//===-- LLParser.cpp - Parser Class ---------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the parser class for .ll files.
//
//===----------------------------------------------------------------------===//
#include "LLParser.h"
#include "llvm/AutoUpgrade.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static std::string getTypeString(Type *T) {
std::string Result;
raw_string_ostream Tmp(Result);
Tmp << *T;
return Tmp.str();
}
/// Run: module ::= toplevelentity*
bool LLParser::Run() {
// Prime the lexer.
Lex.Lex();
return ParseTopLevelEntities() ||
ValidateEndOfModule();
}
/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
/// module.
bool LLParser::ValidateEndOfModule() {
// Handle any instruction metadata forward references.
if (!ForwardRefInstMetadata.empty()) {
for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
I != E; ++I) {
Instruction *Inst = I->first;
const std::vector<MDRef> &MDList = I->second;
for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
unsigned SlotNo = MDList[i].MDSlot;
if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
return Error(MDList[i].Loc, "use of undefined metadata '!" +
Twine(SlotNo) + "'");
Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
}
}
ForwardRefInstMetadata.clear();
}
// If there are entries in ForwardRefBlockAddresses at this point, they are
// references after the function was defined. Resolve those now.
while (!ForwardRefBlockAddresses.empty()) {
// Okay, we are referencing an already-parsed function, resolve them now.
Function *TheFn = 0;
const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
if (Fn.Kind == ValID::t_GlobalName)
TheFn = M->getFunction(Fn.StrVal);
else if (Fn.UIntVal < NumberedVals.size())
TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
if (TheFn == 0)
return Error(Fn.Loc, "unknown function referenced by blockaddress");
// Resolve all these references.
if (ResolveForwardRefBlockAddresses(TheFn,
ForwardRefBlockAddresses.begin()->second,
0))
return true;
ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
}
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
if (NumberedTypes[i].second.isValid())
return Error(NumberedTypes[i].second,
"use of undefined type '%" + Twine(i) + "'");
for (StringMap<std::pair<Type*, LocTy> >::iterator I =
NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
if (I->second.second.isValid())
return Error(I->second.second,
"use of undefined type named '" + I->getKey() + "'");
if (!ForwardRefVals.empty())
return Error(ForwardRefVals.begin()->second.second,
"use of undefined value '@" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '@" +
Twine(ForwardRefValIDs.begin()->first) + "'");
if (!ForwardRefMDNodes.empty())
return Error(ForwardRefMDNodes.begin()->second.second,
"use of undefined metadata '!" +
Twine(ForwardRefMDNodes.begin()->first) + "'");
// Look for intrinsic functions and CallInst that need to be upgraded
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
return false;
}
bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
std::vector<std::pair<ValID, GlobalValue*> > &Refs,
PerFunctionState *PFS) {
// Loop over all the references, resolving them.
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
BasicBlock *Res;
if (PFS) {
if (Refs[i].first.Kind == ValID::t_LocalName)
Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
else
Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
} else if (Refs[i].first.Kind == ValID::t_LocalID) {
return Error(Refs[i].first.Loc,
"cannot take address of numeric label after the function is defined");
} else {
Res = dyn_cast_or_null<BasicBlock>(
TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
}
if (Res == 0)
return Error(Refs[i].first.Loc,
"referenced value is not a basic block");
// Get the BlockAddress for this and update references to use it.
BlockAddress *BA = BlockAddress::get(TheFn, Res);
Refs[i].second->replaceAllUsesWith(BA);
Refs[i].second->eraseFromParent();
}
return false;
}
//===----------------------------------------------------------------------===//
// Top-Level Entities
//===----------------------------------------------------------------------===//
bool LLParser::ParseTopLevelEntities() {
while (1) {
switch (Lex.getKind()) {
default: return TokError("expected top-level entity");
case lltok::Eof: return false;
case lltok::kw_declare: if (ParseDeclare()) return true; break;
case lltok::kw_define: if (ParseDefine()) return true; break;
case lltok::kw_module: if (ParseModuleAsm()) return true; break;
case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
case lltok::LocalVar: if (ParseNamedType()) return true; break;
case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
// The Global variable production with no name can have many different
// optional leading prefixes, the production is:
// GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
// OptionalAddrSpace OptionalUnNammedAddr
// ('constant'|'global') ...
