//===--- SemaPseudoObject.cpp - Semantic Analysis for Pseudo-Objects ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions involving
// pseudo-object references. Pseudo-objects are conceptual objects
// whose storage is entirely abstract and all accesses to which are
// translated through some sort of abstraction barrier.
//
// For example, Objective-C objects can have "properties", either
// declared or undeclared. A property may be accessed by writing
// expr.prop
// where 'expr' is an r-value of Objective-C pointer type and 'prop'
// is the name of the property. If this expression is used in a context
// needing an r-value, it is treated as if it were a message-send
// of the associated 'getter' selector, typically:
// [expr prop]
// If it is used as the LHS of a simple assignment, it is treated
// as a message-send of the associated 'setter' selector, typically:
// [expr setProp: RHS]
// If it is used as the LHS of a compound assignment, or the operand
// of a unary increment or decrement, both are required; for example,
// 'expr.prop *= 100' would be translated to:
// [expr setProp: [expr prop] * 100]
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Initialization.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
using namespace sema;
namespace {
// Basically just a very focused copy of TreeTransform.
template <class T> struct Rebuilder {
Sema &S;
Rebuilder(Sema &S) : S(S) {}
T &getDerived() { return static_cast<T&>(*this); }
Expr *rebuild(Expr *e) {
// Fast path: nothing to look through.
if (typename T::specific_type *specific
= dyn_cast<typename T::specific_type>(e))
return getDerived().rebuildSpecific(specific);
// Otherwise, we should look through and rebuild anything that
// IgnoreParens would.
if (ParenExpr *parens = dyn_cast<ParenExpr>(e)) {
e = rebuild(parens->getSubExpr());
return new (S.Context) ParenExpr(parens->getLParen(),
parens->getRParen(),
e);
}
if (UnaryOperator *uop = dyn_cast<UnaryOperator>(e)) {
assert(uop->getOpcode() == UO_Extension);
e = rebuild(uop->getSubExpr());
return new (S.Context) UnaryOperator(e, uop->getOpcode(),
uop->getType(),
uop->getValueKind(),
uop->getObjectKind(),
uop->getOperatorLoc());
}
if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
assert(!gse->isResultDependent());
unsigned resultIndex = gse->getResultIndex();
unsigned numAssocs = gse->getNumAssocs();
SmallVector<Expr*, 8> assocs(numAssocs);
SmallVector<TypeSourceInfo*, 8> assocTypes(numAssocs);
for (unsigned i = 0; i != numAssocs; ++i) {
Expr *assoc = gse->getAssocExpr(i);
if (i == resultIndex) assoc = rebuild(assoc);
assocs[i] = assoc;
assocTypes[i] = gse->getAssocTypeSourceInfo(i);
}
return new (S.Context) GenericSelectionExpr(S.Context,
gse->getGenericLoc(),
gse->getControllingExpr(),
assocTypes.data(),
assocs.data(),
numAssocs,
gse->getDefaultLoc(),
gse->getRParenLoc(),
gse->containsUnexpandedParameterPack(),
resultIndex);
}
llvm_unreachable("bad expression to rebuild!");
}
};
struct ObjCPropertyRefRebuilder : Rebuilder<ObjCPropertyRefRebuilder> {
Expr *NewBase;
ObjCPropertyRefRebuilder(Sema &S, Expr *newBase)
: Rebuilder<ObjCPropertyRefRebuilder>(S), NewBase(newBase) {}
typedef ObjCPropertyRefExpr specific_type;
Expr *rebuildSpecific(ObjCPropertyRefExpr *refExpr) {
// Fortunately, the constraint that we're rebuilding something
// with a base limits the number of cases here.
assert(refExpr->getBase());
if (refExpr->isExplicitProperty()) {
return new (S.Context)
ObjCPropertyRefExpr(refExpr->getExplicitProperty(),
refExpr->getType(), refExpr->getValueKind(),
refExpr->getObjectKind(), refExpr->getLocation(),
NewBase);
}
return new (S.Context)
ObjCPropertyRefExpr(refExpr->getImplicitPropertyGetter(),
refExpr->getImplicitPropertySetter(),
refExpr->getType(), refExpr->getValueKind(),
refExpr->getObjectKind(),refExpr->getLocation(),
NewBase);
}
};
struct ObjCSubscriptRefRebuilder : Rebuilder<ObjCSubscriptRefRebuilder> {
Expr *NewBase;
Expr *NewKeyExpr;
ObjCSubscriptRefRebuilder(Sema &S, Expr *newBase, Expr *newKeyExpr)
: Rebuilder<ObjCSubscriptRefRebuilder>(S),
NewBase(newBase), NewKeyExpr(newKeyExpr) {}
typedef ObjCSubscriptRefExpr specific_type;
Expr *rebuildSpecific(ObjCSubscriptRefExpr *refExpr) {
assert(refExpr->getBaseExpr());
assert(refExpr->getKeyExpr());
return new (S.Context)
ObjCSubscriptRefExpr(NewBase,
NewKeyExpr,
refExpr->getType(), refExpr->getValueKind(),
refExpr->getObjectKind(),refExpr->getAtIndexMethodDecl(),
refExpr->setAtIndexMethodDecl(),
refExpr->getRBracket());
}
};
class PseudoOpBuilder {
public:
Sema &S;
unsigned ResultIndex;
SourceLocation GenericLoc;
SmallVector<Expr *, 4> Semantics;
PseudoOpBuilder(Sema &S, SourceLocation genericLoc)
: S(S), ResultIndex(PseudoObjectExpr::NoResult),
GenericLoc(genericLoc) {}
virtual ~PseudoOpBuilder() {}
/// Add a normal semantic expression.
void addSemanticExpr(Expr *semantic) {
Semantics.push_back(semantic);
}
/// Add the 'result' semantic expression.
