/*
* e2fsck.c - superblock checks
*
* Copyright (C) 1993, 1994, 1995, 1996, 1997 Theodore Ts'o.
*
* %Begin-Header%
* This file may be redistributed under the terms of the GNU Public
* License.
* %End-Header%
*/
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifndef EXT2_SKIP_UUID
#include "uuid/uuid.h"
#endif
#include "e2fsck.h"
#include "problem.h"
#define MIN_CHECK 1
#define MAX_CHECK 2
static void check_super_value(e2fsck_t ctx, const char *descr,
unsigned long value, int flags,
unsigned long min_val, unsigned long max_val)
{
struct problem_context pctx;
if (((flags & MIN_CHECK) && (value < min_val)) ||
((flags & MAX_CHECK) && (value > max_val))) {
clear_problem_context(&pctx);
pctx.num = value;
pctx.str = descr;
fix_problem(ctx, PR_0_MISC_CORRUPT_SUPER, &pctx);
ctx->flags |= E2F_FLAG_ABORT; /* never get here! */
}
}
/*
* helper function to release an inode
*/
struct process_block_struct {
e2fsck_t ctx;
char *buf;
struct problem_context *pctx;
int truncating;
int truncate_offset;
e2_blkcnt_t truncate_block;
int truncated_blocks;
int abort;
errcode_t errcode;
};
static int release_inode_block(ext2_filsys fs,
blk_t *block_nr,
e2_blkcnt_t blockcnt,
blk_t ref_blk EXT2FS_ATTR((unused)),
int ref_offset EXT2FS_ATTR((unused)),
void *priv_data)
{
struct process_block_struct *pb;
e2fsck_t ctx;
struct problem_context *pctx;
blk_t blk = *block_nr;
int retval = 0;
pb = (struct process_block_struct *) priv_data;
ctx = pb->ctx;
pctx = pb->pctx;
pctx->blk = blk;
pctx->blkcount = blockcnt;
if (HOLE_BLKADDR(blk))
return 0;
if ((blk < fs->super->s_first_data_block) ||
(blk >= fs->super->s_blocks_count)) {
fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_BLOCK_NUM, pctx);
return_abort:
pb->abort = 1;
return BLOCK_ABORT;
}
if (!ext2fs_test_block_bitmap(fs->block_map, blk)) {
fix_problem(ctx, PR_0_ORPHAN_ALREADY_CLEARED_BLOCK, pctx);
goto return_abort;
}
/*
* If we are deleting an orphan, then we leave the fields alone.
* If we are truncating an orphan, then update the inode fields
* and clean up any partial block data.
*/
if (pb->truncating) {
/*
* We only remove indirect blocks if they are
* completely empty.
*/
if (blockcnt < 0) {
int i, limit;
blk_t *bp;
pb->errcode = io_channel_read_blk(fs->io, blk, 1,
pb->buf);
if (pb->errcode)
goto return_abort;
limit = fs->blocksize >> 2;
for (i = 0, bp = (blk_t *) pb->buf;
i < limit; i++, bp++)
if (*bp)
return 0;
}
/*
* We don't remove direct blocks until we've reached
* the truncation block.
*/
if (blockcnt >= 0 && blockcnt < pb->truncate_block)
return 0;
/*
* If part of the last block needs truncating, we do
* it here.
*/
if ((blockcnt == pb->truncate_block) && pb->truncate_offset) {
pb->errcode = io_channel_read_blk(fs->io, blk, 1,
pb->buf);
if (pb->errcode)
goto return_abort;
memset(pb->buf + pb->truncate_offset, 0,
fs->blocksize - pb->truncate_offset);
pb->errcode = io_channel_write_blk(fs->io, blk, 1,
pb->buf);
if (pb->errcode)
goto return_abort;
}
pb->truncated_blocks++;
*block_nr = 0;
retval |= BLOCK_CHANGED;
}
ext2fs_block_alloc_stats(fs, blk, -1);
return retval;
}
/*
* This function releases an inode. Returns 1 if an inconsistency was
* found. If the inode has a link count, then it is being truncated and
* not deleted.