case lltok::kw_private: // OptionalLinkage
case lltok::kw_linker_private: // OptionalLinkage
case lltok::kw_linker_private_weak: // OptionalLinkage
case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
case lltok::kw_internal: // OptionalLinkage
case lltok::kw_weak: // OptionalLinkage
case lltok::kw_weak_odr: // OptionalLinkage
case lltok::kw_linkonce: // OptionalLinkage
case lltok::kw_linkonce_odr: // OptionalLinkage
case lltok::kw_appending: // OptionalLinkage
case lltok::kw_dllexport: // OptionalLinkage
case lltok::kw_common: // OptionalLinkage
case lltok::kw_dllimport: // OptionalLinkage
case lltok::kw_extern_weak: // OptionalLinkage
case lltok::kw_external: { // OptionalLinkage
unsigned Linkage, Visibility;
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
ParseGlobal("", SMLoc(), Linkage, true, Visibility))
return true;
break;
}
case lltok::kw_default: // OptionalVisibility
case lltok::kw_hidden: // OptionalVisibility
case lltok::kw_protected: { // OptionalVisibility
unsigned Visibility;
if (ParseOptionalVisibility(Visibility) ||
ParseGlobal("", SMLoc(), 0, false, Visibility))
return true;
break;
}
case lltok::kw_thread_local: // OptionalThreadLocal
case lltok::kw_addrspace: // OptionalAddrSpace
case lltok::kw_constant: // GlobalType
case lltok::kw_global: // GlobalType
if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
break;
}
}
}
/// toplevelentity
/// ::= 'module' 'asm' STRINGCONSTANT
bool LLParser::ParseModuleAsm() {
assert(Lex.getKind() == lltok::kw_module);
Lex.Lex();
std::string AsmStr;
if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
ParseStringConstant(AsmStr)) return true;
M->appendModuleInlineAsm(AsmStr);
return false;
}
/// toplevelentity
/// ::= 'target' 'triple' '=' STRINGCONSTANT
/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
bool LLParser::ParseTargetDefinition() {
assert(Lex.getKind() == lltok::kw_target);
std::string Str;
switch (Lex.Lex()) {
default: return TokError("unknown target property");
case lltok::kw_triple:
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after target triple") ||
ParseStringConstant(Str))
return true;
M->setTargetTriple(Str);
return false;
case lltok::kw_datalayout:
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
ParseStringConstant(Str))
return true;
M->setDataLayout(Str);
return false;
}
}
/// toplevelentity
/// ::= 'deplibs' '=' '[' ']'
/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
bool LLParser::ParseDepLibs() {
assert(Lex.getKind() == lltok::kw_deplibs);
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
ParseToken(lltok::lsquare, "expected '=' after deplibs"))
return true;
if (EatIfPresent(lltok::rsquare))
return false;
std::string Str;
if (ParseStringConstant(Str)) return true;
M->addLibrary(Str);
while (EatIfPresent(lltok::comma)) {
if (ParseStringConstant(Str)) return true;
M->addLibrary(Str);
}
return ParseToken(lltok::rsquare, "expected ']' at end of list");
}
/// ParseUnnamedType:
/// ::= LocalVarID '=' 'type' type
bool LLParser::ParseUnnamedType() {
LocTy TypeLoc = Lex.getLoc();
unsigned TypeID = Lex.getUIntVal();
Lex.Lex(); // eat LocalVarID;
if (ParseToken(lltok::equal, "expected '=' after name") ||
ParseToken(lltok::kw_type, "expected 'type' after '='"))
return true;
if (TypeID >= NumberedTypes.size())
NumberedTypes.resize(TypeID+1);
Type *Result = 0;
if (ParseStructDefinition(TypeLoc, "",
NumberedTypes[TypeID], Result)) return true;
if (!isa<StructType>(Result)) {
std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
if (Entry.first)
return Error(TypeLoc, "non-struct types may not be recursive");
Entry.first = Result;
Entry.second = SMLoc();
}
return false;
}
/// toplevelentity
/// ::= LocalVar '=' 'type' type
bool LLParser::ParseNamedType() {
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex(); // eat LocalVar.
if (ParseToken(lltok::equal, "expected '=' after name") ||
ParseToken(lltok::kw_type, "expected 'type' after name"))
return true;
Type *Result = 0;
if (ParseStructDefinition(NameLoc, Name,
NamedTypes[Name], Result)) return true;
if (!isa<StructType>(Result)) {
std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
if (Entry.first)
return Error(NameLoc, "non-struct types may not be recursive");
Entry.first = Result;
Entry.second = SMLoc();
}
return false;
}
/// toplevelentity
/// ::= 'declare' FunctionHeader
bool LLParser::ParseDeclare() {
assert(Lex.getKind() == lltok::kw_declare);
Lex.Lex();
Function *F;
return ParseFunctionHeader(F, false);
}
/// toplevelentity
/// ::= 'define' FunctionHeader '{' ...