void addResultSemanticExpr(Expr *resultExpr) {
assert(ResultIndex == PseudoObjectExpr::NoResult);
ResultIndex = Semantics.size();
Semantics.push_back(resultExpr);
}
ExprResult buildRValueOperation(Expr *op);
ExprResult buildAssignmentOperation(Scope *Sc,
SourceLocation opLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS);
ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc,
UnaryOperatorKind opcode,
Expr *op);
ExprResult complete(Expr *syntacticForm);
OpaqueValueExpr *capture(Expr *op);
OpaqueValueExpr *captureValueAsResult(Expr *op);
void setResultToLastSemantic() {
assert(ResultIndex == PseudoObjectExpr::NoResult);
ResultIndex = Semantics.size() - 1;
}
/// Return true if assignments have a non-void result.
virtual bool assignmentsHaveResult() { return true; }
virtual Expr *rebuildAndCaptureObject(Expr *) = 0;
virtual ExprResult buildGet() = 0;
virtual ExprResult buildSet(Expr *, SourceLocation,
bool captureSetValueAsResult) = 0;
};
/// A PseudoOpBuilder for Objective-C @properties.
class ObjCPropertyOpBuilder : public PseudoOpBuilder {
ObjCPropertyRefExpr *RefExpr;
ObjCPropertyRefExpr *SyntacticRefExpr;
OpaqueValueExpr *InstanceReceiver;
ObjCMethodDecl *Getter;
ObjCMethodDecl *Setter;
Selector SetterSelector;
Selector GetterSelector;
public:
ObjCPropertyOpBuilder(Sema &S, ObjCPropertyRefExpr *refExpr) :
PseudoOpBuilder(S, refExpr->getLocation()), RefExpr(refExpr),
SyntacticRefExpr(0), InstanceReceiver(0), Getter(0), Setter(0) {
}
ExprResult buildRValueOperation(Expr *op);
ExprResult buildAssignmentOperation(Scope *Sc,
SourceLocation opLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS);
ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc,
UnaryOperatorKind opcode,
Expr *op);
bool tryBuildGetOfReference(Expr *op, ExprResult &result);
bool findSetter();
bool findGetter();
Expr *rebuildAndCaptureObject(Expr *syntacticBase);
ExprResult buildGet();
ExprResult buildSet(Expr *op, SourceLocation, bool);
};
/// A PseudoOpBuilder for Objective-C array/dictionary indexing.
class ObjCSubscriptOpBuilder : public PseudoOpBuilder {
ObjCSubscriptRefExpr *RefExpr;
OpaqueValueExpr *InstanceBase;
OpaqueValueExpr *InstanceKey;
ObjCMethodDecl *AtIndexGetter;
Selector AtIndexGetterSelector;
ObjCMethodDecl *AtIndexSetter;
Selector AtIndexSetterSelector;
public:
ObjCSubscriptOpBuilder(Sema &S, ObjCSubscriptRefExpr *refExpr) :
PseudoOpBuilder(S, refExpr->getSourceRange().getBegin()),
RefExpr(refExpr),
InstanceBase(0), InstanceKey(0),
AtIndexGetter(0), AtIndexSetter(0) { }
ExprResult buildRValueOperation(Expr *op);
ExprResult buildAssignmentOperation(Scope *Sc,
SourceLocation opLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS);
Expr *rebuildAndCaptureObject(Expr *syntacticBase);
bool findAtIndexGetter();
bool findAtIndexSetter();
ExprResult buildGet();
ExprResult buildSet(Expr *op, SourceLocation, bool);
};
}
/// Capture the given expression in an OpaqueValueExpr.
OpaqueValueExpr *PseudoOpBuilder::capture(Expr *e) {
// Make a new OVE whose source is the given expression.
OpaqueValueExpr *captured =
new (S.Context) OpaqueValueExpr(GenericLoc, e->getType(),
e->getValueKind(), e->getObjectKind(),
e);
// Make sure we bind that in the semantics.
addSemanticExpr(captured);
return captured;
}
/// Capture the given expression as the result of this pseudo-object
/// operation. This routine is safe against expressions which may
/// already be captured.
///
/// \param Returns the captured expression, which will be the
/// same as the input if the input was already captured
OpaqueValueExpr *PseudoOpBuilder::captureValueAsResult(Expr *e) {
assert(ResultIndex == PseudoObjectExpr::NoResult);
// If the expression hasn't already been captured, just capture it
// and set the new semantic
if (!isa<OpaqueValueExpr>(e)) {
OpaqueValueExpr *cap = capture(e);
setResultToLastSemantic();
return cap;
}
// Otherwise, it must already be one of our semantic expressions;
// set ResultIndex to its index.
unsigned index = 0;
for (;; ++index) {
assert(index < Semantics.size() &&
"captured expression not found in semantics!");
if (e == Semantics[index]) break;
}
ResultIndex = index;
return cast<OpaqueValueExpr>(e);
}
/// The routine which creates the final PseudoObjectExpr.
ExprResult PseudoOpBuilder::complete(Expr *syntactic) {
return PseudoObjectExpr::Create(S.Context, syntactic,
Semantics, ResultIndex);
}
/// The main skeleton for building an r-value operation.
ExprResult PseudoOpBuilder::buildRValueOperation(Expr *op) {
Expr *syntacticBase = rebuildAndCaptureObject(op);
ExprResult getExpr = buildGet();
if (getExpr.isInvalid()) return ExprError();
addResultSemanticExpr(getExpr.take());
return complete(syntacticBase);
}
/// The basic skeleton for building a simple or compound
/// assignment operation.
ExprResult
PseudoOpBuilder::buildAssignmentOperation(Scope *Sc, SourceLocation opcLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS) {
assert(BinaryOperator::isAssignmentOp(opcode));
Expr *syntacticLHS = rebuildAndCaptureObject(LHS);
OpaqueValueExpr *capturedRHS = capture(RHS);
Expr *syntactic;
ExprResult result;
if (opcode == BO_Assign) {
result = capturedRHS;
syntactic = new (S.Context) BinaryOperator(syntacticLHS, capturedRHS,
opcode, capturedRHS->getType(),
capturedRHS->getValueKind(),
OK_Ordinary, opcLoc);
} else {
ExprResult opLHS = buildGet();
if (opLHS.isInvalid()) return ExprError();
// Build an ordinary, non-compound operation.