*/
static int release_inode_blocks(e2fsck_t ctx, ext2_ino_t ino,
struct ext2_inode *inode, char *block_buf,
struct problem_context *pctx)
{
struct process_block_struct pb;
ext2_filsys fs = ctx->fs;
errcode_t retval;
__u32 count;
if (!ext2fs_inode_has_valid_blocks(inode))
return 0;
pb.buf = block_buf + 3 * ctx->fs->blocksize;
pb.ctx = ctx;
pb.abort = 0;
pb.errcode = 0;
pb.pctx = pctx;
if (inode->i_links_count) {
pb.truncating = 1;
pb.truncate_block = (e2_blkcnt_t)
((((long long)inode->i_size_high << 32) +
inode->i_size + fs->blocksize - 1) /
fs->blocksize);
pb.truncate_offset = inode->i_size % fs->blocksize;
} else {
pb.truncating = 0;
pb.truncate_block = 0;
pb.truncate_offset = 0;
}
pb.truncated_blocks = 0;
retval = ext2fs_block_iterate2(fs, ino, BLOCK_FLAG_DEPTH_TRAVERSE,
block_buf, release_inode_block, &pb);
if (retval) {
com_err("release_inode_blocks", retval,
_("while calling ext2fs_block_iterate for inode %d"),
ino);
return 1;
}
if (pb.abort)
return 1;
/* Refresh the inode since ext2fs_block_iterate may have changed it */
e2fsck_read_inode(ctx, ino, inode, "release_inode_blocks");
if (pb.truncated_blocks)
ext2fs_iblk_sub_blocks(fs, inode, pb.truncated_blocks);
if (inode->i_file_acl) {
retval = ext2fs_adjust_ea_refcount(fs, inode->i_file_acl,
block_buf, -1, &count);
if (retval == EXT2_ET_BAD_EA_BLOCK_NUM) {
retval = 0;
count = 1;
}
if (retval) {
com_err("release_inode_blocks", retval,
_("while calling ext2fs_adjust_ea_refcount for inode %d"),
ino);
return 1;
}
if (count == 0)
ext2fs_block_alloc_stats(fs, inode->i_file_acl, -1);
inode->i_file_acl = 0;
}
return 0;
}
/*
* This function releases all of the orphan inodes. It returns 1 if
* it hit some error, and 0 on success.
*/
static int release_orphan_inodes(e2fsck_t ctx)
{
ext2_filsys fs = ctx->fs;
ext2_ino_t ino, next_ino;
struct ext2_inode inode;
struct problem_context pctx;
char *block_buf;
if ((ino = fs->super->s_last_orphan) == 0)
return 0;
/*
* Win or lose, we won't be using the head of the orphan inode
* list again.
*/
fs->super->s_last_orphan = 0;
ext2fs_mark_super_dirty(fs);
/*
* If the filesystem contains errors, don't run the orphan
* list, since the orphan list can't be trusted; and we're
* going to be running a full e2fsck run anyway...
*/
if (fs->super->s_state & EXT2_ERROR_FS)
return 0;
if ((ino < EXT2_FIRST_INODE(fs->super)) ||
(ino > fs->super->s_inodes_count)) {
clear_problem_context(&pctx);
pctx.ino = ino;
fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_HEAD_INODE, &pctx);
return 1;
}
block_buf = (char *) e2fsck_allocate_memory(ctx, fs->blocksize * 4,
"block iterate buffer");
e2fsck_read_bitmaps(ctx);
while (ino) {
e2fsck_read_inode(ctx, ino, &inode, "release_orphan_inodes");
clear_problem_context(&pctx);
pctx.ino = ino;
pctx.inode = &inode;
pctx.str = inode.i_links_count ? _("Truncating") :
_("Clearing");
fix_problem(ctx, PR_0_ORPHAN_CLEAR_INODE, &pctx);
next_ino = inode.i_dtime;
if (next_ino &&
((next_ino < EXT2_FIRST_INODE(fs->super)) ||
(next_ino > fs->super->s_inodes_count))) {
pctx.ino = next_ino;
fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_INODE, &pctx);
goto return_abort;
}
if (release_inode_blocks(ctx, ino, &inode, block_buf, &pctx))
goto return_abort;
if (!inode.i_links_count) {
ext2fs_inode_alloc_stats2(fs, ino, -1,
LINUX_S_ISDIR(inode.i_mode));
inode.i_dtime = ctx->now;
} else {
inode.i_dtime = 0;
}
e2fsck_write_inode(ctx, ino, &inode, "delete_file");
ino = next_ino;
}
ext2fs_free_mem(&block_buf);
return 0;
return_abort:
ext2fs_free_mem(&block_buf);
return 1;
}
/*
* Check the resize inode to make sure it is sane. We check both for
* the case where on-line resizing is not enabled (in which case the
* resize inode should be cleared) as well as the case where on-line
* resizing is enabled.
