are not the longest, it is not // necessary to compare with the full sentence candiate. pfullsent = NULL; } if (lma_size == lma_size_max) { lpi_num_full_match = lpi_total_; } lma_size--; } // Sort those partially-matched items by their unified scores. myqsort(lpi_items_ + lpi_num_full_match, lpi_total_ - lpi_num_full_match, sizeof(LmaPsbItem), cmp_lpi_with_unified_psb); if (kPrintDebug0) { printf("-----Prepare candidates, score:\n"); for (size_t a = 0; a < lpi_total_; a++) { printf("[%03d]%d ", a, lpi_items_[a].psb); if ((a + 1) % 6 == 0) printf("\n"); } printf("\n"); } if (kPrintDebug0) { printf("--- lpi_total_ = %d\n", lpi_total_); } } const char* MatrixSearch::get_pystr(size_t *decoded_len) { if (!inited_ || NULL == decoded_len) return NULL; *decoded_len = pys_decoded_len_; return pys_; } void MatrixSearch::merge_fixed_lmas(size_t del_spl_pos) { if (fixed_lmas_ == 0) return; // Update spelling segmentation information first. spl_id_num_ -= 1; uint16 del_py_len = spl_start_[del_spl_pos + 1] - spl_start_[del_spl_pos]; for (size_t pos = del_spl_pos; pos <= spl_id_num_; pos++) { spl_start_[pos] = spl_start_[pos + 1] - del_py_len; if (pos == spl_id_num_) break; spl_id_[pos] = spl_id_[pos + 1]; } // Begin to merge. uint16 phrase_len = 0; // Update the spelling ids to the composing phrase. // We need to convert these ids into full id in the future. memcpy(c_phrase_.spl_ids, spl_id_, spl_id_num_ * sizeof(uint16)); memcpy(c_phrase_.spl_start, spl_start_, (spl_id_num_ + 1) * sizeof(uint16)); // If composing phrase has not been created, first merge all fixed // lemmas into a composing phrase without deletion. if (fixed_lmas_ > 1 || kLemmaIdComposing != lma_id_[0]) { uint16 bp = 1; // Begin position of real fixed lemmas. // There is no existing composing phrase. if (kLemmaIdComposing != lma_id_[0]) { c_phrase_.sublma_num = 0; bp = 0; } uint16 sub_num = c_phrase_.sublma_num; for (uint16 pos = bp; pos <= fixed_lmas_; pos++) { c_phrase_.sublma_start[sub_num + pos - bp] = lma_start_[pos]; if (lma_start_[pos] > del_spl_pos) { c_phrase_.sublma_start[sub_num + pos - bp] -= 1; } if (pos == fixed_lmas_) break; uint16 lma_len; char16 *lma_str = c_phrase_.chn_str + c_phrase_.sublma_start[sub_num] + phrase_len; lma_len = get_lemma_str(lma_id_[pos], lma_str, kMaxRowNum - phrase_len); assert(lma_len == lma_start_[pos + 1] - lma_start_[pos]); phrase_len += lma_len; } assert(phrase_len == lma_start_[fixed_lmas_]); c_phrase_.length = phrase_len; // will be deleted by 1 c_phrase_.sublma_num += fixed_lmas_ - bp; } else { for (uint16 pos = 0; pos <= c_phrase_.sublma_num; pos++) { if (c_phrase_.sublma_start[pos] > del_spl_pos) { c_phrase_.sublma_start[pos] -= 1; } } phrase_len = c_phrase_.length; } assert(phrase_len > 0); if (1 == phrase_len) { // After the only one is deleted, nothing will be left. fixed_lmas_ = 0; return; } // Delete the Chinese character in the merged phrase. // The corresponding elements in spl_ids and spl_start of the // phrase have been deleted. char16 *chn_str = c_phrase_.chn_str + del_spl_pos; for (uint16 pos = 0; pos < c_phrase_.sublma_start[c_phrase_.sublma_num] - del_spl_pos; pos++) { chn_str[pos] = chn_str[pos + 1]; } c_phrase_.length -= 1; // If the deleted spelling id is in a sub lemma which contains more than // one id, del_a_sub will be false; but if the deleted id is in a sub lemma // which only contains 1 id, the whole sub lemma needs to be deleted, so // del_a_sub will be true. bool del_a_sub = false; for (uint16 pos = 1; pos <= c_phrase_.sublma_num; pos++) { if (c_phrase_.sublma_start[pos - 1] == c_phrase_.sublma_start[pos]) { del_a_sub = true; } if (del_a_sub) { c_phrase_.sublma_start[pos - 1] = c_phrase_.sublma_start[pos]; } } if (del_a_sub) c_phrase_.sublma_num -= 1; return; } void MatrixSearch::get_spl_start_id() { lma_id_num_ = 0; lma_start_[0] = 0; spl_id_num_ = 0; spl_start_[0] = 0; if (!inited_ || 0 == pys_decoded_len_ || 0 == matrix_[pys_decoded_len_].mtrx_nd_num) return; // Calculate number of lemmas and spellings // Only scan those part which is not fixed. lma_id_num_ = fixed_lmas_; spl_id_num_ = fixed_hzs_; MatrixNode *mtrx_nd = mtrx_nd_pool_ + matrix_[pys_decoded_len_].mtrx_nd_pos; while (mtrx_nd != mtrx_nd_pool_) { if (fixed_hzs_ > 0) { if (mtrx_nd->step <= spl_start_[fixed_hzs_]) break; } // Update the spelling segamentation information unsigned char word_splstr_len = 0; PoolPosType dmi_fr = mtrx_nd->dmi_fr; if ((PoolPosType)-1 != dmi_fr) word_splstr_len = dmi_pool_[dmi_fr].splstr_len; while ((PoolPosType)-1 != dmi_fr) { spl_start_[spl_id_num_ + 1] = mtrx_nd->step - (word_splstr_len - dmi_pool_[dmi_fr].splstr_len); spl_id_[spl_id_num_] = dmi_pool_[dmi_fr].spl_id; spl_id_num_++; dmi_fr = dmi_pool_[dmi_fr].dmi_fr; } // Update the lemma segmentation information lma_start_[lma_id_num_ + 1] = spl_id_num_; lma_id_[lma_id_num_] = mtrx_nd->id; lma_id_num_++; mtrx_nd = mtrx_nd->from; } // Reverse the result of spelling info for (size_t pos = fixed_hzs_; pos < fixed_hzs_ + (spl_id_num_ - fixed_hzs_ + 1) / 2; pos++) { if (spl_id_num_ + fixed_hzs_ - pos != pos + 1) { spl_start_[pos + 1] ^= spl_start_[spl_id_num_ - pos + fixed_hzs_]; spl_start_[spl_id_num_ - pos + fixed_hzs_] ^= spl_start_[pos + 1]; spl_start_[pos + 1] ^= spl_start_[spl_id_num_ - pos + fixed_hzs_]; spl_id_[pos] ^= spl_id_[spl_id_num_ + fixed_hzs_ - pos - 1]; spl_id_[spl_id_num_ + fixed_hzs_- pos - 1] ^= spl_id_[pos]; spl_id_[pos] ^= spl_id_[spl_id_num_ + fixed_hzs_- pos - 1]; } } // Reverse the result of lemma info for (size_t pos = fixed_lmas_; pos < fixed_lmas_ + (lma_id_num_ - fixed_lmas_ + 1) / 2; pos++) { assert(lma_id_num_ + fixed_lmas_ - pos - 1 >= pos); if (lma_id_num_ + fixed_lmas_ - pos > pos + 1) { lma_start_[pos + 1] ^= lma_start_[lma_id_num_ - pos + fixed_lmas_]; lma_start_[lma_id_num_ - pos + fixed_lmas_] ^= lma_start_[pos + 1]; lma_start_[pos + 1] ^= lma_start_[lma_id_num_ - pos + fixed_lmas_]; lma_id_[pos] ^= lma_id_[lma_id_num_ - 1 - pos + fixed_lmas_]; lma_id_[lma_id_num_ - 1 - pos + fixed_lmas_] ^= lma_id_[pos]; lma_id_[pos] ^= lma_id_[lma_id_num_ - 1 - pos + fixed_lmas_]; } } for (size_t pos = fixed_lmas_ + 1; pos <= lma_id_num_; pos++) { if (pos < lma_id_num_) lma_start_[pos] = lma_start_[pos - 1] + (lma_start_[pos] - lma_start_[pos + 1]); else lma_start_[pos] = lma_start_[pos - 1] + lma_start_[pos] - lma_start_[fixed_lmas_]; } // Find the last fixed position fixed_hzs_ = 0; for (size_t pos = spl_id_num_; pos > 0; pos--) { if (NULL != matrix_[spl_start_[pos]].mtrx_nd_fixed) { fixed_hzs_ = pos; break; } } return; } size_t MatrixSearch::get_spl_start(const uint16 *&spl_start) { get_spl_start_id(); spl_start = spl_start_; return spl_id_num_; } size_t MatrixSearch::extend_dmi(DictExtPara *dep, DictMatchInfo *dmi_s) { if (dmi_pool_used_ >= kDmiPoolSize) return 0; if (dmi_c_phrase_) return extend_dmi_c(dep, dmi_s); LpiCache& lpi_cache = LpiCache::get_instance(); uint16 splid = dep->splids[dep->splids_extended]; bool cached = false; if (0 == dep->splids_extended) cached = lpi_cache.is_cached(splid); // 1. If this is a half Id, get its corresponding full starting Id and // number of full Id. size_t ret_val = 0; PoolPosType mtrx_dmi_fr = (PoolPosType)-1; // From which dmi node lpi_total_ = 0; MileStoneHandle from_h[3]; from_h[0] = 0; from_h[1] = 0; if (0 != dep->splids_extended) { from_h[0] = dmi_s->dict_handles[0]; from_h[1] = dmi_s->dict_handles[1]; } // 2. Begin exgtending in the system dictionary size_t lpi_num = 0; MileStoneHandle handles[2]; handles[0] = handles[1] = 0; if (from_h[0] > 0 || NULL == dmi_s) { handles[0] = dict_trie_->extend_dict(from_h[0], dep, lpi_items_, kMaxLmaPsbItems, &lpi_num); } if (handles[0] > 0) lpi_total_ = lpi_num; if (NULL == dmi_s) { // from root assert(0 != handles[0]); mtrx_dmi_fr = dmi_pool_used_; } // 3. Begin extending in the user dictionary if (NULL != user_dict_ && (from_h[1] > 0 || NULL == dmi_s)) { handles[1] = user_dict_->extend_dict(from_h[1], dep, lpi_items_ + lpi_total_, kMaxLmaPsbItems - lpi_total_, &lpi_num); if (handles[1] > 0) { if (kPrintDebug0) { for (size_t t = 0; t < lpi_num; t++) { printf("--Extend in user dict: uid:%d uscore:%d\n", lpi_items_[lpi_total_ + t].id, lpi_items_[lpi_total_ + t].psb); } } lpi_total_ += lpi_num; } } if (0 != handles[0] || 0 != handles[1]) { if (dmi_pool_used_ >= kDmiPoolSize) return 0; DictMatchInfo *dmi_add = dmi_pool_ + dmi_pool_used_; if (NULL == dmi_s) { fill_dmi(dmi_add, handles, (PoolPosType)-1, splid, 1, 1, dep->splid_end_split, dep->ext_len, spl_trie_->is_half_id(splid) ? 0 : 1); } else { fill_dmi(dmi_add, handles, dmi_s - dmi_pool_, splid, 1, dmi_s->dict_level + 1, dep->splid_end_split, dmi_s->splstr_len + dep->ext_len, spl_trie_->is_half_id(splid) ? 