BinaryOperatorKind nonCompound =
BinaryOperator::getOpForCompoundAssignment(opcode);
result = S.BuildBinOp(Sc, opcLoc, nonCompound,
opLHS.take(), capturedRHS);
if (result.isInvalid()) return ExprError();
syntactic =
new (S.Context) CompoundAssignOperator(syntacticLHS, capturedRHS, opcode,
result.get()->getType(),
result.get()->getValueKind(),
OK_Ordinary,
opLHS.get()->getType(),
result.get()->getType(),
opcLoc);
}
// The result of the assignment, if not void, is the value set into
// the l-value.
result = buildSet(result.take(), opcLoc, assignmentsHaveResult());
if (result.isInvalid()) return ExprError();
addSemanticExpr(result.take());
return complete(syntactic);
}
/// The basic skeleton for building an increment or decrement
/// operation.
ExprResult
PseudoOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc,
UnaryOperatorKind opcode,
Expr *op) {
assert(UnaryOperator::isIncrementDecrementOp(opcode));
Expr *syntacticOp = rebuildAndCaptureObject(op);
// Load the value.
ExprResult result = buildGet();
if (result.isInvalid()) return ExprError();
QualType resultType = result.get()->getType();
// That's the postfix result.
if (UnaryOperator::isPostfix(opcode) && assignmentsHaveResult()) {
result = capture(result.take());
setResultToLastSemantic();
}
// Add or subtract a literal 1.
llvm::APInt oneV(S.Context.getTypeSize(S.Context.IntTy), 1);
Expr *one = IntegerLiteral::Create(S.Context, oneV, S.Context.IntTy,
GenericLoc);
if (UnaryOperator::isIncrementOp(opcode)) {
result = S.BuildBinOp(Sc, opcLoc, BO_Add, result.take(), one);
} else {
result = S.BuildBinOp(Sc, opcLoc, BO_Sub, result.take(), one);
}
if (result.isInvalid()) return ExprError();
// Store that back into the result. The value stored is the result
// of a prefix operation.
result = buildSet(result.take(), opcLoc,
UnaryOperator::isPrefix(opcode) && assignmentsHaveResult());
if (result.isInvalid()) return ExprError();
addSemanticExpr(result.take());
UnaryOperator *syntactic =
new (S.Context) UnaryOperator(syntacticOp, opcode, resultType,
VK_LValue, OK_Ordinary, opcLoc);
return complete(syntactic);
}
//===----------------------------------------------------------------------===//
// Objective-C @property and implicit property references
//===----------------------------------------------------------------------===//
/// Look up a method in the receiver type of an Objective-C property
/// reference.
static ObjCMethodDecl *LookupMethodInReceiverType(Sema &S, Selector sel,
const ObjCPropertyRefExpr *PRE) {
if (PRE->isObjectReceiver()) {
const ObjCObjectPointerType *PT =
PRE->getBase()->getType()->castAs<ObjCObjectPointerType>();
// Special case for 'self' in class method implementations.
if (PT->isObjCClassType() &&
S.isSelfExpr(const_cast<Expr*>(PRE->getBase()))) {
// This cast is safe because isSelfExpr is only true within
// methods.
ObjCMethodDecl *method =
cast<ObjCMethodDecl>(S.CurContext->getNonClosureAncestor());
return S.LookupMethodInObjectType(sel,
S.Context.getObjCInterfaceType(method->getClassInterface()),
/*instance*/ false);
}
return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true);
}
if (PRE->isSuperReceiver()) {
if (const ObjCObjectPointerType *PT =
PRE->getSuperReceiverType()->getAs<ObjCObjectPointerType>())
return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true);
return S.LookupMethodInObjectType(sel, PRE->getSuperReceiverType(), false);
}
assert(PRE->isClassReceiver() && "Invalid expression");
QualType IT = S.Context.getObjCInterfaceType(PRE->getClassReceiver());
return S.LookupMethodInObjectType(sel, IT, false);
}
bool ObjCPropertyOpBuilder::findGetter() {
if (Getter) return true;
// For implicit properties, just trust the lookup we already did.
if (RefExpr->isImplicitProperty()) {
if ((Getter = RefExpr->getImplicitPropertyGetter())) {
GetterSelector = Getter->getSelector();
return true;
}
else {
// Must build the getter selector the hard way.
ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter();
assert(setter && "both setter and getter are null - cannot happen");
IdentifierInfo *setterName =
setter->getSelector().getIdentifierInfoForSlot(0);
const char *compStr = setterName->getNameStart();
compStr += 3;
IdentifierInfo *getterName = &S.Context.Idents.get(compStr);
GetterSelector =
S.PP.getSelectorTable().getNullarySelector(getterName);
return false;
}
}
ObjCPropertyDecl *prop = RefExpr->getExplicitProperty();
Getter = LookupMethodInReceiverType(S, prop->getGetterName(), RefExpr);
return (Getter != 0);
}
/// Try to find the most accurate setter declaration for the property
/// reference.
///
/// \return true if a setter was found, in which case Setter
bool ObjCPropertyOpBuilder::findSetter() {
// For implicit properties, just trust the lookup we already did.
if (RefExpr->isImplicitProperty()) {
if (ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter()) {
Setter = setter;
SetterSelector = setter->getSelector();
return true;
} else {
IdentifierInfo *getterName =
RefExpr->getImplicitPropertyGetter()->getSelector()
.getIdentifierInfoForSlot(0);
SetterSelector =
SelectorTable::constructSetterName(S.PP.getIdentifierTable(),
S.PP.getSelectorTable(),
getterName);
return false;
}
}
// For explicit properties, this is more involved.
ObjCPropertyDecl *prop = RefExpr->getExplicitProperty();
SetterSelector = prop->getSetterName();
// Do a normal method lookup first.
if (ObjCMethodDecl *setter =
LookupMethodInReceiverType(S, SetterSelector, RefExpr)) {
Setter = setter;
return true;
}
// That can fail in the somewhat crazy situation that we're
// type-checking a message send within the @interface declaration
// that declared the @property. But it's not clear that that's
// valuable to support.
return false;
}
/// Capture the base object of an Objective-C property expression.