bool LLParser::ParseDefine() {
assert(Lex.getKind() == lltok::kw_define);
Lex.Lex();
Function *F;
return ParseFunctionHeader(F, true) ||
ParseFunctionBody(*F);
}
/// ParseGlobalType
/// ::= 'constant'
/// ::= 'global'
bool LLParser::ParseGlobalType(bool &IsConstant) {
if (Lex.getKind() == lltok::kw_constant)
IsConstant = true;
else if (Lex.getKind() == lltok::kw_global)
IsConstant = false;
else {
IsConstant = false;
return TokError("expected 'global' or 'constant'");
}
Lex.Lex();
return false;
}
/// ParseUnnamedGlobal:
/// OptionalVisibility ALIAS ...
/// OptionalLinkage OptionalVisibility ... -> global variable
/// GlobalID '=' OptionalVisibility ALIAS ...
/// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
bool LLParser::ParseUnnamedGlobal() {
unsigned VarID = NumberedVals.size();
std::string Name;
LocTy NameLoc = Lex.getLoc();
// Handle the GlobalID form.
if (Lex.getKind() == lltok::GlobalID) {
if (Lex.getUIntVal() != VarID)
return Error(Lex.getLoc(), "variable expected to be numbered '%" +
Twine(VarID) + "'");
Lex.Lex(); // eat GlobalID;
if (ParseToken(lltok::equal, "expected '=' after name"))
return true;
}
bool HasLinkage;
unsigned Linkage, Visibility;
if (ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility))
return true;
if (HasLinkage || Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
return ParseAlias(Name, NameLoc, Visibility);
}
/// ParseNamedGlobal:
/// GlobalVar '=' OptionalVisibility ALIAS ...
/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
bool LLParser::ParseNamedGlobal() {
assert(Lex.getKind() == lltok::GlobalVar);
LocTy NameLoc = Lex.getLoc();
std::string Name = Lex.getStrVal();
Lex.Lex();
bool HasLinkage;
unsigned Linkage, Visibility;
if (ParseToken(lltok::equal, "expected '=' in global variable") ||
ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility))
return true;
if (HasLinkage || Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
return ParseAlias(Name, NameLoc, Visibility);
}
// MDString:
// ::= '!' STRINGCONSTANT
bool LLParser::ParseMDString(MDString *&Result) {
std::string Str;
if (ParseStringConstant(Str)) return true;
Result = MDString::get(Context, Str);
return false;
}
// MDNode:
// ::= '!' MDNodeNumber
//
/// This version of ParseMDNodeID returns the slot number and null in the case
/// of a forward reference.
bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
// !{ ..., !42, ... }
if (ParseUInt32(SlotNo)) return true;
// Check existing MDNode.
if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
Result = NumberedMetadata[SlotNo];
else
Result = 0;
return false;
}
bool LLParser::ParseMDNodeID(MDNode *&Result) {
// !{ ..., !42, ... }
unsigned MID = 0;
if (ParseMDNodeID(Result, MID)) return true;
// If not a forward reference, just return it now.
if (Result) return false;
// Otherwise, create MDNode forward reference.
MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
if (NumberedMetadata.size() <= MID)
NumberedMetadata.resize(MID+1);
NumberedMetadata[MID] = FwdNode;
Result = FwdNode;
return false;
}
/// ParseNamedMetadata:
/// !foo = !{ !1, !2 }
bool LLParser::ParseNamedMetadata() {
assert(Lex.getKind() == lltok::MetadataVar);
std::string Name = Lex.getStrVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' here") ||
ParseToken(lltok::exclaim, "Expected '!' here") ||
ParseToken(lltok::lbrace, "Expected '{' here"))
return true;
NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
if (Lex.getKind() != lltok::rbrace)
do {
if (ParseToken(lltok::exclaim, "Expected '!' here"))
return true;
MDNode *N = 0;
if (ParseMDNodeID(N)) return true;
NMD->addOperand(N);
} while (EatIfPresent(lltok::comma));
if (ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
return false;
}
/// ParseStandaloneMetadata:
/// !42 = !{...}
bool LLParser::ParseStandaloneMetadata() {
assert(Lex.getKind() == lltok::exclaim);
Lex.Lex();
unsigned MetadataID = 0;
LocTy TyLoc;
Type *Ty = 0;
SmallVector<Value *, 16> Elts;
if (ParseUInt32(MetadataID) ||
ParseToken(lltok::equal, "expected '=' here") ||
ParseType(Ty, TyLoc) ||
ParseToken(lltok::exclaim, "Expected '!' here") ||
ParseToken(lltok::lbrace, "Expected '{' here") ||
ParseMDNodeVector(Elts, NULL) ||
ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
MDNode *Init = MDNode::get(Context, Elts);
// See if this was forward referenced, if so, handle it.