*/
void check_resize_inode(e2fsck_t ctx)
{
ext2_filsys fs = ctx->fs;
struct ext2_inode inode;
struct problem_context pctx;
int i, gdt_off, ind_off;
dgrp_t j;
blk_t blk, pblk, expect;
__u32 *dind_buf = 0, *ind_buf;
errcode_t retval;
clear_problem_context(&pctx);
/*
* If the resize inode feature isn't set, then
* s_reserved_gdt_blocks must be zero.
*/
if (!(fs->super->s_feature_compat &
EXT2_FEATURE_COMPAT_RESIZE_INODE)) {
if (fs->super->s_reserved_gdt_blocks) {
pctx.num = fs->super->s_reserved_gdt_blocks;
if (fix_problem(ctx, PR_0_NONZERO_RESERVED_GDT_BLOCKS,
&pctx)) {
fs->super->s_reserved_gdt_blocks = 0;
ext2fs_mark_super_dirty(fs);
}
}
}
/* Read the resize inode */
pctx.ino = EXT2_RESIZE_INO;
retval = ext2fs_read_inode(fs, EXT2_RESIZE_INO, &inode);
if (retval) {
if (fs->super->s_feature_compat &
EXT2_FEATURE_COMPAT_RESIZE_INODE)
ctx->flags |= E2F_FLAG_RESIZE_INODE;
return;
}
/*
* If the resize inode feature isn't set, check to make sure
* the resize inode is cleared; then we're done.
*/
if (!(fs->super->s_feature_compat &
EXT2_FEATURE_COMPAT_RESIZE_INODE)) {
for (i=0; i < EXT2_N_BLOCKS; i++) {
if (inode.i_block[i])
break;
}
if ((i < EXT2_N_BLOCKS) &&
fix_problem(ctx, PR_0_CLEAR_RESIZE_INODE, &pctx)) {
memset(&inode, 0, sizeof(inode));
e2fsck_write_inode(ctx, EXT2_RESIZE_INO, &inode,
"clear_resize");
}
return;
}
/*
* The resize inode feature is enabled; check to make sure the
* only block in use is the double indirect block
*/
blk = inode.i_block[EXT2_DIND_BLOCK];
for (i=0; i < EXT2_N_BLOCKS; i++) {
if (i != EXT2_DIND_BLOCK && inode.i_block[i])
break;
}
if ((i < EXT2_N_BLOCKS) || !blk || !inode.i_links_count ||
!(inode.i_mode & LINUX_S_IFREG) ||
(blk < fs->super->s_first_data_block ||
blk >= fs->super->s_blocks_count)) {
resize_inode_invalid:
if (fix_problem(ctx, PR_0_RESIZE_INODE_INVALID, &pctx)) {
memset(&inode, 0, sizeof(inode));
e2fsck_write_inode(ctx, EXT2_RESIZE_INO, &inode,
"clear_resize");
ctx->flags |= E2F_FLAG_RESIZE_INODE;
}
if (!(ctx->options & E2F_OPT_READONLY)) {
fs->super->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(fs);
}
goto cleanup;
}
dind_buf = (__u32 *) e2fsck_allocate_memory(ctx, fs->blocksize * 2,
"resize dind buffer");
ind_buf = (__u32 *) ((char *) dind_buf + fs->blocksize);
retval = ext2fs_read_ind_block(fs, blk, dind_buf);
if (retval)
goto resize_inode_invalid;
gdt_off = fs->desc_blocks;
pblk = fs->super->s_first_data_block + 1 + fs->desc_blocks;
for (i = 0; i < fs->super->s_reserved_gdt_blocks / 4;
i++, gdt_off++, pblk++) {
gdt_off %= fs->blocksize/4;
if (dind_buf[gdt_off] != pblk)
goto resize_inode_invalid;
retval = ext2fs_read_ind_block(fs, pblk, ind_buf);
if (retval)
goto resize_inode_invalid;
ind_off = 0;
for (j = 1; j < fs->group_desc_count; j++) {
if (!ext2fs_bg_has_super(fs, j))
continue;
expect = pblk + (j * fs->super->s_blocks_per_group);
if (ind_buf[ind_off] != expect)
goto resize_inode_invalid;
ind_off++;
}
}
cleanup:
if (dind_buf)
ext2fs_free_mem(&dind_buf);
}
/*
* This function checks the dirhash signed/unsigned hint if necessary.