Expr *ObjCPropertyOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) {
assert(InstanceReceiver == 0);
// If we have a base, capture it in an OVE and rebuild the syntactic
// form to use the OVE as its base.
if (RefExpr->isObjectReceiver()) {
InstanceReceiver = capture(RefExpr->getBase());
syntacticBase =
ObjCPropertyRefRebuilder(S, InstanceReceiver).rebuild(syntacticBase);
}
if (ObjCPropertyRefExpr *
refE = dyn_cast<ObjCPropertyRefExpr>(syntacticBase->IgnoreParens()))
SyntacticRefExpr = refE;
return syntacticBase;
}
/// Load from an Objective-C property reference.
ExprResult ObjCPropertyOpBuilder::buildGet() {
findGetter();
assert(Getter);
if (SyntacticRefExpr)
SyntacticRefExpr->setIsMessagingGetter();
QualType receiverType;
if (RefExpr->isClassReceiver()) {
receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver());
} else if (RefExpr->isSuperReceiver()) {
receiverType = RefExpr->getSuperReceiverType();
} else {
assert(InstanceReceiver);
receiverType = InstanceReceiver->getType();
}
// Build a message-send.
ExprResult msg;
if (Getter->isInstanceMethod() || RefExpr->isObjectReceiver()) {
assert(InstanceReceiver || RefExpr->isSuperReceiver());
msg = S.BuildInstanceMessageImplicit(InstanceReceiver, receiverType,
GenericLoc, Getter->getSelector(),
Getter, MultiExprArg());
} else {
msg = S.BuildClassMessageImplicit(receiverType, RefExpr->isSuperReceiver(),
GenericLoc,
Getter->getSelector(), Getter,
MultiExprArg());
}
return msg;
}
/// Store to an Objective-C property reference.
///
/// \param bindSetValueAsResult - If true, capture the actual
/// value being set as the value of the property operation.
ExprResult ObjCPropertyOpBuilder::buildSet(Expr *op, SourceLocation opcLoc,
bool captureSetValueAsResult) {
bool hasSetter = findSetter();
assert(hasSetter); (void) hasSetter;
if (SyntacticRefExpr)
SyntacticRefExpr->setIsMessagingSetter();
QualType receiverType;
if (RefExpr->isClassReceiver()) {
receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver());
} else if (RefExpr->isSuperReceiver()) {
receiverType = RefExpr->getSuperReceiverType();
} else {
assert(InstanceReceiver);
receiverType = InstanceReceiver->getType();
}
// Use assignment constraints when possible; they give us better
// diagnostics. "When possible" basically means anything except a
// C++ class type.
if (!S.getLangOpts().CPlusPlus || !op->getType()->isRecordType()) {
QualType paramType = (*Setter->param_begin())->getType();
if (!S.getLangOpts().CPlusPlus || !paramType->isRecordType()) {
ExprResult opResult = op;
Sema::AssignConvertType assignResult
= S.CheckSingleAssignmentConstraints(paramType, opResult);
if (S.DiagnoseAssignmentResult(assignResult, opcLoc, paramType,
op->getType(), opResult.get(),
Sema::AA_Assigning))
return ExprError();
op = opResult.take();
assert(op && "successful assignment left argument invalid?");
}
}
// Arguments.
Expr *args[] = { op };
// Build a message-send.
ExprResult msg;
if (Setter->isInstanceMethod() || RefExpr->isObjectReceiver()) {
msg = S.BuildInstanceMessageImplicit(InstanceReceiver, receiverType,
GenericLoc, SetterSelector, Setter,
MultiExprArg(args, 1));
} else {
msg = S.BuildClassMessageImplicit(receiverType, RefExpr->isSuperReceiver(),
GenericLoc,
SetterSelector, Setter,
MultiExprArg(args, 1));
}
if (!msg.isInvalid() && captureSetValueAsResult) {
ObjCMessageExpr *msgExpr =
cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit());
Expr *arg = msgExpr->getArg(0);
msgExpr->setArg(0, captureValueAsResult(arg));
}
return msg;
}
/// @property-specific behavior for doing lvalue-to-rvalue conversion.
ExprResult ObjCPropertyOpBuilder::buildRValueOperation(Expr *op) {
// Explicit properties always have getters, but implicit ones don't.
// Check that before proceeding.
if (RefExpr->isImplicitProperty() &&
!RefExpr->getImplicitPropertyGetter()) {
S.Diag(RefExpr->getLocation(), diag::err_getter_not_found)
<< RefExpr->getBase()->getType();
return ExprError();
}
ExprResult result = PseudoOpBuilder::buildRValueOperation(op);
if (result.isInvalid()) return ExprError();
if (RefExpr->isExplicitProperty() && !Getter->hasRelatedResultType())
S.DiagnosePropertyAccessorMismatch(RefExpr->getExplicitProperty(),
Getter, RefExpr->getLocation());
// As a special case, if the method returns 'id', try to get
// a better type from the property.
if (RefExpr->isExplicitProperty() && result.get()->isRValue() &&
result.get()->getType()->isObjCIdType()) {
QualType propType = RefExpr->getExplicitProperty()->getType();
if (const ObjCObjectPointerType *ptr
= propType->getAs<ObjCObjectPointerType>()) {
if (!ptr->isObjCIdType())
result = S.ImpCastExprToType(result.get(), propType, CK_BitCast);
}
}
return result;
}
/// Try to build this as a call to a getter that returns a reference.
///
/// \return true if it was possible, whether or not it actually
/// succeeded
bool ObjCPropertyOpBuilder::tryBuildGetOfReference(Expr *op,
ExprResult &result) {
if (!S.getLangOpts().CPlusPlus) return false;
findGetter();
assert(Getter && "property has no setter and no getter!");
// Only do this if the getter returns an l-value reference type.
QualType resultType = Getter->getResultType();
if (!resultType->isLValueReferenceType()) return false;
result = buildRValueOperation(op);
return true;
}
/// @property-specific behavior for doing assignments.