std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
FI = ForwardRefMDNodes.find(MetadataID);
if (FI != ForwardRefMDNodes.end()) {
MDNode *Temp = FI->second.first;
Temp->replaceAllUsesWith(Init);
MDNode::deleteTemporary(Temp);
ForwardRefMDNodes.erase(FI);
assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
} else {
if (MetadataID >= NumberedMetadata.size())
NumberedMetadata.resize(MetadataID+1);
if (NumberedMetadata[MetadataID] != 0)
return TokError("Metadata id is already used");
NumberedMetadata[MetadataID] = Init;
}
return false;
}
/// ParseAlias:
/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
/// Aliasee
/// ::= TypeAndValue
/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
/// ::= 'getelementptr' 'inbounds'? '(' ... ')'
///
/// Everything through visibility has already been parsed.
///
bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
unsigned Visibility) {
assert(Lex.getKind() == lltok::kw_alias);
Lex.Lex();
unsigned Linkage;
LocTy LinkageLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage))
return true;
if (Linkage != GlobalValue::ExternalLinkage &&
Linkage != GlobalValue::WeakAnyLinkage &&
Linkage != GlobalValue::WeakODRLinkage &&
Linkage != GlobalValue::InternalLinkage &&
Linkage != GlobalValue::PrivateLinkage &&
Linkage != GlobalValue::LinkerPrivateLinkage &&
Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
return Error(LinkageLoc, "invalid linkage type for alias");
Constant *Aliasee;
LocTy AliaseeLoc = Lex.getLoc();
if (Lex.getKind() != lltok::kw_bitcast &&
Lex.getKind() != lltok::kw_getelementptr) {
if (ParseGlobalTypeAndValue(Aliasee)) return true;
} else {
// The bitcast dest type is not present, it is implied by the dest type.
ValID ID;
if (ParseValID(ID)) return true;
if (ID.Kind != ValID::t_Constant)
return Error(AliaseeLoc, "invalid aliasee");
Aliasee = ID.ConstantVal;
}
if (!Aliasee->getType()->isPointerTy())
return Error(AliaseeLoc, "alias must have pointer type");
// Okay, create the alias but do not insert it into the module yet.
GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
(GlobalValue::LinkageTypes)Linkage, Name,
Aliasee);
GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
// See if this value already exists in the symbol table. If so, it is either
// a redefinition or a definition of a forward reference.
if (GlobalValue *Val = M->getNamedValue(Name)) {
// See if this was a redefinition. If so, there is no entry in
// ForwardRefVals.
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I == ForwardRefVals.end())
return Error(NameLoc, "redefinition of global named '@" + Name + "'");
// Otherwise, this was a definition of forward ref. Verify that types
// agree.
if (Val->getType() != GA->getType())
return Error(NameLoc,
"forward reference and definition of alias have different types");
// If they agree, just RAUW the old value with the alias and remove the
// forward ref info.
Val->replaceAllUsesWith(GA);
Val->eraseFromParent();
ForwardRefVals.erase(I);
}
// Insert into the module, we know its name won't collide now.
M->getAliasList().push_back(GA);
assert(GA->getName() == Name && "Should not be a name conflict!");
return false;
}
/// ParseGlobal
/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
/// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
/// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
///
/// Everything through visibility has been parsed already.
///
bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
unsigned Linkage, bool HasLinkage,
unsigned Visibility) {
unsigned AddrSpace;
bool ThreadLocal, IsConstant, UnnamedAddr;
LocTy UnnamedAddrLoc;
LocTy TyLoc;
Type *Ty = 0;
if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
ParseOptionalAddrSpace(AddrSpace) ||
ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
&UnnamedAddrLoc) ||
ParseGlobalType(IsConstant) ||
ParseType(Ty, TyLoc))
return true;
// If the linkage is specified and is external, then no initializer is
// present.
