//===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CGRECORDLAYOUT_H
#define CLANG_CODEGEN_CGRECORDLAYOUT_H
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/DerivedTypes.h"
namespace llvm {
class StructType;
}
namespace clang {
namespace CodeGen {
/// \brief Helper object for describing how to generate the code for access to a
/// bit-field.
///
/// This structure is intended to describe the "policy" of how the bit-field
/// should be accessed, which may be target, language, or ABI dependent.
class CGBitFieldInfo {
public:
/// Descriptor for a single component of a bit-field access. The entire
/// bit-field is constituted of a bitwise OR of all of the individual
/// components.
///
/// Each component describes an accessed value, which is how the component
/// should be transferred to/from memory, and a target placement, which is how
/// that component fits into the constituted bit-field. The pseudo-IR for a
/// load is:
///
/// %0 = gep %base, 0, FieldIndex
/// %1 = gep (i8*) %0, FieldByteOffset
/// %2 = (i(AccessWidth) *) %1
/// %3 = load %2, align AccessAlignment
/// %4 = shr %3, FieldBitStart
///
/// and the composed bit-field is formed as the boolean OR of all accesses,
/// masked to TargetBitWidth bits and shifted to TargetBitOffset.
struct AccessInfo {
/// Offset of the field to load in the LLVM structure, if any.
unsigned FieldIndex;
/// Byte offset from the field address, if any. This should generally be
/// unused as the cleanest IR comes from having a well-constructed LLVM type
/// with proper GEP instructions, but sometimes its use is required, for
/// example if an access is intended to straddle an LLVM field boundary.
CharUnits FieldByteOffset;
/// Bit offset in the accessed value to use. The width is implied by \see
/// TargetBitWidth.
unsigned FieldBitStart;
/// Bit width of the memory access to perform.
unsigned AccessWidth;
/// The alignment of the memory access, or 0 if the default alignment should
/// be used.
//
// FIXME: Remove use of 0 to encode default, instead have IRgen do the right
// thing when it generates the code, if avoiding align directives is
// desired.
CharUnits AccessAlignment;
/// Offset for the target value.
unsigned TargetBitOffset;
/// Number of bits in the access that are destined for the bit-field.
unsigned TargetBitWidth;
};
private:
/// The components to use to access the bit-field. We may need up to three
/// separate components to support up to i64 bit-field access (4 + 2 + 1 byte
/// accesses).
//
// FIXME: De-hardcode this, just allocate following the struct.
AccessInfo Components[3];
/// The total size of the bit-field, in bits.
unsigned Size;
/// The number of access components to use.
unsigned NumComponents;
/// Whether the bit-field is signed.
bool IsSigned : 1;
public:
CGBitFieldInfo(unsigned Size, unsigned NumComponents, AccessInfo *_Components,
bool IsSigned) : Size(Size), NumComponents(NumComponents),
IsSigned(IsSigned) {
assert(NumComponents <= 3 && "invalid number of components!");
for (unsigned i = 0; i != NumComponents; ++i)
Components[i] = _Components[i];
// Check some invariants.
unsigned AccessedSize = 0;
for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
const AccessInfo &AI = getComponent(i);
AccessedSize += AI.TargetBitWidth;
// We shouldn't try to load 0 bits.
assert(AI.TargetBitWidth > 0);
// We can't load more bits than we accessed.
assert(AI.FieldBitStart + AI.TargetBitWidth <= AI.AccessWidth);
// We shouldn't put any bits outside the result size.
assert(AI.TargetBitWidth + AI.TargetBitOffset <= Size);
}
// Check that the total number of target bits matches the total bit-field
// size.
assert(AccessedSize == Size && "Total size does not match accessed size!");
}
public:
/// \brief Check whether this bit-field access is (i.e., should be sign
/// extended on loads).
bool isSigned() const { return IsSigned; }
/// \brief Get the size of the bit-field, in bits.
unsigned getSize() const { return Size; }
/// @name Component Access
/// @{
unsigned getNumComponents() const { return NumComponents; }
const AccessInfo &getComponent(unsigned Index) const {
assert(Index < getNumComponents() && "Invalid access!");
return Components[Index];
}
/// @}
void print(raw_ostream &OS) const;
void dump() const;
/// \brief Given a bit-field decl, build an appropriate helper object for
/// accessing that field (which is expected to have the given offset and
/// size).