*/
static void e2fsck_fix_dirhash_hint(e2fsck_t ctx)
{
struct ext2_super_block *sb = ctx->fs->super;
struct problem_context pctx;
char c;
if ((ctx->options & E2F_OPT_READONLY) ||
!(sb->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX) ||
(sb->s_flags & (EXT2_FLAGS_SIGNED_HASH|EXT2_FLAGS_UNSIGNED_HASH)))
return;
c = (char) 255;
clear_problem_context(&pctx);
if (fix_problem(ctx, PR_0_DIRHASH_HINT, &pctx)) {
if (((int) c) == -1) {
sb->s_flags |= EXT2_FLAGS_SIGNED_HASH;
} else {
sb->s_flags |= EXT2_FLAGS_UNSIGNED_HASH;
}
ext2fs_mark_super_dirty(ctx->fs);
}
}
void check_super_block(e2fsck_t ctx)
{
ext2_filsys fs = ctx->fs;
blk_t first_block, last_block;
struct ext2_super_block *sb = fs->super;
struct ext2_group_desc *gd;
problem_t problem;
blk_t blocks_per_group = fs->super->s_blocks_per_group;
blk_t bpg_max;
int inodes_per_block;
int ipg_max;
int inode_size;
int accept_time_fudge;
dgrp_t i;
blk_t should_be;
struct problem_context pctx;
blk_t free_blocks = 0;
ino_t free_inodes = 0;
int csum_flag, clear_test_fs_flag;
inodes_per_block = EXT2_INODES_PER_BLOCK(fs->super);
ipg_max = inodes_per_block * (blocks_per_group - 4);
if (ipg_max > EXT2_MAX_INODES_PER_GROUP(sb))
ipg_max = EXT2_MAX_INODES_PER_GROUP(sb);
bpg_max = 8 * EXT2_BLOCK_SIZE(sb);
if (bpg_max > EXT2_MAX_BLOCKS_PER_GROUP(sb))
bpg_max = EXT2_MAX_BLOCKS_PER_GROUP(sb);
ctx->invalid_inode_bitmap_flag = (int *) e2fsck_allocate_memory(ctx,
sizeof(int) * fs->group_desc_count, "invalid_inode_bitmap");
ctx->invalid_block_bitmap_flag = (int *) e2fsck_allocate_memory(ctx,
sizeof(int) * fs->group_desc_count, "invalid_block_bitmap");
ctx->invalid_inode_table_flag = (int *) e2fsck_allocate_memory(ctx,
sizeof(int) * fs->group_desc_count, "invalid_inode_table");
clear_problem_context(&pctx);
/*
* Verify the super block constants...
*/
check_super_value(ctx, "inodes_count", sb->s_inodes_count,
MIN_CHECK, 1, 0);
check_super_value(ctx, "blocks_count", sb->s_blocks_count,
MIN_CHECK, 1, 0);
check_super_value(ctx, "first_data_block", sb->s_first_data_block,
MAX_CHECK, 0, sb->s_blocks_count);
check_super_value(ctx, "log_block_size", sb->s_log_block_size,
MIN_CHECK | MAX_CHECK, 0,
EXT2_MAX_BLOCK_LOG_SIZE - EXT2_MIN_BLOCK_LOG_SIZE);
check_super_value(ctx, "log_frag_size", sb->s_log_frag_size,
MIN_CHECK | MAX_CHECK, 0, sb->s_log_block_size);
check_super_value(ctx, "frags_per_group", sb->s_frags_per_group,
MIN_CHECK | MAX_CHECK, sb->s_blocks_per_group,
bpg_max);
check_super_value(ctx, "blocks_per_group", sb->s_blocks_per_group,
MIN_CHECK | MAX_CHECK, 8, bpg_max);
check_super_value(ctx, "inodes_per_group", sb->s_inodes_per_group,
MIN_CHECK | MAX_CHECK, inodes_per_block, ipg_max);
check_super_value(ctx, "r_blocks_count", sb->s_r_blocks_count,
MAX_CHECK, 0, sb->s_blocks_count / 2);
check_super_value(ctx, "reserved_gdt_blocks",
sb->s_reserved_gdt_blocks, MAX_CHECK, 0,
