//===-- asan_interface_test.cc ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <vector>
#include "asan_test_config.h"
#include "asan_test_utils.h"
#include "asan_interface.h"
TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
EXPECT_EQ(1, __asan_get_estimated_allocated_size(0));
const size_t sizes[] = { 1, 30, 1<<30 };
for (size_t i = 0; i < 3; i++) {
EXPECT_EQ(sizes[i], __asan_get_estimated_allocated_size(sizes[i]));
}
}
static const char* kGetAllocatedSizeErrorMsg =
"attempting to call __asan_get_allocated_size()";
TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
const size_t kArraySize = 100;
char *array = Ident((char*)malloc(kArraySize));
int *int_ptr = Ident(new int);
// Allocated memory is owned by allocator. Allocated size should be
// equal to requested size.
EXPECT_EQ(true, __asan_get_ownership(array));
EXPECT_EQ(kArraySize, __asan_get_allocated_size(array));
EXPECT_EQ(true, __asan_get_ownership(int_ptr));
EXPECT_EQ(sizeof(int), __asan_get_allocated_size(int_ptr));
// We cannot call GetAllocatedSize from the memory we didn't map,
// and from the interior pointers (not returned by previous malloc).
void *wild_addr = (void*)0x1;
EXPECT_EQ(false, __asan_get_ownership(wild_addr));
EXPECT_DEATH(__asan_get_allocated_size(wild_addr), kGetAllocatedSizeErrorMsg);
EXPECT_EQ(false, __asan_get_ownership(array + kArraySize / 2));
EXPECT_DEATH(__asan_get_allocated_size(array + kArraySize / 2),
kGetAllocatedSizeErrorMsg);
// NULL is not owned, but is a valid argument for __asan_get_allocated_size().
EXPECT_EQ(false, __asan_get_ownership(NULL));
EXPECT_EQ(0, __asan_get_allocated_size(NULL));
// When memory is freed, it's not owned, and call to GetAllocatedSize
// is forbidden.
free(array);
EXPECT_EQ(false, __asan_get_ownership(array));
EXPECT_DEATH(__asan_get_allocated_size(array), kGetAllocatedSizeErrorMsg);
delete int_ptr;
}
TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
size_t before_malloc, after_malloc, after_free;
char *array;
const size_t kMallocSize = 100;
before_malloc = __asan_get_current_allocated_bytes();
array = Ident((char*)malloc(kMallocSize));
after_malloc = __asan_get_current_allocated_bytes();
EXPECT_EQ(before_malloc + kMallocSize, after_malloc);
free(array);
after_free = __asan_get_current_allocated_bytes();
EXPECT_EQ(before_malloc, after_free);
}
static void DoDoubleFree() {
int *x = Ident(new int);
delete Ident(x);
delete Ident(x);
}
// This test is run in a separate process, so that large malloced
// chunk won't remain in the free lists after the test.
// Note: use ASSERT_* instead of EXPECT_* here.
static void RunGetHeapSizeTestAndDie() {
size_t old_heap_size, new_heap_size, heap_growth;
// We unlikely have have chunk of this size in free list.
static const size_t kLargeMallocSize = 1 << 29; // 512M
old_heap_size = __asan_get_heap_size();
fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
free(Ident(malloc(kLargeMallocSize)));
new_heap_size = __asan_get_heap_size();
heap_growth = new_heap_size - old_heap_size;
fprintf(stderr, "heap growth after first malloc: %zu\n", heap_growth);
ASSERT_GE(heap_growth, kLargeMallocSize);
ASSERT_LE(heap_growth, 2 * kLargeMallocSize);
// Now large chunk should fall into free list, and can be
// allocated without increasing heap size.
old_heap_size = new_heap_size;
free(Ident(malloc(kLargeMallocSize)));
heap_growth = __asan_get_heap_size() - old_heap_size;
fprintf(stderr, "heap growth after second malloc: %zu\n", heap_growth);
ASSERT_LT(heap_growth, kLargeMallocSize);
// Test passed. Now die with expected double-free.
DoDoubleFree();
}
TEST(AddressSanitizerInterface, GetHeapSizeTest) {
EXPECT_DEATH(RunGetHeapSizeTestAndDie(), "double-free");
}
// Note: use ASSERT_* instead of EXPECT_* here.
static void DoLargeMallocForGetFreeBytesTestAndDie() {
size_t old_free_bytes, new_free_bytes;
static const size_t kLargeMallocSize = 1 << 29; // 512M
// If we malloc and free a large memory chunk, it will not fall
// into quarantine and will be available for future requests.
old_free_bytes = __asan_get_free_bytes();
fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
fprintf(stderr, "free bytes before malloc: %zu\n", old_free_bytes);
free(Ident(malloc(kLargeMallocSize)));
new_free_bytes = __asan_get_free_bytes();
fprintf(stderr, "free bytes after malloc and free: %zu\n", new_free_bytes);
ASSERT_GE(new_free_bytes, old_free_bytes + kLargeMallocSize);
// Test passed.