0 : dmi_s->all_full_id); } ret_val = 1; } if (!cached) { if (0 == lpi_total_) return ret_val; if (kPrintDebug0) { printf("--- lpi_total_ = %d\n", lpi_total_); } myqsort(lpi_items_, lpi_total_, sizeof(LmaPsbItem), cmp_lpi_with_psb); if (NULL == dmi_s && spl_trie_->is_half_id(splid)) lpi_total_ = lpi_cache.put_cache(splid, lpi_items_, lpi_total_); } else { assert(spl_trie_->is_half_id(splid)); lpi_total_ = lpi_cache.get_cache(splid, lpi_items_, kMaxLmaPsbItems); } return ret_val; } size_t MatrixSearch::extend_dmi_c(DictExtPara *dep, DictMatchInfo *dmi_s) { lpi_total_ = 0; uint16 pos = dep->splids_extended; assert(dmi_c_phrase_); if (pos >= c_phrase_.length) return 0; uint16 splid = dep->splids[pos]; if (splid == c_phrase_.spl_ids[pos]) { DictMatchInfo *dmi_add = dmi_pool_ + dmi_pool_used_; MileStoneHandle handles[2]; // Actually never used. if (NULL == dmi_s) fill_dmi(dmi_add, handles, (PoolPosType)-1, splid, 1, 1, dep->splid_end_split, dep->ext_len, spl_trie_->is_half_id(splid) ? 0 : 1); else fill_dmi(dmi_add, handles, dmi_s - dmi_pool_, splid, 1, dmi_s->dict_level + 1, dep->splid_end_split, dmi_s->splstr_len + dep->ext_len, spl_trie_->is_half_id(splid) ? 0 : dmi_s->all_full_id); if (pos == c_phrase_.length - 1) { lpi_items_[0].id = kLemmaIdComposing; lpi_items_[0].psb = 0; // 0 is bigger than normal lemma score. lpi_total_ = 1; } return 1; } return 0; } size_t MatrixSearch::extend_mtrx_nd(MatrixNode *mtrx_nd, LmaPsbItem lpi_items[], size_t lpi_num, PoolPosType dmi_fr, size_t res_row) { assert(NULL != mtrx_nd); matrix_[res_row].mtrx_nd_fixed = NULL; if (mtrx_nd_pool_used_ >= kMtrxNdPoolSize - kMaxNodeARow) return 0; if (0 == mtrx_nd->step) { // Because the list is sorted, if the source step is 0, it is only // necessary to pick up the first kMaxNodeARow items. if (lpi_num > kMaxNodeARow) lpi_num = kMaxNodeARow; } MatrixNode *mtrx_nd_res_min = mtrx_nd_pool_ + matrix_[res_row].mtrx_nd_pos; for (size_t pos = 0; pos < lpi_num; pos++) { float score = mtrx_nd->score + lpi_items[pos].psb; if (pos > 0 && score - PRUMING_SCORE > mtrx_nd_res_min->score) break; // Try to add a new node size_t mtrx_nd_num = matrix_[res_row].mtrx_nd_num; MatrixNode *mtrx_nd_res = mtrx_nd_res_min + mtrx_nd_num; bool replace = false; // Find its position while (mtrx_nd_res > mtrx_nd_res_min && score < (mtrx_nd_res - 1)->score) { if (static_cast<size_t>(mtrx_nd_res - mtrx_nd_res_min) < kMaxNodeARow) *mtrx_nd_res = *(mtrx_nd_res - 1); mtrx_nd_res--; replace = true; } if (replace || (mtrx_nd_num < kMaxNodeARow && matrix_[res_row].mtrx_nd_pos + mtrx_nd_num < kMtrxNdPoolSize)) { mtrx_nd_res->id = lpi_items[pos].id; mtrx_nd_res->score = score; mtrx_nd_res->from = mtrx_nd; mtrx_nd_res->dmi_fr = dmi_fr; mtrx_nd_res->step = res_row; if (matrix_[res_row].mtrx_nd_num < kMaxNodeARow) matrix_[res_row].mtrx_nd_num++; } } return matrix_[res_row].mtrx_nd_num; } PoolPosType MatrixSearch::match_dmi(size_t step_to, uint16 spl_ids[], uint16 spl_id_num) { if (pys_decoded_len_ < step_to || 0 == matrix_[step_to].dmi_num) { return static_cast<PoolPosType>(-1); } for (PoolPosType dmi_pos = 0; dmi_pos < matrix_[step_to].dmi_num; dmi_pos++) { DictMatchInfo *dmi = dmi_pool_ + matrix_[step_to].dmi_pos + dmi_pos; if (dmi->dict_level != spl_id_num) continue; bool matched = true; for (uint16 spl_pos = 0; spl_pos < spl_id_num; spl_pos++) { if (spl_ids[spl_id_num - spl_pos - 1] != dmi->spl_id) { matched = false; break; } dmi = dmi_pool_ + dmi->dmi_fr; } if (matched) { return