fs->blocksize/4);
if (sb->s_rev_level > EXT2_GOOD_OLD_REV)
check_super_value(ctx, "first_ino", sb->s_first_ino,
MIN_CHECK | MAX_CHECK,
EXT2_GOOD_OLD_FIRST_INO, sb->s_inodes_count);
inode_size = EXT2_INODE_SIZE(sb);
check_super_value(ctx, "inode_size",
inode_size, MIN_CHECK | MAX_CHECK,
EXT2_GOOD_OLD_INODE_SIZE, fs->blocksize);
if (inode_size & (inode_size - 1)) {
pctx.num = inode_size;
pctx.str = "inode_size";
fix_problem(ctx, PR_0_MISC_CORRUPT_SUPER, &pctx);
ctx->flags |= E2F_FLAG_ABORT; /* never get here! */
return;
}
if ((ctx->flags & E2F_FLAG_GOT_DEVSIZE) &&
(ctx->num_blocks < sb->s_blocks_count)) {
pctx.blk = sb->s_blocks_count;
pctx.blk2 = ctx->num_blocks;
if (fix_problem(ctx, PR_0_FS_SIZE_WRONG, &pctx)) {
ctx->flags |= E2F_FLAG_ABORT;
return;
}
}
if (sb->s_log_block_size != (__u32) sb->s_log_frag_size) {
pctx.blk = EXT2_BLOCK_SIZE(sb);
pctx.blk2 = EXT2_FRAG_SIZE(sb);
fix_problem(ctx, PR_0_NO_FRAGMENTS, &pctx);
ctx->flags |= E2F_FLAG_ABORT;
return;
}
should_be = sb->s_frags_per_group >>
(sb->s_log_block_size - sb->s_log_frag_size);
if (sb->s_blocks_per_group != should_be) {
pctx.blk = sb->s_blocks_per_group;
pctx.blk2 = should_be;
fix_problem(ctx, PR_0_BLOCKS_PER_GROUP, &pctx);
ctx->flags |= E2F_FLAG_ABORT;
return;
}
should_be = (sb->s_log_block_size == 0) ? 1 : 0;
if (sb->s_first_data_block != should_be) {
pctx.blk = sb->s_first_data_block;
pctx.blk2 = should_be;
fix_problem(ctx, PR_0_FIRST_DATA_BLOCK, &pctx);
ctx->flags |= E2F_FLAG_ABORT;
return;
}
should_be = sb->s_inodes_per_group * fs->group_desc_count;
if (sb->s_inodes_count != should_be) {
pctx.ino = sb->s_inodes_count;
pctx.ino2 = should_be;
if (fix_problem(ctx, PR_0_INODE_COUNT_WRONG, &pctx)) {
sb->s_inodes_count = should_be;
ext2fs_mark_super_dirty(fs);
}
}
/*
* Verify the group descriptors....
*/
first_block = sb->s_first_data_block;
last_block = sb->s_blocks_count-1;
csum_flag = EXT2_HAS_RO_COMPAT_FEATURE(fs->super,
EXT4_FEATURE_RO_COMPAT_GDT_CSUM);
for (i = 0, gd=fs->group_desc; i < fs->group_desc_count; i++, gd++) {
pctx.group = i;
if (!EXT2_HAS_INCOMPAT_FEATURE(fs->super,
EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
first_block = ext2fs_group_first_block(fs, i);
last_block = ext2fs_group_last_block(fs, i);
}
if ((gd->bg_block_bitmap < first_block) ||
(gd->bg_block_bitmap > last_block)) {
pctx.blk = gd->bg_block_bitmap;
if (fix_problem(ctx, PR_0_BB_NOT_GROUP, &pctx))
gd->bg_block_bitmap = 0;
}
if (gd->bg_block_bitmap == 0) {
ctx->invalid_block_bitmap_flag[i]++;
ctx->invalid_bitmaps++;
}
if ((gd->bg_inode_bitmap < first_block) ||
(gd->bg_inode_bitmap > last_block)) {
pctx.blk = gd->bg_inode_bitmap;
if (fix_problem(ctx, PR_0_IB_NOT_GROUP, &pctx))
gd->bg_inode_bitmap = 0;
}
if (gd->bg_inode_bitmap == 0) {
ctx->invalid_inode_bitmap_flag[i]++;
ctx->invalid_bitmaps++;
}
if ((gd->bg_inode_table < first_block) ||