ExprResult
ObjCPropertyOpBuilder::buildAssignmentOperation(Scope *Sc,
SourceLocation opcLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS) {
assert(BinaryOperator::isAssignmentOp(opcode));
// If there's no setter, we have no choice but to try to assign to
// the result of the getter.
if (!findSetter()) {
ExprResult result;
if (tryBuildGetOfReference(LHS, result)) {
if (result.isInvalid()) return ExprError();
return S.BuildBinOp(Sc, opcLoc, opcode, result.take(), RHS);
}
// Otherwise, it's an error.
S.Diag(opcLoc, diag::err_nosetter_property_assignment)
<< unsigned(RefExpr->isImplicitProperty())
<< SetterSelector
<< LHS->getSourceRange() << RHS->getSourceRange();
return ExprError();
}
// If there is a setter, we definitely want to use it.
// Verify that we can do a compound assignment.
if (opcode != BO_Assign && !findGetter()) {
S.Diag(opcLoc, diag::err_nogetter_property_compound_assignment)
<< LHS->getSourceRange() << RHS->getSourceRange();
return ExprError();
}
ExprResult result =
PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS);
if (result.isInvalid()) return ExprError();
// Various warnings about property assignments in ARC.
if (S.getLangOpts().ObjCAutoRefCount && InstanceReceiver) {
S.checkRetainCycles(InstanceReceiver->getSourceExpr(), RHS);
S.checkUnsafeExprAssigns(opcLoc, LHS, RHS);
}
return result;
}
/// @property-specific behavior for doing increments and decrements.
ExprResult
ObjCPropertyOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc,
UnaryOperatorKind opcode,
Expr *op) {
// If there's no setter, we have no choice but to try to assign to
// the result of the getter.
if (!findSetter()) {
ExprResult result;
if (tryBuildGetOfReference(op, result)) {
if (result.isInvalid()) return ExprError();
return S.BuildUnaryOp(Sc, opcLoc, opcode, result.take());
}
// Otherwise, it's an error.
S.Diag(opcLoc, diag::err_nosetter_property_incdec)
<< unsigned(RefExpr->isImplicitProperty())
<< unsigned(UnaryOperator::isDecrementOp(opcode))
<< SetterSelector
<< op->getSourceRange();
return ExprError();
}
// If there is a setter, we definitely want to use it.
// We also need a getter.
if (!findGetter()) {
assert(RefExpr->isImplicitProperty());
S.Diag(opcLoc, diag::err_nogetter_property_incdec)
<< unsigned(UnaryOperator::isDecrementOp(opcode))
<< GetterSelector
<< op->getSourceRange();
return ExprError();
}
return PseudoOpBuilder::buildIncDecOperation(Sc, opcLoc, opcode, op);
}
// ObjCSubscript build stuff.
//
/// objective-c subscripting-specific behavior for doing lvalue-to-rvalue
/// conversion.
/// FIXME. Remove this routine if it is proven that no additional
/// specifity is needed.
ExprResult ObjCSubscriptOpBuilder::buildRValueOperation(Expr *op) {
ExprResult result = PseudoOpBuilder::buildRValueOperation(op);
if (result.isInvalid()) return ExprError();
return result;
}
/// objective-c subscripting-specific behavior for doing assignments.
ExprResult
ObjCSubscriptOpBuilder::buildAssignmentOperation(Scope *Sc,
SourceLocation opcLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS) {
assert(BinaryOperator::isAssignmentOp(opcode));
// There must be a method to do the Index'ed assignment.
if (!findAtIndexSetter())
return ExprError();
// Verify that we can do a compound assignment.
if (opcode != BO_Assign && !findAtIndexGetter())
return ExprError();
ExprResult result =
PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS);
if (result.isInvalid()) return ExprError();
// Various warnings about objc Index'ed assignments in ARC.
if (S.getLangOpts().ObjCAutoRefCount && InstanceBase) {
S.checkRetainCycles(InstanceBase->getSourceExpr(), RHS);
S.checkUnsafeExprAssigns(opcLoc, LHS, RHS);
}
return result;
}
/// Capture the base object of an Objective-C Index'ed expression.
Expr *ObjCSubscriptOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) {
assert(InstanceBase == 0);
// Capture base expression in an OVE and rebuild the syntactic
// form to use the OVE as its base expression.
InstanceBase = capture(RefExpr->getBaseExpr());
InstanceKey = capture(RefExpr->getKeyExpr());
syntacticBase =
ObjCSubscriptRefRebuilder(S, InstanceBase,
InstanceKey).rebuild(syntacticBase);
return syntacticBase;
}
/// CheckSubscriptingKind - This routine decide what type
/// of indexing represented by "FromE" is being done.
Sema::ObjCSubscriptKind
Sema::CheckSubscriptingKind(Expr *FromE) {
// If the expression already has integral or enumeration type, we're golden.
QualType T = FromE->getType();
if (T->isIntegralOrEnumerationType())
return OS_Array;
// If we don't have a class type in C++, there's no way we can get an
// expression of integral or enumeration type.
const RecordType *RecordTy = T->getAs<RecordType>();
if (!RecordTy && T->isObjCObjectPointerType())
// All other scalar cases are assumed to be dictionary indexing which
// caller handles, with diagnostics if needed.
return OS_Dictionary;
if (!getLangOpts().CPlusPlus ||
!RecordTy || RecordTy->isIncompleteType()) {
// No indexing can be done. Issue diagnostics and quit.
const Expr *IndexExpr = FromE->IgnoreParenImpCasts();
if (isa<StringLiteral>(IndexExpr))
Diag(FromE->getExprLoc(), diag::err_objc_subscript_pointer)
<< T << FixItHint::CreateInsertion(FromE->getExprLoc(), "@");
else
Diag(FromE->getExprLoc(), diag::err_objc_subscript_type_conversion)
<< T;
return OS_Error;
}
// We must have a complete class type.
if (RequireCompleteType(FromE->getExprLoc(), T,
PDiag(diag::err_objc_index_incomplete_class_type)
<< FromE->getSourceRange()))
return OS_Error;
// Look for a conversion to an integral, enumeration type, or
// objective-C pointer type.