static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, const FieldDecl *FD,
uint64_t FieldOffset, uint64_t FieldSize);
/// \brief Given a bit-field decl, build an appropriate helper object for
/// accessing that field (which is expected to have the given offset and
/// size). The field decl should be known to be contained within a type of at
/// least the given size and with the given alignment.
static CGBitFieldInfo MakeInfo(CodeGenTypes &Types, const FieldDecl *FD,
uint64_t FieldOffset, uint64_t FieldSize,
uint64_t ContainingTypeSizeInBits,
unsigned ContainingTypeAlign);
};
/// CGRecordLayout - This class handles struct and union layout info while
/// lowering AST types to LLVM types.
///
/// These layout objects are only created on demand as IR generation requires.
class CGRecordLayout {
friend class CodeGenTypes;
CGRecordLayout(const CGRecordLayout&); // DO NOT IMPLEMENT
void operator=(const CGRecordLayout&); // DO NOT IMPLEMENT
private:
/// The LLVM type corresponding to this record layout; used when
/// laying it out as a complete object.
llvm::StructType *CompleteObjectType;
/// The LLVM type for the non-virtual part of this record layout;
/// used when laying it out as a base subobject.
llvm::StructType *BaseSubobjectType;
/// Map from (non-bit-field) struct field to the corresponding llvm struct
/// type field no. This info is populated by record builder.
llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo;
/// Map from (bit-field) struct field to the corresponding llvm struct type
/// field no. This info is populated by record builder.
llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
// FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single
// map for both virtual and non virtual bases.
llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
/// Map from virtual bases to their field index in the complete object.
llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases;
/// False if any direct or indirect subobject of this class, when
/// considered as a complete object, requires a non-zero bitpattern
/// when zero-initialized.
bool IsZeroInitializable : 1;
/// False if any direct or indirect subobject of this class, when
/// considered as a base subobject, requires a non-zero bitpattern
/// when zero-initialized.
bool IsZeroInitializableAsBase : 1;
public:
CGRecordLayout(llvm::StructType *CompleteObjectType,
llvm::StructType *BaseSubobjectType,
bool IsZeroInitializable,
bool IsZeroInitializableAsBase)
: CompleteObjectType(CompleteObjectType),
BaseSubobjectType(BaseSubobjectType),
IsZeroInitializable(IsZeroInitializable),
IsZeroInitializableAsBase(IsZeroInitializableAsBase) {}
/// \brief Return the "complete object" LLVM type associated with
/// this record.
llvm::StructType *getLLVMType() const {
return CompleteObjectType;
}
/// \brief Return the "base subobject" LLVM type associated with
/// this record.
llvm::StructType *getBaseSubobjectLLVMType() const {
return BaseSubobjectType;
}
/// \brief Check whether this struct can be C++ zero-initialized
/// with a zeroinitializer.
bool isZeroInitializable() const {
return IsZeroInitializable;
}
/// \brief Check whether this struct can be C++ zero-initialized
/// with a zeroinitializer when considered as a base subobject.
bool isZeroInitializableAsBase() const {
return IsZeroInitializableAsBase;
}
/// \brief Return llvm::StructType element number that corresponds to the
/// field FD.
unsigned getLLVMFieldNo(const FieldDecl *FD) const {
assert(!FD->isBitField() && "Invalid call for bit-field decl!");
assert(FieldInfo.count(FD) && "Invalid field for record!");
return FieldInfo.lookup(FD);
}
unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const {
assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!");
return NonVirtualBases.lookup(RD);
}
/// \brief Return the LLVM field index corresponding to the given
/// virtual base. Only valid when operating on the complete object.
unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const {
assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!");
return CompleteObjectVirtualBases.lookup(base);
}
/// \brief Return the BitFieldInfo that corresponds to the field FD.
const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const {
assert(FD->isBitField() && "Invalid call for non bit-field decl!");
llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator
it = BitFields.find(FD);
assert(it != BitFields.end() && "Unable to find bitfield info");
return it->second;
}
void print(raw_ostream &OS) const;
void dump() const;
};
} // end namespace CodeGen
} // end namespace clang
#endif