((gd->bg_inode_table +
fs->inode_blocks_per_group - 1) > last_block)) {
pctx.blk = gd->bg_inode_table;
if (fix_problem(ctx, PR_0_ITABLE_NOT_GROUP, &pctx))
gd->bg_inode_table = 0;
}
if (gd->bg_inode_table == 0) {
ctx->invalid_inode_table_flag[i]++;
ctx->invalid_bitmaps++;
}
free_blocks += gd->bg_free_blocks_count;
free_inodes += gd->bg_free_inodes_count;
if ((gd->bg_free_blocks_count > sb->s_blocks_per_group) ||
(gd->bg_free_inodes_count > sb->s_inodes_per_group) ||
(gd->bg_used_dirs_count > sb->s_inodes_per_group))
ext2fs_unmark_valid(fs);
should_be = 0;
if (!ext2fs_group_desc_csum_verify(fs, i)) {
if (fix_problem(ctx, PR_0_GDT_CSUM, &pctx)) {
gd->bg_flags &= ~(EXT2_BG_BLOCK_UNINIT |
EXT2_BG_INODE_UNINIT);
gd->bg_itable_unused = 0;
should_be = 1;
}
ext2fs_unmark_valid(fs);
}
if (!csum_flag &&
(gd->bg_flags &(EXT2_BG_BLOCK_UNINIT|EXT2_BG_INODE_UNINIT)||
gd->bg_itable_unused != 0)){
if (fix_problem(ctx, PR_0_GDT_UNINIT, &pctx)) {
gd->bg_flags &= ~(EXT2_BG_BLOCK_UNINIT |
EXT2_BG_INODE_UNINIT);
gd->bg_itable_unused = 0;
should_be = 1;
}
ext2fs_unmark_valid(fs);
}
if (i == fs->group_desc_count - 1 &&
gd->bg_flags & EXT2_BG_BLOCK_UNINIT) {
if (fix_problem(ctx, PR_0_BB_UNINIT_LAST, &pctx)) {
gd->bg_flags &= ~EXT2_BG_BLOCK_UNINIT;
should_be = 1;
}
ext2fs_unmark_valid(fs);
}
if (gd->bg_flags & EXT2_BG_BLOCK_UNINIT &&
!(gd->bg_flags & EXT2_BG_INODE_UNINIT)) {
if (fix_problem(ctx, PR_0_BB_UNINIT_IB_INIT, &pctx)) {
gd->bg_flags &= ~EXT2_BG_BLOCK_UNINIT;
should_be = 1;
}
ext2fs_unmark_valid(fs);
}
if (csum_flag &&
(gd->bg_itable_unused > gd->bg_free_inodes_count ||
gd->bg_itable_unused > sb->s_inodes_per_group)) {
pctx.blk = gd->bg_itable_unused;
if (fix_problem(ctx, PR_0_GDT_ITABLE_UNUSED, &pctx)) {
gd->bg_itable_unused = 0;
should_be = 1;
}
ext2fs_unmark_valid(fs);
}
if (should_be)
ext2fs_group_desc_csum_set(fs, i);
}
/*
* Update the global counts from the block group counts. This
* is needed for an experimental patch which eliminates
* locking the entire filesystem when allocating blocks or
* inodes; if the filesystem is not unmounted cleanly, the
* global counts may not be accurate.
*/
if ((free_blocks != sb->s_free_blocks_count) ||
(free_inodes != sb->s_free_inodes_count)) {
if (ctx->options & E2F_OPT_READONLY)
ext2fs_unmark_valid(fs);
else {
sb->s_free_blocks_count = free_blocks;
sb->s_free_inodes_count = free_inodes;
ext2fs_mark_super_dirty(fs);
}
}
if ((sb->s_free_blocks_count > sb->s_blocks_count) ||
(sb->s_free_inodes_count > sb->s_inodes_count))
ext2fs_unmark_valid(fs);
/*
* If we have invalid bitmaps, set the error state of the
* filesystem.
*/
if (ctx->invalid_bitmaps && !(ctx->options & E2F_OPT_READONLY)) {
sb->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(fs);
}
clear_problem_context(&pctx);
#ifndef EXT2_SKIP_UUID
/*
* If the UUID field isn't assigned, assign it.