DoDoubleFree();
}
TEST(AddressSanitizerInterface, GetFreeBytesTest) {
static const size_t kNumOfChunks = 100;
static const size_t kChunkSize = 100;
char *chunks[kNumOfChunks];
size_t i;
size_t old_free_bytes, new_free_bytes;
// Allocate a small chunk. Now allocator probably has a lot of these
// chunks to fulfill future requests. So, future requests will decrease
// the number of free bytes.
chunks[0] = Ident((char*)malloc(kChunkSize));
old_free_bytes = __asan_get_free_bytes();
for (i = 1; i < kNumOfChunks; i++) {
chunks[i] = Ident((char*)malloc(kChunkSize));
new_free_bytes = __asan_get_free_bytes();
EXPECT_LT(new_free_bytes, old_free_bytes);
old_free_bytes = new_free_bytes;
}
// Deleting these chunks will move them to quarantine, number of free
// bytes won't increase.
for (i = 0; i < kNumOfChunks; i++) {
free(chunks[i]);
EXPECT_EQ(old_free_bytes, __asan_get_free_bytes());
}
EXPECT_DEATH(DoLargeMallocForGetFreeBytesTestAndDie(), "double-free");
}
static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<20, 357};
static const size_t kManyThreadsIterations = 250;
static const size_t kManyThreadsNumThreads = 200;
void *ManyThreadsWithStatsWorker(void *arg) {
for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
for (size_t size_index = 0; size_index < 4; size_index++) {
free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
}
}
return 0;
}
TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
size_t before_test, after_test, i;
pthread_t threads[kManyThreadsNumThreads];
before_test = __asan_get_current_allocated_bytes();
for (i = 0; i < kManyThreadsNumThreads; i++) {
pthread_create(&threads[i], 0,
(void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
}
for (i = 0; i < kManyThreadsNumThreads; i++) {
pthread_join(threads[i], 0);
}
after_test = __asan_get_current_allocated_bytes();
// ASan stats also reflect memory usage of internal ASan RTL structs,
// so we can't check for equality here.
EXPECT_LT(after_test, before_test + (1UL<<20));
}
TEST(AddressSanitizerInterface, ExitCode) {
int original_exit_code = __asan_set_error_exit_code(7);
EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(7), "");
EXPECT_EQ(7, __asan_set_error_exit_code(8));
EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(8), "");
EXPECT_EQ(8, __asan_set_error_exit_code(original_exit_code));
EXPECT_EXIT(DoDoubleFree(),
::testing::ExitedWithCode(original_exit_code), "");
}
static void MyDeathCallback() {
fprintf(stderr, "MyDeathCallback\n");
}
TEST(AddressSanitizerInterface, DeathCallbackTest) {
__asan_set_death_callback(MyDeathCallback);
EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
__asan_set_death_callback(NULL);
}
static const char* kUseAfterPoisonErrorMessage = "use-after-poison";
#define ACCESS(ptr, offset) Ident(*(ptr + offset))
#define DIE_ON_ACCESS(ptr, offset) \
EXPECT_DEATH(Ident(*(ptr + offset)), kUseAfterPoisonErrorMessage)
TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
char *array = Ident((char*)malloc(120));
// poison array[40..80)
ASAN_POISON_MEMORY_REGION(array + 40, 40);
ACCESS(array, 39);
ACCESS(array, 80);
DIE_ON_ACCESS(array, 40);
DIE_ON_ACCESS(array, 60);
DIE_ON_ACCESS(array, 79);
ASAN_UNPOISON_MEMORY_REGION(array + 40, 40);
// access previously poisoned memory.
ACCESS(array, 40);
ACCESS(array, 79);
free(array);
}
TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
char *array = Ident((char*)malloc(120));
// Poison [0..40) and [80..120)
ASAN_POISON_MEMORY_REGION(array, 40);
ASAN_POISON_MEMORY_REGION(array + 80, 40);
DIE_ON_ACCESS(array, 20);
ACCESS(array, 60);
DIE_ON_ACCESS(array, 100);
// Poison whole array - [0..120)
ASAN_POISON_MEMORY_REGION(array, 120);
DIE_ON_ACCESS(array, 60);
// Unpoison [24..96)
ASAN_UNPOISON_MEMORY_REGION(array + 24, 72);
DIE_ON_ACCESS(array, 23);
ACCESS(array, 24);
ACCESS(array, 60);
ACCESS(array, 95);
DIE_ON_ACCESS(array, 96);
free(array);
}
TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
// Vector of capacity 20
char *vec = Ident((char*)malloc(20));
ASAN_POISON_MEMORY_REGION(vec, 20);
for (size_t i = 0; i < 7; i++) {
// Simulate push_back.