matrix_[step_to].dmi_pos + dmi_pos; } } return static_cast<PoolPosType>(-1); } char16* MatrixSearch::get_candidate0(char16 *cand_str, size_t max_len, uint16 *retstr_len, bool only_unfixed) { if (pys_decoded_len_ == 0 || matrix_[pys_decoded_len_].mtrx_nd_num == 0) return NULL; LemmaIdType idxs[kMaxRowNum]; size_t id_num = 0; MatrixNode *mtrx_nd = mtrx_nd_pool_ + matrix_[pys_decoded_len_].mtrx_nd_pos; if (kPrintDebug0) { printf("--- sentence score: %f\n", mtrx_nd->score); } if (kPrintDebug1) { printf("==============Sentence DMI (reverse order) begin===========>>\n"); } while (mtrx_nd != NULL) { idxs[id_num] = mtrx_nd->id; id_num++; if (kPrintDebug1) { printf("---MatrixNode [step: %d, lma_idx: %d, total score:%.5f]\n", mtrx_nd->step, mtrx_nd->id, mtrx_nd->score); debug_print_dmi(mtrx_nd->dmi_fr, 1); } mtrx_nd = mtrx_nd->from; } if (kPrintDebug1) { printf("<<==============Sentence DMI (reverse order) end=============\n"); } size_t ret_pos = 0; do { id_num--; if (0 == idxs[id_num]) continue; char16 str[kMaxLemmaSize + 1]; uint16 str_len = get_lemma_str(idxs[id_num], str, kMaxLemmaSize + 1); if (str_len > 0 && ((!only_unfixed && max_len - ret_pos > str_len) || (only_unfixed && max_len - ret_pos + fixed_hzs_ > str_len))) { if (!only_unfixed) utf16_strncpy(cand_str + ret_pos, str, str_len); else if (ret_pos >= fixed_hzs_) utf16_strncpy(cand_str + ret_pos - fixed_hzs_, str, str_len); ret_pos += str_len; } else { return NULL; } } while (id_num != 0); if (!only_unfixed) { if (NULL != retstr_len) *retstr_len = ret_pos; cand_str[ret_pos] = (char16)'\0'; } else { if (NULL != retstr_len) *retstr_len = ret_pos - fixed_hzs_; cand_str[ret_pos - fixed_hzs_] = (char16)'\0'; } return cand_str; } size_t MatrixSearch::get_lpis(const uint16* splid_str, size_t splid_str_len, LmaPsbItem* lma_buf, size_t max_lma_buf, const char16 *pfullsent, bool sort_by_psb) { if (splid_str_len > kMaxLemmaSize) return 0; size_t num1 = dict_trie_->get_lpis(splid_str, splid_str_len, lma_buf, max_lma_buf); size_t num2 = 0; if (NULL != user_dict_) { num2 = user_dict_->get_lpis(splid_str, splid_str_len, lma_buf + num1, max_lma_buf - num1); } size_t num = num1 + num2; if (0 == num) return 0; // Remove repeated items. if (splid_str_len > 1) { LmaPsbStrItem *lpsis = reinterpret_cast<LmaPsbStrItem*>(lma_buf + num); size_t lpsi_num = (max_lma_buf - num) * sizeof(LmaPsbItem) / sizeof(LmaPsbStrItem); assert(lpsi_num > num); if (num > lpsi_num) num = lpsi_num; lpsi_num = num; for (size_t pos = 0; pos < lpsi_num; pos++) { lpsis[pos].lpi = lma_buf[pos]; get_lemma_str(lma_buf[pos].id, lpsis[pos].str, kMaxLemmaSize + 1); } myqsort(lpsis, lpsi_num, sizeof(LmaPsbStrItem), cmp_lpsi_with_str); size_t remain_num = 0; for (size_t pos = 0; pos < lpsi_num; pos++) { if (pos > 0 && utf16_strcmp(lpsis[pos].str, lpsis[pos - 1].str) == 0) { if (lpsis[pos].lpi.psb < lpsis[pos - 1].lpi.psb) { assert(remain_num > 0); lma_buf[remain_num - 1] = lpsis[pos].lpi; } continue; } if (NULL != pfullsent && utf16_strcmp(lpsis[pos].str, pfullsent) == 