Constant *Init = 0;
if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
Linkage != GlobalValue::ExternalWeakLinkage &&
Linkage != GlobalValue::ExternalLinkage)) {
if (ParseGlobalValue(Ty, Init))
return true;
}
if (Ty->isFunctionTy() || Ty->isLabelTy())
return Error(TyLoc, "invalid type for global variable");
GlobalVariable *GV = 0;
// See if the global was forward referenced, if so, use the global.
if (!Name.empty()) {
if (GlobalValue *GVal = M->getNamedValue(Name)) {
if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
return Error(NameLoc, "redefinition of global '@" + Name + "'");
GV = cast<GlobalVariable>(GVal);
}
} else {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
GV = cast<GlobalVariable>(I->second.first);
ForwardRefValIDs.erase(I);
}
}
if (GV == 0) {
GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
Name, 0, false, AddrSpace);
} else {
if (GV->getType()->getElementType() != Ty)
return Error(TyLoc,
"forward reference and definition of global have different types");
// Move the forward-reference to the correct spot in the module.
M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
}
if (Name.empty())
NumberedVals.push_back(GV);
// Set the parsed properties on the global.
if (Init)
GV->setInitializer(Init);
GV->setConstant(IsConstant);
GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GV->setThreadLocal(ThreadLocal);
GV->setUnnamedAddr(UnnamedAddr);
// Parse attributes on the global.
while (Lex.getKind() == lltok::comma) {
Lex.Lex();
if (Lex.getKind() == lltok::kw_section) {
Lex.Lex();
GV->setSection(Lex.getStrVal());
if (ParseToken(lltok::StringConstant, "expected global section string"))
return true;
} else if (Lex.getKind() == lltok::kw_align) {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment)) return true;
GV->setAlignment(Alignment);
} else {
TokError("unknown global variable property!");
}
}
return false;
}
//===----------------------------------------------------------------------===//
// GlobalValue Reference/Resolution Routines.
//===----------------------------------------------------------------------===//
/// GetGlobalVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
LocTy Loc) {
PointerType *PTy = dyn_cast<PointerType>(Ty);
if (PTy == 0) {
Error(Loc, "global variable reference must have pointer type");
return 0;
}
// Look this name up in the normal function symbol table.
GlobalValue *Val =
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
Error(Loc, "'@" + Name + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
else
FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
GlobalValue::ExternalWeakLinkage, 0, Name);
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
PointerType *PTy = dyn_cast<PointerType>(Ty);
if (PTy == 0) {
Error(Loc, "global variable reference must have pointer type");
return 0;
}
GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
else
FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
GlobalValue::ExternalWeakLinkage, 0, "");
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
//===----------------------------------------------------------------------===//
// Helper Routines.
//===----------------------------------------------------------------------===//
/// ParseToken - If the current token has the specified kind, eat it and return
/// success. Otherwise, emit the specified error and return failure.
bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
if (Lex.getKind() != T)
return TokError(ErrMsg);
Lex.Lex();
return false;
}
/// ParseStringConstant
/// ::= StringConstant
bool LLParser::ParseStringConstant(std::string &Result) {
if (Lex.getKind() != lltok::StringConstant)
return TokError("expected string constant");
Result = Lex.getStrVal();
Lex.Lex();
return false;
}
/// ParseUInt32
/// ::= uint32
bool LLParser::ParseUInt32(unsigned &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return TokError("expected integer");
uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
if (Val64 != unsigned(Val64))
return TokError("expected 32-bit integer (too large)");
Val = Val64;
Lex.Lex();
return false;
}
/// ParseOptionalAddrSpace
/// := /*empty*/
/// := 'addrspace' '(' uint32 ')'
bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
AddrSpace = 0;
if (!EatIfPresent(lltok::kw_addrspace))
return false;
return ParseToken(lltok::lparen, "expected '(' in address space") ||
ParseUInt32(AddrSpace) ||
ParseToken(lltok::rparen, "expected ')' in address space");
}
/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
/// indicates what kind of attribute list this is: 0: function arg, 1: result,
/// 2: function attr.
bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
Attrs = Attribute::None;
LocTy AttrLoc = Lex.getLoc();
while (1) {
switch (Lex.getKind()) {
default: // End of attributes.
if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
return Error(AttrLoc, "invalid use of function-only attribute");
// As a hack, we allow "align 2" on functions as a synonym for
// "alignstack 2".