ASAN_UNPOISON_MEMORY_REGION(vec + i, 1);
ACCESS(vec, i);
DIE_ON_ACCESS(vec, i + 1);
}
for (size_t i = 7; i > 0; i--) {
// Simulate pop_back.
ASAN_POISON_MEMORY_REGION(vec + i - 1, 1);
DIE_ON_ACCESS(vec, i - 1);
if (i > 1) ACCESS(vec, i - 2);
}
free(vec);
}
// Make sure that each aligned block of size "2^granularity" doesn't have
// "true" value before "false" value.
static void MakeShadowValid(bool *shadow, int length, int granularity) {
bool can_be_poisoned = true;
for (int i = length - 1; i >= 0; i--) {
can_be_poisoned &= shadow[i];
shadow[i] &= can_be_poisoned;
if (i % (1 << granularity) == 0) {
can_be_poisoned = true;
}
}
}
TEST(AddressSanitizerInterface, PoisoningStressTest) {
const size_t kSize = 24;
bool expected[kSize];
char *arr = Ident((char*)malloc(kSize));
for (size_t l1 = 0; l1 < kSize; l1++) {
for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
for (size_t l2 = 0; l2 < kSize; l2++) {
for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
// Poison [l1, l1+s1), [l2, l2+s2) and check result.
ASAN_UNPOISON_MEMORY_REGION(arr, kSize);
ASAN_POISON_MEMORY_REGION(arr + l1, s1);
ASAN_POISON_MEMORY_REGION(arr + l2, s2);
memset(expected, false, kSize);
memset(expected + l1, true, s1);
MakeShadowValid(expected, 24, /*granularity*/ 3);
memset(expected + l2, true, s2);
MakeShadowValid(expected, 24, /*granularity*/ 3);
for (size_t i = 0; i < kSize; i++) {
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
}
// Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
ASAN_POISON_MEMORY_REGION(arr, kSize);
ASAN_UNPOISON_MEMORY_REGION(arr + l1, s1);
ASAN_UNPOISON_MEMORY_REGION(arr + l2, s2);
memset(expected, true, kSize);
memset(expected + l1, false, s1);
MakeShadowValid(expected, 24, /*granularity*/ 3);
memset(expected + l2, false, s2);
MakeShadowValid(expected, 24, /*granularity*/ 3);
for (size_t i = 0; i < kSize; i++) {
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
}
}
}
}
}
}
static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";
TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
char *array = Ident((char*)malloc(120));
ASAN_UNPOISON_MEMORY_REGION(array, 120);
// Try to unpoison not owned memory
EXPECT_DEATH(ASAN_UNPOISON_MEMORY_REGION(array, 121),
kInvalidUnpoisonMessage);
EXPECT_DEATH(ASAN_UNPOISON_MEMORY_REGION(array - 1, 120),
kInvalidUnpoisonMessage);
ASAN_POISON_MEMORY_REGION(array, 120);
// Try to poison not owned memory.
EXPECT_DEATH(ASAN_POISON_MEMORY_REGION(array, 121), kInvalidPoisonMessage);
EXPECT_DEATH(ASAN_POISON_MEMORY_REGION(array - 1, 120),
kInvalidPoisonMessage);
free(array);
}
static void ErrorReportCallbackOneToZ(const char *report) {
int len = strlen(report);
char *dup = (char*)malloc(len);
strcpy(dup, report);
for (int i = 0; i < len; i++) {
if (dup[i] == '1') dup[i] = 'Z';
}
write(2, dup, len);
free(dup);
}
TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) {
__asan_set_error_report_callback(ErrorReportCallbackOneToZ);
char *array = Ident((char*)malloc(120));
EXPECT_DEATH(ACCESS(array, 120), "size Z");
__asan_set_error_report_callback(NULL);
}
#ifdef __linux__
// http://code.google.com/p/address-sanitizer/issues/detail?id=51
TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
std::vector<char *> pointers;
std::vector<size_t> sizes;
const size_t kNumMallocs =
(__WORDSIZE <= 32 || ASAN_LOW_MEMORY) ? 1 << 10 : 1 << 14;
for (size_t i = 0; i < kNumMallocs; i++) {
size_t size = i * 100 + 1;
pointers.push_back((char*)malloc(size));
sizes.push_back(size);
}
for (size_t i = 0; i < 4000000; i++) {
EXPECT_FALSE(__asan_get_ownership(&pointers));
EXPECT_FALSE(__asan_get_ownership((void*)0x1234));
size_t idx = i % kNumMallocs;
EXPECT_TRUE(__asan_get_ownership(pointers[idx]));
EXPECT_EQ(sizes[idx], __asan_get_allocated_size(pointers[idx]));
}
for (size_t i = 0, n = pointers.size(); i < n; i++)
free(pointers[i]);
}
#endif // __linux__