*/
if (!(ctx->options & E2F_OPT_READONLY) && uuid_is_null(sb->s_uuid)) {
if (fix_problem(ctx, PR_0_ADD_UUID, &pctx)) {
uuid_generate(sb->s_uuid);
ext2fs_mark_super_dirty(fs);
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
}
}
#endif
/*
* Check to see if we should disable the test_fs flag
*/
profile_get_boolean(ctx->profile, "options",
"clear_test_fs_flag", 0, 1,
&clear_test_fs_flag);
if (!(ctx->options & E2F_OPT_READONLY) &&
clear_test_fs_flag &&
(fs->super->s_flags & EXT2_FLAGS_TEST_FILESYS) &&
(fs_proc_check("ext4") || check_for_modules("ext4"))) {
if (fix_problem(ctx, PR_0_CLEAR_TESTFS_FLAG, &pctx)) {
fs->super->s_flags &= ~EXT2_FLAGS_TEST_FILESYS;
ext2fs_mark_super_dirty(fs);
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
}
}
/*
* For the Hurd, check to see if the filetype option is set,
* since it doesn't support it.
*/
if (!(ctx->options & E2F_OPT_READONLY) &&
fs->super->s_creator_os == EXT2_OS_HURD &&
(fs->super->s_feature_incompat &
EXT2_FEATURE_INCOMPAT_FILETYPE)) {
if (fix_problem(ctx, PR_0_HURD_CLEAR_FILETYPE, &pctx)) {
fs->super->s_feature_incompat &=
~EXT2_FEATURE_INCOMPAT_FILETYPE;
ext2fs_mark_super_dirty(fs);
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
}
}
/*
* If we have any of the compatibility flags set, we need to have a
* revision 1 filesystem. Most kernels will not check the flags on
* a rev 0 filesystem and we may have corruption issues because of
* the incompatible changes to the filesystem.
*/
if (!(ctx->options & E2F_OPT_READONLY) &&
fs->super->s_rev_level == EXT2_GOOD_OLD_REV &&
(fs->super->s_feature_compat ||
fs->super->s_feature_ro_compat ||
fs->super->s_feature_incompat) &&
fix_problem(ctx, PR_0_FS_REV_LEVEL, &pctx)) {
ext2fs_update_dynamic_rev(fs);
ext2fs_mark_super_dirty(fs);
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
}
/*
* Clean up any orphan inodes, if present.
*/
if (!(ctx->options & E2F_OPT_READONLY) && release_orphan_inodes(ctx)) {
fs->super->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(fs);
}
/*
* Unfortunately, due to Windows' unfortunate design decision
* to configure the hardware clock to tick localtime, instead
* of the more proper and less error-prone UTC time, many
* users end up in the situation where the system clock is
* incorrectly set at the time when e2fsck is run.
*
* Historically this was usually due to some distributions
* having buggy init scripts and/or installers that didn't
* correctly detect this case and take appropriate
* countermeasures. However, it's still possible, despite the
* best efforts of init script and installer authors to not be
* able to detect this misconfiguration, usually due to a
* buggy or misconfigured virtualization manager or the
* installer not having access to a network time server during
* the installation process. So by default, we allow the
* superblock times to be fudged by up to 24 hours. This can
* be disabled by setting options.accept_time_fudge to the
* boolean value of false in e2fsck.conf. We also support
* options.buggy_init_scripts for backwards compatibility.
*/
profile_get_boolean(ctx->profile, "options", "accept_time_fudge",
0, 1, &accept_time_fudge);
profile_get_boolean(ctx->profile, "options", "buggy_init_scripts",
0, accept_time_fudge, &accept_time_fudge);
ctx->time_fudge = accept_time_fudge ? 86400 : 0;
/*
* Check to see if the superblock last mount time or last
* write time is in the future.
*/
if (fs->super->s_mtime > (__u32) ctx->now) {
pctx.num = fs->super->s_mtime;
problem = PR_0_FUTURE_SB_LAST_MOUNT;
if (fs->super->s_mtime <= (__u32) ctx->now + ctx->time_fudge)
problem = PR_0_FUTURE_SB_LAST_MOUNT_FUDGED;
if (fix_problem(ctx, problem, &pctx)) {
fs->super->s_mtime = ctx->now;
ext2fs_mark_super_dirty(fs);
}
}
if (fs->super->s_wtime > (__u32) ctx->now) {
pctx.num = fs->super->s_wtime;
problem = PR_0_FUTURE_SB_LAST_WRITE;
if (fs->super->s_wtime <= (__u32) ctx->now + ctx->time_fudge)
problem = PR_0_FUTURE_SB_LAST_WRITE_FUDGED;
if (fix_problem(ctx, problem, &pctx)) {
fs->super->s_wtime = ctx->now;
ext2fs_mark_super_dirty(fs);
}
}
/*
* Move the ext3 journal file, if necessary.