if (AttrKind == 2 &&
(Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
return Error(AttrLoc, "invalid use of attribute on a function");
if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
return Error(AttrLoc, "invalid use of parameter-only attribute");
return false;
case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
case lltok::kw_signext: Attrs |= Attribute::SExt; break;
case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
case lltok::kw_nest: Attrs |= Attribute::Nest; break;
case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break;
case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break;
case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
case lltok::kw_naked: Attrs |= Attribute::Naked; break;
case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break;
case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break;
case lltok::kw_alignstack: {
unsigned Alignment;
if (ParseOptionalStackAlignment(Alignment))
return true;
Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
continue;
}
case lltok::kw_align: {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment))
return true;
Attrs |= Attribute::constructAlignmentFromInt(Alignment);
continue;
}
}
Lex.Lex();
}
}
/// ParseOptionalLinkage
/// ::= /*empty*/
/// ::= 'private'
/// ::= 'linker_private'
/// ::= 'linker_private_weak'
/// ::= 'linker_private_weak_def_auto'
/// ::= 'internal'
/// ::= 'weak'
/// ::= 'weak_odr'
/// ::= 'linkonce'
/// ::= 'linkonce_odr'
/// ::= 'available_externally'
/// ::= 'appending'
/// ::= 'dllexport'
/// ::= 'common'
/// ::= 'dllimport'
/// ::= 'extern_weak'
/// ::= 'external'
bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
HasLinkage = false;
switch (Lex.getKind()) {
default: Res=GlobalValue::ExternalLinkage; return false;
case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
case lltok::kw_linker_private_weak:
Res = GlobalValue::LinkerPrivateWeakLinkage;
break;
case lltok::kw_linker_private_weak_def_auto:
Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
break;
case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
case lltok::kw_available_externally:
Res = GlobalValue::AvailableExternallyLinkage;
break;
case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
}
Lex.Lex();
HasLinkage = true;
return false;
}
/// ParseOptionalVisibility
/// ::= /*empty*/
/// ::= 'default'
/// ::= 'hidden'
/// ::= 'protected'
///
bool LLParser::ParseOptionalVisibility(unsigned &Res) {
switch (Lex.getKind()) {
default: Res = GlobalValue::DefaultVisibility; return false;
case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
}
Lex.Lex();
return false;
}
/// ParseOptionalCallingConv
/// ::= /*empty*/
/// ::= 'ccc'
/// ::= 'fastcc'
/// ::= 'coldcc'
/// ::= 'x86_stdcallcc'
/// ::= 'x86_fastcallcc'
/// ::= 'x86_thiscallcc'
/// ::= 'arm_apcscc'
/// ::= 'arm_aapcscc'
/// ::= 'arm_aapcs_vfpcc'
/// ::= 'msp430_intrcc'
/// ::= 'ptx_kernel'
/// ::= 'ptx_device'
/// ::= 'cc' UINT
///
bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
switch (Lex.getKind()) {
default: CC = CallingConv::C; return false;
case lltok::kw_ccc: CC = CallingConv::C; break;
case lltok::kw_fastcc: CC = CallingConv::Fast; break;
case lltok::kw_coldcc: CC = CallingConv::Cold; break;
case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
case lltok::kw_cc: {
unsigned ArbitraryCC;
Lex.Lex();
if (ParseUInt32(ArbitraryCC))
return true;
CC = static_cast<CallingConv::ID>(ArbitraryCC);
return false;
}
}
Lex.Lex();
return false;
}
/// ParseInstructionMetadata
/// ::= !dbg !42 (',' !dbg !57)*
bool LLParser::ParseInstructionMetadata(Instruction *Inst,
PerFunctionState *PFS) {
do {
if (Lex.getKind() != lltok::MetadataVar)
return TokError("expected metadata after comma");
std::string Name = Lex.getStrVal();
unsigned MDK = M->getMDKindID(Name);
Lex.Lex();
MDNode *Node;
SMLoc Loc = Lex.getLoc();
if (ParseToken(lltok::exclaim, "expected '!' here"))
return true;
// This code is similar to that of ParseMetadataValue, however it needs to
// have special-case code for a forward reference; see the comments on
// ForwardRefInstMetadata for details. Also, MDStrings are not supported
// at the top level here.
if (Lex.getKind() == lltok::lbrace) {
ValID ID;
if (ParseMetadataListValue(ID, PFS))
return true;
assert(ID.Kind == ValID::t_MDNode);
Inst->setMetadata(MDK, ID.MDNodeVal);
} else {
unsigned NodeID = 0;
if (ParseMDNodeID(Node, NodeID))
return true;
if (Node) {
// If we got the node, add it to the instruction.
Inst->setMetadata(MDK, Node);
} else {
MDRef R = { Loc, MDK, NodeID };
// Otherwise, remember that this should be resolved later.
ForwardRefInstMetadata[Inst].push_back(R);
}
}
// If this is the end of the list, we're done.