0) continue; lma_buf[remain_num] = lpsis[pos].lpi; remain_num++; } // Update the result number num = remain_num; } else { // For single character, some characters have more than one spelling, for // example, "de" and "di" are all valid for a Chinese character, so when // the user input "d", repeated items are generated. // For single character lemmas, Hanzis will be gotten for (size_t pos = 0; pos < num; pos++) { char16 hanzis[2]; get_lemma_str(lma_buf[pos].id, hanzis, 2); lma_buf[pos].hanzi = hanzis[0]; } myqsort(lma_buf, num, sizeof(LmaPsbItem), cmp_lpi_with_hanzi); size_t remain_num = 0; for (size_t pos = 0; pos < num; pos++) { if (pos > 0 && lma_buf[pos].hanzi == lma_buf[pos - 1].hanzi) { if (NULL != pfullsent && static_cast<char16>(0) == pfullsent[1] && lma_buf[pos].hanzi == pfullsent[0]) continue; if (lma_buf[pos].psb < lma_buf[pos - 1].psb) { assert(remain_num > 0); assert(lma_buf[remain_num - 1].hanzi == lma_buf[pos].hanzi); lma_buf[remain_num - 1] = lma_buf[pos]; } continue; } if (NULL != pfullsent && static_cast<char16>(0) == pfullsent[1] && lma_buf[pos].hanzi == pfullsent[0]) continue; lma_buf[remain_num] = lma_buf[pos]; remain_num++; } num = remain_num; } if (sort_by_psb) { myqsort(lma_buf, num, sizeof(LmaPsbItem), cmp_lpi_with_psb); } return num; } uint16 MatrixSearch::get_lemma_str(LemmaIdType id_lemma, char16 *str_buf, uint16 str_max) { uint16 str_len = 0; if (is_system_lemma(id_lemma)) { str_len = dict_trie_->get_lemma_str(id_lemma, str_buf, str_max); } else if (is_user_lemma(id_lemma)) { if (NULL != user_dict_) { str_len = user_dict_->get_lemma_str(id_lemma, str_buf, str_max); } else { str_len = 0; str_buf[0] = static_cast<char16>('\0'); } } else if (is_composing_lemma(id_lemma)) { if (str_max <= 1) return 0; str_len = c_phrase_.sublma_start[c_phrase_.sublma_num]; if (str_len > str_max - 1) str_len = str_max - 1; utf16_strncpy(str_buf, c_phrase_.chn_str, str_len); str_buf[str_len] = (char16)'\0'; return str_len; } return str_len; } uint16 MatrixSearch::get_lemma_splids(LemmaIdType id_lemma, uint16 *splids, uint16 splids_max, bool arg_valid) { uint16 splid_num = 0; if (arg_valid) { for (splid_num = 0; splid_num < splids_max; splid_num++) { if (spl_trie_->is_half_id(splids[splid_num])) break; } if (splid_num == splids_max) return splid_num; } if (is_system_lemma(id_lemma)) { splid_num = dict_trie_->get_lemma_splids(id_lemma, splids, splids_max, arg_valid); } else if (is_user_lemma(id_lemma)) { if (NULL != user_dict_) { splid_num = user_dict_->get_lemma_splids(id_lemma, splids, splids_max, arg_valid); } else { splid_num = 0; } } else if (is_composing_lemma(id_lemma)) { if (c_phrase_.length > splids_max) { return 0; } for (uint16 pos = 0; pos < c_phrase_.length; pos++) { splids[pos] = c_phrase_.spl_ids[pos]; if (spl_trie_->is_half_id(splids[pos])) { return 0; } } } return splid_num; } size_t MatrixSearch::inner_predict(const char16 *fixed_buf, uint16 fixed_len, char16 predict_buf[][kMaxPredictSize + 1], size_t buf_len) { size_t res_total = 0; memset(npre_items_, 0, sizeof(NPredictItem) * npre_items_len_); // In