UnresolvedSet<4> ViableConversions;
UnresolvedSet<4> ExplicitConversions;
const UnresolvedSetImpl *Conversions
= cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
int NoIntegrals=0, NoObjCIdPointers=0;
SmallVector<CXXConversionDecl *, 4> ConversionDecls;
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
E = Conversions->end();
I != E;
++I) {
if (CXXConversionDecl *Conversion
= dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
QualType CT = Conversion->getConversionType().getNonReferenceType();
if (CT->isIntegralOrEnumerationType()) {
++NoIntegrals;
ConversionDecls.push_back(Conversion);
}
else if (CT->isObjCIdType() ||CT->isBlockPointerType()) {
++NoObjCIdPointers;
ConversionDecls.push_back(Conversion);
}
}
}
if (NoIntegrals ==1 && NoObjCIdPointers == 0)
return OS_Array;
if (NoIntegrals == 0 && NoObjCIdPointers == 1)
return OS_Dictionary;
if (NoIntegrals == 0 && NoObjCIdPointers == 0) {
// No conversion function was found. Issue diagnostic and return.
Diag(FromE->getExprLoc(), diag::err_objc_subscript_type_conversion)
<< FromE->getType();
return OS_Error;
}
Diag(FromE->getExprLoc(), diag::err_objc_multiple_subscript_type_conversion)
<< FromE->getType();
for (unsigned int i = 0; i < ConversionDecls.size(); i++)
Diag(ConversionDecls[i]->getLocation(), diag::not_conv_function_declared_at);
return OS_Error;
}
bool ObjCSubscriptOpBuilder::findAtIndexGetter() {
if (AtIndexGetter)
return true;
Expr *BaseExpr = RefExpr->getBaseExpr();
QualType BaseT = BaseExpr->getType();
QualType ResultType;
if (const ObjCObjectPointerType *PTy =
BaseT->getAs<ObjCObjectPointerType>()) {
ResultType = PTy->getPointeeType();
if (const ObjCObjectType *iQFaceTy =
ResultType->getAsObjCQualifiedInterfaceType())
ResultType = iQFaceTy->getBaseType();
}
Sema::ObjCSubscriptKind Res =
S.CheckSubscriptingKind(RefExpr->getKeyExpr());
if (Res == Sema::OS_Error)
return false;
bool arrayRef = (Res == Sema::OS_Array);
if (ResultType.isNull()) {
S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_base_type)
<< BaseExpr->getType() << arrayRef;
return false;
}
if (!arrayRef) {
// dictionary subscripting.
// - (id)objectForKeyedSubscript:(id)key;
IdentifierInfo *KeyIdents[] = {
&S.Context.Idents.get("objectForKeyedSubscript")
};
AtIndexGetterSelector = S.Context.Selectors.getSelector(1, KeyIdents);
}
else {
// - (id)objectAtIndexedSubscript:(size_t)index;
IdentifierInfo *KeyIdents[] = {
&S.Context.Idents.get("objectAtIndexedSubscript")
};
AtIndexGetterSelector = S.Context.Selectors.getSelector(1, KeyIdents);
}
AtIndexGetter = S.LookupMethodInObjectType(AtIndexGetterSelector, ResultType,
true /*instance*/);
bool receiverIdType = (BaseT->isObjCIdType() ||
BaseT->isObjCQualifiedIdType());
if (!AtIndexGetter && S.getLangOpts().DebuggerObjCLiteral) {
AtIndexGetter = ObjCMethodDecl::Create(S.Context, SourceLocation(),
SourceLocation(), AtIndexGetterSelector,
S.Context.getObjCIdType() /*ReturnType*/,
0 /*TypeSourceInfo */,
S.Context.getTranslationUnitDecl(),
true /*Instance*/, false/*isVariadic*/,
/*isSynthesized=*/false,
/*isImplicitlyDeclared=*/true, /*isDefined=*/false,
ObjCMethodDecl::Required,
false);
ParmVarDecl *Argument = ParmVarDecl::Create(S.Context, AtIndexGetter,
SourceLocation(), SourceLocation(),
arrayRef ? &S.Context.Idents.get("index")
: &S.Context.Idents.get("key"),
arrayRef ? S.Context.UnsignedLongTy
: S.Context.getObjCIdType(),
/*TInfo=*/0,
SC_None,
SC_None,
0);
AtIndexGetter->setMethodParams(S.Context, Argument,
ArrayRef<SourceLocation>());
}
if (!AtIndexGetter) {
if (!receiverIdType) {
S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_method_not_found)
<< BaseExpr->getType() << 0 << arrayRef;
return false;
}
AtIndexGetter =
S.LookupInstanceMethodInGlobalPool(AtIndexGetterSelector,
RefExpr->getSourceRange(),
true, false);
}
if (AtIndexGetter) {
QualType T = AtIndexGetter->param_begin()[0]->getType();
if ((arrayRef && !T->isIntegralOrEnumerationType()) ||
(!arrayRef && !T->isObjCObjectPointerType())) {
S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
arrayRef ? diag::err_objc_subscript_index_type
: diag::err_objc_subscript_key_type) << T;
S.Diag(AtIndexGetter->param_begin()[0]->getLocation(),
diag::note_parameter_type) << T;
return false;
}
QualType R = AtIndexGetter->getResultType();
if (!R->isObjCObjectPointerType()) {
S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
diag::err_objc_indexing_method_result_type) << R << arrayRef;
S.Diag(AtIndexGetter->getLocation(), diag::note_method_declared_at) <<
AtIndexGetter->getDeclName();
}
}
return true;
}
bool ObjCSubscriptOpBuilder::findAtIndexSetter() {
if (AtIndexSetter)
return true;
Expr *BaseExpr = RefExpr->getBaseExpr();
QualType BaseT = BaseExpr->getType();
QualType ResultType;
if (const ObjCObjectPointerType *PTy =
BaseT->getAs<ObjCObjectPointerType>()) {
ResultType = PTy->getPointeeType();
if (const ObjCObjectType *iQFaceTy =
ResultType->getAsObjCQualifiedInterfaceType())
ResultType = iQFaceTy->getBaseType();
}
Sema::ObjCSubscriptKind Res =
S.CheckSubscriptingKind(RefExpr->getKeyExpr());
if (Res == Sema::OS_Error)
return false;
bool arrayRef = (Res == Sema::OS_Array);
if (ResultType.isNull()) {
S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_base_type)
<< BaseExpr->getType() << arrayRef;
return false;
}
if (!arrayRef) {
// dictionary subscripting.