*/
e2fsck_move_ext3_journal(ctx);
/*
* Fix journal hint, if necessary
*/
e2fsck_fix_ext3_journal_hint(ctx);
/*
* Add dirhash hint if necessary
*/
e2fsck_fix_dirhash_hint(ctx);
return;
}
/*
* Check to see if we should backup the master sb to the backup super
* blocks. Returns non-zero if the sb should be backed up.
*/
/*
* A few flags are set on the fly by the kernel, but only in the
* primary superblock. This is actually a bad thing, and we should
* try to discourage it in the future. In particular, for the newer
* ext4 files, especially EXT4_FEATURE_RO_COMPAT_DIR_NLINK and
* EXT3_FEATURE_INCOMPAT_EXTENTS. So some of these may go away in the
* future. EXT3_FEATURE_INCOMPAT_RECOVER may also get set when
* copying the primary superblock during online resize.
*
* The kernel will set EXT2_FEATURE_COMPAT_EXT_ATTR, but
* unfortunately, we shouldn't ignore it since if it's not set in the
* backup, the extended attributes in the filesystem will be stripped
* away.
*/
#define FEATURE_RO_COMPAT_IGNORE (EXT2_FEATURE_RO_COMPAT_LARGE_FILE| \
EXT4_FEATURE_RO_COMPAT_DIR_NLINK)
#define FEATURE_INCOMPAT_IGNORE (EXT3_FEATURE_INCOMPAT_EXTENTS| \
EXT3_FEATURE_INCOMPAT_RECOVER)
int check_backup_super_block(e2fsck_t ctx)
{
ext2_filsys fs = ctx->fs;
errcode_t retval;
dgrp_t g;
blk_t sb;
int ret = 0;
char buf[SUPERBLOCK_SIZE];
struct ext2_super_block *backup_sb;
/*
* If we are already writing out the backup blocks, then we
* don't need to test. Also, if the filesystem is invalid, or
* the check was aborted or cancelled, we also don't want to
* do the backup. If the filesystem was opened read-only then
* we can't do the backup.
*/
if (((fs->flags & EXT2_FLAG_MASTER_SB_ONLY) == 0) ||
!ext2fs_test_valid(fs) ||
(fs->super->s_state & EXT2_ERROR_FS) ||
(ctx->flags & (E2F_FLAG_ABORT | E2F_FLAG_CANCEL)) ||
(ctx->options & E2F_OPT_READONLY))
return 0;
for (g = 1; g < fs->group_desc_count; g++) {
if (!ext2fs_bg_has_super(fs, g))
continue;
sb = fs->super->s_first_data_block +
(g * fs->super->s_blocks_per_group);
retval = io_channel_read_blk(fs->io, sb, -SUPERBLOCK_SIZE,
buf);
if (retval)
continue;
backup_sb = (struct ext2_super_block *) buf;
#ifdef WORDS_BIGENDIAN
ext2fs_swap_super(backup_sb);
#endif
if ((backup_sb->s_magic != EXT2_SUPER_MAGIC) ||
(backup_sb->s_rev_level > EXT2_LIB_CURRENT_REV) ||
((backup_sb->s_log_block_size + EXT2_MIN_BLOCK_LOG_SIZE) >
EXT2_MAX_BLOCK_LOG_SIZE) ||
(EXT2_INODE_SIZE(backup_sb) < EXT2_GOOD_OLD_INODE_SIZE))
continue;
#define SUPER_INCOMPAT_DIFFERENT(x) \
((fs->super->x & ~FEATURE_INCOMPAT_IGNORE) != \
(backup_sb->x & ~FEATURE_INCOMPAT_IGNORE))
#define SUPER_RO_COMPAT_DIFFERENT(x) \
((fs->super->x & ~FEATURE_RO_COMPAT_IGNORE) != \
(backup_sb->x & ~FEATURE_RO_COMPAT_IGNORE))
#define SUPER_DIFFERENT(x) \
(fs->super->x != backup_sb->x)
if (SUPER_DIFFERENT(s_feature_compat) ||
SUPER_INCOMPAT_DIFFERENT(s_feature_incompat) ||
SUPER_RO_COMPAT_DIFFERENT(s_feature_ro_compat) ||
SUPER_DIFFERENT(s_blocks_count) ||
SUPER_DIFFERENT(s_inodes_count) ||
memcmp(fs->super->s_uuid, backup_sb->s_uuid,
sizeof(fs->super->s_uuid)))
ret = 1;
break;
}
return ret;
}