} while (EatIfPresent(lltok::comma));
return false;
}
/// ParseOptionalAlignment
/// ::= /* empty */
/// ::= 'align' 4
bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::kw_align))
return false;
LocTy AlignLoc = Lex.getLoc();
if (ParseUInt32(Alignment)) return true;
if (!isPowerOf2_32(Alignment))
return Error(AlignLoc, "alignment is not a power of two");
if (Alignment > Value::MaximumAlignment)
return Error(AlignLoc, "huge alignments are not supported yet");
return false;
}
/// ParseOptionalCommaAlign
/// ::=
/// ::= ',' align 4
///
/// This returns with AteExtraComma set to true if it ate an excess comma at the
/// end.
bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
bool &AteExtraComma) {
AteExtraComma = false;
while (EatIfPresent(lltok::comma)) {
// Metadata at the end is an early exit.
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
return false;
}
if (Lex.getKind() != lltok::kw_align)
return Error(Lex.getLoc(), "expected metadata or 'align'");
if (ParseOptionalAlignment(Alignment)) return true;
}
return false;
}
/// ParseScopeAndOrdering
/// if isAtomic: ::= 'singlethread'? AtomicOrdering
/// else: ::=
///
/// This sets Scope and Ordering to the parsed values.
bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
AtomicOrdering &Ordering) {
if (!isAtomic)
return false;
Scope = CrossThread;
if (EatIfPresent(lltok::kw_singlethread))
Scope = SingleThread;
switch (Lex.getKind()) {
default: return TokError("Expected ordering on atomic instruction");
case lltok::kw_unordered: Ordering = Unordered; break;
case lltok::kw_monotonic: Ordering = Monotonic; break;
case lltok::kw_acquire: Ordering = Acquire; break;
case lltok::kw_release: Ordering = Release; break;
case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
}
Lex.Lex();
return false;
}
/// ParseOptionalStackAlignment
/// ::= /* empty */
/// ::= 'alignstack' '(' 4 ')'
bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::kw_alignstack))
return false;
LocTy ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return Error(ParenLoc, "expected '('");
LocTy AlignLoc = Lex.getLoc();
if (ParseUInt32(Alignment)) return true;
ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return Error(ParenLoc, "expected ')'");
if (!isPowerOf2_32(Alignment))
return Error(AlignLoc, "stack alignment is not a power of two");
return false;
}
/// ParseIndexList - This parses the index list for an insert/extractvalue
/// instruction. This sets AteExtraComma in the case where we eat an extra
/// comma at the end of the line and find that it is followed by metadata.
/// Clients that don't allow metadata can call the version of this function that
/// only takes one argument.
///
/// ParseIndexList
/// ::= (',' uint32)+
///
bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
bool &AteExtraComma) {
AteExtraComma = false;
if (Lex.getKind() != lltok::comma)
return TokError("expected ',' as start of index list");
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
return false;
}
unsigned Idx = 0;
if (ParseUInt32(Idx)) return true;
Indices.push_back(Idx);
}
return false;
}
//===----------------------------------------------------------------------===//
// Type Parsing.
//===----------------------------------------------------------------------===//
/// ParseType - Parse a type.
bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
SMLoc TypeLoc = Lex.getLoc();
switch (Lex.getKind()) {
default:
return TokError("expected type");
case lltok::Type:
// Type ::= 'float' | 'void' (etc)
Result = Lex.getTyVal();
Lex.Lex();
break;
case lltok::lbrace:
// Type ::= StructType
if (ParseAnonStructType(Result, false))
return true;
break;
case lltok::lsquare:
// Type ::= '[' ... ']'
Lex.Lex(); // eat the lsquare.
if (ParseArrayVectorType(Result, false))
return true;
break;
case lltok::less: // Either vector or packed struct.
// Type ::= '<' ... '>'
Lex.Lex();
if (Lex.getKind() == lltok::lbrace) {
if (ParseAnonStructType(Result, true) ||
ParseToken(lltok::greater, "expected '>' at end of packed struct"))
return true;
} else if (ParseArrayVectorType(Result, true))
return true;
break;
case lltok::LocalVar: {
// Type ::= %foo
std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
// If the type hasn't been defined yet, create a forward definition and
// remember where that forward def'n was seen (in case it never is defined).
if (Entry.first == 0) {
Entry.first = StructType::create(Context, Lex.getStrVal());
Entry.second = Lex.getLoc();
}
Result = Entry.first;
Lex.Lex();
break;
}
case lltok::LocalVarID: {
// Type ::= %4
if (Lex.getUIntVal() >= NumberedTypes.size())
NumberedTypes.resize(Lex.getUIntVal()+1);
std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
// If the type hasn't been defined yet, create a forward definition and
// remember where that forward def'n was seen (in case it never is defined).