// - (void)setObject:(id)object forKeyedSubscript:(id)key;
IdentifierInfo *KeyIdents[] = {
&S.Context.Idents.get("setObject"),
&S.Context.Idents.get("forKeyedSubscript")
};
AtIndexSetterSelector = S.Context.Selectors.getSelector(2, KeyIdents);
}
else {
// - (void)setObject:(id)object atIndexedSubscript:(NSInteger)index;
IdentifierInfo *KeyIdents[] = {
&S.Context.Idents.get("setObject"),
&S.Context.Idents.get("atIndexedSubscript")
};
AtIndexSetterSelector = S.Context.Selectors.getSelector(2, KeyIdents);
}
AtIndexSetter = S.LookupMethodInObjectType(AtIndexSetterSelector, ResultType,
true /*instance*/);
bool receiverIdType = (BaseT->isObjCIdType() ||
BaseT->isObjCQualifiedIdType());
if (!AtIndexSetter && S.getLangOpts().DebuggerObjCLiteral) {
TypeSourceInfo *ResultTInfo = 0;
QualType ReturnType = S.Context.VoidTy;
AtIndexSetter = ObjCMethodDecl::Create(S.Context, SourceLocation(),
SourceLocation(), AtIndexSetterSelector,
ReturnType,
ResultTInfo,
S.Context.getTranslationUnitDecl(),
true /*Instance*/, false/*isVariadic*/,
/*isSynthesized=*/false,
/*isImplicitlyDeclared=*/true, /*isDefined=*/false,
ObjCMethodDecl::Required,
false);
SmallVector<ParmVarDecl *, 2> Params;
ParmVarDecl *object = ParmVarDecl::Create(S.Context, AtIndexSetter,
SourceLocation(), SourceLocation(),
&S.Context.Idents.get("object"),
S.Context.getObjCIdType(),
/*TInfo=*/0,
SC_None,
SC_None,
0);
Params.push_back(object);
ParmVarDecl *key = ParmVarDecl::Create(S.Context, AtIndexSetter,
SourceLocation(), SourceLocation(),
arrayRef ? &S.Context.Idents.get("index")
: &S.Context.Idents.get("key"),
arrayRef ? S.Context.UnsignedLongTy
: S.Context.getObjCIdType(),
/*TInfo=*/0,
SC_None,
SC_None,
0);
Params.push_back(key);
AtIndexSetter->setMethodParams(S.Context, Params, ArrayRef<SourceLocation>());
}
if (!AtIndexSetter) {
if (!receiverIdType) {
S.Diag(BaseExpr->getExprLoc(),
diag::err_objc_subscript_method_not_found)
<< BaseExpr->getType() << 1 << arrayRef;
return false;
}
AtIndexSetter =
S.LookupInstanceMethodInGlobalPool(AtIndexSetterSelector,
RefExpr->getSourceRange(),
true, false);
}
bool err = false;
if (AtIndexSetter && arrayRef) {
QualType T = AtIndexSetter->param_begin()[1]->getType();
if (!T->isIntegralOrEnumerationType()) {
S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
diag::err_objc_subscript_index_type) << T;
S.Diag(AtIndexSetter->param_begin()[1]->getLocation(),
diag::note_parameter_type) << T;
err = true;
}
T = AtIndexSetter->param_begin()[0]->getType();
if (!T->isObjCObjectPointerType()) {
S.Diag(RefExpr->getBaseExpr()->getExprLoc(),
diag::err_objc_subscript_object_type) << T << arrayRef;
S.Diag(AtIndexSetter->param_begin()[0]->getLocation(),
diag::note_parameter_type) << T;
err = true;
}
}
else if (AtIndexSetter && !arrayRef)
for (unsigned i=0; i <2; i++) {
QualType T = AtIndexSetter->param_begin()[i]->getType();
if (!T->isObjCObjectPointerType()) {
if (i == 1)
S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
diag::err_objc_subscript_key_type) << T;
else
S.Diag(RefExpr->getBaseExpr()->getExprLoc(),
diag::err_objc_subscript_dic_object_type) << T;
S.Diag(AtIndexSetter->param_begin()[i]->getLocation(),
diag::note_parameter_type) << T;
err = true;
}
}
return !err;
}
// Get the object at "Index" position in the container.
// [BaseExpr objectAtIndexedSubscript : IndexExpr];
ExprResult ObjCSubscriptOpBuilder::buildGet() {
if (!findAtIndexGetter())
return ExprError();
QualType receiverType = InstanceBase->getType();
// Build a message-send.
ExprResult msg;
Expr *Index = InstanceKey;
// Arguments.
Expr *args[] = { Index };
assert(InstanceBase);
msg = S.BuildInstanceMessageImplicit(InstanceBase, receiverType,
GenericLoc,
AtIndexGetterSelector, AtIndexGetter,
MultiExprArg(args, 1));
return msg;
}
/// Store into the container the "op" object at "Index"'ed location
/// by building this messaging expression:
/// - (void)setObject:(id)object atIndexedSubscript:(NSInteger)index;
/// \param bindSetValueAsResult - If true, capture the actual
/// value being set as the value of the property operation.
ExprResult ObjCSubscriptOpBuilder::buildSet(Expr *op, SourceLocation opcLoc,
bool captureSetValueAsResult) {
if (!findAtIndexSetter())
return ExprError();
QualType receiverType = InstanceBase->getType();
Expr *Index = InstanceKey;
// Arguments.
Expr *args[] = { op, Index };
// Build a message-send.