order to shorten the comments, j-character candidates predicted by // i-character prefix are called P(i,j). All candiates predicted by // i-character prefix are called P(i,*) // Step 1. Get P(kMaxPredictSize, *) and sort them, here // P(kMaxPredictSize, *) == P(kMaxPredictSize, 1) for (size_t len = fixed_len; len >0; len--) { // How many blank items are available size_t this_max = npre_items_len_ - res_total; size_t res_this; // If the history is longer than 1, and we can not get prediction from // lemmas longer than 2, in this case, we will add lemmas with // highest scores as the prediction result. if (fixed_len > 1 && 1 == len && 0 == res_total) { // Try to find if recent n (n>1) characters can be a valid lemma in system // dictionary. bool nearest_n_word = false; for (size_t nlen = 2; nlen <= fixed_len; nlen++) { if (dict_trie_->get_lemma_id(fixed_buf + fixed_len - nlen, nlen) > 0) { nearest_n_word = true; break; } } res_this = dict_trie_->predict_top_lmas(nearest_n_word ? len : 0, npre_items_ + res_total, this_max, res_total); res_total += res_this; } // How many blank items are available this_max = npre_items_len_ - res_total; res_this = 0; if (!kOnlyUserDictPredict) { res_this = dict_trie_->predict(fixed_buf + fixed_len - len, len, npre_items_ + res_total, this_max, res_total); } if (NULL != user_dict_) { res_this = res_this + user_dict_->predict(fixed_buf + fixed_len - len, len, npre_items_ + res_total + res_this, this_max - res_this, res_total + res_this); } if (kPredictLimitGt1) { myqsort(npre_items_ + res_total, res_this, sizeof(NPredictItem), cmp_npre_by_score); if (len > 3) { if (res_this > kMaxPredictNumByGt3) res_this = kMaxPredictNumByGt3; } else if (3 == len) { if (res_this > kMaxPredictNumBy3) res_this = kMaxPredictNumBy3; } else if (2 == len) { if (res_this > kMaxPredictNumBy2) res_this = kMaxPredictNumBy2; } } res_total += res_this; } res_total = remove_duplicate_npre(npre_items_, res_total); if (kPreferLongHistoryPredict) { myqsort(npre_items_, res_total, sizeof(NPredictItem), cmp_npre_by_hislen_score); } else { myqsort(npre_items_, res_total, sizeof(NPredictItem), cmp_npre_by_score); } if (buf_len < res_total) { res_total = buf_len; } if (kPrintDebug2) { printf("/////////////////Predicted Items Begin////////////////////>>\n"); for (size_t i = 0; i < res_total; i++) { printf("---"); for (size_t j = 0; j < kMaxPredictSize; j++) { printf("%d ", npre_items_[i].pre_hzs[j]); } printf("\n"); } printf("<<///////////////Predicted Items End////////////////////////\n"); } for (size_t i = 0; i < res_total; i++) { utf16_strncpy(predict_buf[i], npre_items_[i].pre_hzs, kMaxPredictSize); predict_buf[i][kMaxPredictSize] = '\0'; } return res_total; } size_t MatrixSearch::get_predicts(const char16 fixed_buf[], char16 predict_buf[][kMaxPredictSize + 1], size_t buf_len) { size_t fixed_len = utf16_strlen(fixed_buf); if (0 ==fixed_len || fixed_len > kMaxPredictSize || 0 == buf_len) return 0; return inner_predict(fixed_buf, fixed_len, predict_buf, buf_len); } } // namespace ime_pinyin