ExprResult msg = S.BuildInstanceMessageImplicit(InstanceBase, receiverType,
GenericLoc,
AtIndexSetterSelector,
AtIndexSetter,
MultiExprArg(args, 2));
if (!msg.isInvalid() && captureSetValueAsResult) {
ObjCMessageExpr *msgExpr =
cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit());
Expr *arg = msgExpr->getArg(0);
msgExpr->setArg(0, captureValueAsResult(arg));
}
return msg;
}
//===----------------------------------------------------------------------===//
// General Sema routines.
//===----------------------------------------------------------------------===//
ExprResult Sema::checkPseudoObjectRValue(Expr *E) {
Expr *opaqueRef = E->IgnoreParens();
if (ObjCPropertyRefExpr *refExpr
= dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
ObjCPropertyOpBuilder builder(*this, refExpr);
return builder.buildRValueOperation(E);
}
else if (ObjCSubscriptRefExpr *refExpr
= dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) {
ObjCSubscriptOpBuilder builder(*this, refExpr);
return builder.buildRValueOperation(E);
} else {
llvm_unreachable("unknown pseudo-object kind!");
}
}
/// Check an increment or decrement of a pseudo-object expression.
ExprResult Sema::checkPseudoObjectIncDec(Scope *Sc, SourceLocation opcLoc,
UnaryOperatorKind opcode, Expr *op) {
// Do nothing if the operand is dependent.
if (op->isTypeDependent())
return new (Context) UnaryOperator(op, opcode, Context.DependentTy,
VK_RValue, OK_Ordinary, opcLoc);
assert(UnaryOperator::isIncrementDecrementOp(opcode));
Expr *opaqueRef = op->IgnoreParens();
if (ObjCPropertyRefExpr *refExpr
= dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
ObjCPropertyOpBuilder builder(*this, refExpr);
return builder.buildIncDecOperation(Sc, opcLoc, opcode, op);
} else if (isa<ObjCSubscriptRefExpr>(opaqueRef)) {
Diag(opcLoc, diag::err_illegal_container_subscripting_op);
return ExprError();
} else {
llvm_unreachable("unknown pseudo-object kind!");
}
}
ExprResult Sema::checkPseudoObjectAssignment(Scope *S, SourceLocation opcLoc,
BinaryOperatorKind opcode,
Expr *LHS, Expr *RHS) {
// Do nothing if either argument is dependent.
if (LHS->isTypeDependent() || RHS->isTypeDependent())
return new (Context) BinaryOperator(LHS, RHS, opcode, Context.DependentTy,
VK_RValue, OK_Ordinary, opcLoc);
// Filter out non-overload placeholder types in the RHS.
if (RHS->getType()->isNonOverloadPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(RHS);
if (result.isInvalid()) return ExprError();
RHS = result.take();
}
Expr *opaqueRef = LHS->IgnoreParens();
if (ObjCPropertyRefExpr *refExpr
= dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
ObjCPropertyOpBuilder builder(*this, refExpr);
return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS);
} else if (ObjCSubscriptRefExpr *refExpr
= dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) {
ObjCSubscriptOpBuilder builder(*this, refExpr);
return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS);
} else {
llvm_unreachable("unknown pseudo-object kind!");
}
}
/// Given a pseudo-object reference, rebuild it without the opaque
/// values. Basically, undo the behavior of rebuildAndCaptureObject.
/// This should never operate in-place.
static Expr *stripOpaqueValuesFromPseudoObjectRef(Sema &S, Expr *E) {
Expr *opaqueRef = E->IgnoreParens();
if (ObjCPropertyRefExpr *refExpr
= dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
// Class and super property references don't have opaque values in them.
if (refExpr->isClassReceiver() || refExpr->isSuperReceiver())
return E;
assert(refExpr->isObjectReceiver() && "Unknown receiver kind?");
OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBase());
return ObjCPropertyRefRebuilder(S, baseOVE->getSourceExpr()).rebuild(E);
} else if (ObjCSubscriptRefExpr *refExpr
= dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) {
OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBaseExpr());
OpaqueValueExpr *keyOVE = cast<OpaqueValueExpr>(refExpr->getKeyExpr());
return ObjCSubscriptRefRebuilder(S, baseOVE->getSourceExpr(),
keyOVE->getSourceExpr()).rebuild(E);
} else {
llvm_unreachable("unknown pseudo-object kind!");
}
}
/// Given a pseudo-object expression, recreate what it looks like
/// syntactically without the attendant OpaqueValueExprs.
///
/// This is a hack which should be removed when TreeTransform is
/// capable of rebuilding a tree without stripping implicit
/// operations.
Expr *Sema::recreateSyntacticForm(PseudoObjectExpr *E) {
Expr *syntax = E->getSyntacticForm();
if (UnaryOperator *uop = dyn_cast<UnaryOperator>(syntax)) {
Expr *op = stripOpaqueValuesFromPseudoObjectRef(*this, uop->getSubExpr());
return new (Context) UnaryOperator(op, uop->getOpcode(), uop->getType(),
uop->getValueKind(), uop->getObjectKind(),
uop->getOperatorLoc());
} else if (CompoundAssignOperator *cop
= dyn_cast<CompoundAssignOperator>(syntax)) {
Expr *lhs = stripOpaqueValuesFromPseudoObjectRef(*this, cop->getLHS());
Expr *rhs = cast<OpaqueValueExpr>(cop->getRHS())->getSourceExpr();
return new (Context) CompoundAssignOperator(lhs, rhs, cop->getOpcode(),
cop->getType(),
cop->getValueKind(),
cop->getObjectKind(),
cop->getComputationLHSType(),
cop->getComputationResultType(),
cop->getOperatorLoc());
} else if (BinaryOperator *bop = dyn_cast<BinaryOperator>(syntax)) {
Expr *lhs = stripOpaqueValuesFromPseudoObjectRef(*this, bop->getLHS());
Expr *rhs = cast<OpaqueValueExpr>(bop->getRHS())->getSourceExpr();
return new (Context) BinaryOperator(lhs, rhs, bop->getOpcode(),
bop->getType(), bop->getValueKind(),
bop->getObjectKind(),
bop->getOperatorLoc());
} else {
assert(syntax->hasPlaceholderType(BuiltinType::PseudoObject));
return stripOpaqueValuesFromPseudoObjectRef(*this, syntax);
}
}