if (Entry.first == 0) {
Entry.first = StructType::create(Context);
Entry.second = Lex.getLoc();
}
Result = Entry.first;
Lex.Lex();
break;
}
}
// Parse the type suffixes.
while (1) {
switch (Lex.getKind()) {
// End of type.
default:
if (!AllowVoid && Result->isVoidTy())
return Error(TypeLoc, "void type only allowed for function results");
return false;
// Type ::= Type '*'
case lltok::star:
if (Result->isLabelTy())
return TokError("basic block pointers are invalid");
if (Result->isVoidTy())
return TokError("pointers to void are invalid - use i8* instead");
if (!PointerType::isValidElementType(Result))
return TokError("pointer to this type is invalid");
Result = PointerType::getUnqual(Result);
Lex.Lex();
break;
// Type ::= Type 'addrspace' '(' uint32 ')' '*'
case lltok::kw_addrspace: {
if (Result->isLabelTy())
return TokError("basic block pointers are invalid");
if (Result->isVoidTy())
return TokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result))
return TokError("pointer to this type is invalid");
unsigned AddrSpace;
if (ParseOptionalAddrSpace(AddrSpace) ||
ParseToken(lltok::star, "expected '*' in address space"))
return true;
Result = PointerType::get(Result, AddrSpace);
break;
}
/// Types '(' ArgTypeListI ')' OptFuncAttrs
case lltok::lparen:
if (ParseFunctionType(Result))
return true;
break;
}
}
}
/// ParseParameterList
/// ::= '(' ')'
/// ::= '(' Arg (',' Arg)* ')'
/// Arg
/// ::= Type OptionalAttributes Value OptionalAttributes
bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS) {
if (ParseToken(lltok::lparen, "expected '(' in call"))
return true;
while (Lex.getKind() != lltok::rparen) {
// If this isn't the first argument, we need a comma.
if (!ArgList.empty() &&
ParseToken(lltok::comma, "expected ',' in argument list"))
return true;
// Parse the argument.
LocTy ArgLoc;
Type *ArgTy = 0;
Attributes ArgAttrs1;
Attributes ArgAttrs2;
Value *V;
if (ParseType(ArgTy, ArgLoc))
return true;
// Otherwise, handle normal operands.
if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
return true;
ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
}
Lex.Lex(); // Lex the ')'.
return false;
}
/// ParseArgumentList - Parse the argument list for a function type or function
/// prototype.
/// ::= '(' ArgTypeListI ')'
/// ArgTypeListI
/// ::= /*empty*/
/// ::= '...'
/// ::= ArgTypeList ',' '...'
/// ::= ArgType (',' ArgType)*
///
bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
bool &isVarArg){
isVarArg = false;
assert(Lex.getKind() == lltok::lparen);
Lex.Lex(); // eat the (.
if (Lex.getKind() == lltok::rparen) {
// empty
} else if (Lex.getKind() == lltok::dotdotdot) {
isVarArg = true;
Lex.Lex();
} else {
LocTy TypeLoc = Lex.getLoc();
Type *ArgTy = 0;
Attributes Attrs;
std::string Name;
if (ParseType(ArgTy) ||
ParseOptionalAttrs(Attrs, 0)) return true;
if (ArgTy->isVoidTy())
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar) {
Name = Lex.getStrVal();
Lex.Lex();
}
if (!FunctionType::isValidArgumentType(ArgTy))
return Error(TypeLoc, "invalid type for function argument");
ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
while (EatIfPresent(lltok::comma)) {
// Handle ... at end of arg list.
if (EatIfPresent(lltok::dotdotdot)) {
isVarArg = true;
break;
}
// Otherwise must be an argument type.
TypeLoc = Lex.getLoc();
if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
if (ArgTy->isVoidTy())
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar) {
Name = Lex.getStrVal();
Lex.Lex();
} else {
Name = "";
}
if (!ArgTy->isFirstClassType())
return Error(TypeLoc, "invalid type for function argument");
ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
}
}
return ParseToken(lltok::rparen, "expected ')' at end of argument list");
}
/// ParseFunctionType
/// ::= Type ArgumentList OptionalAttrs
bool LLParser::ParseFunctionType(Type *&Result) {
assert(Lex.getKind() == lltok::lparen);
if (!FunctionType::isValidReturnType(Result))
return TokError("invalid function return type");
SmallVector<ArgInfo, 8> ArgList;
bool isVarArg;
if (ParseArgumentList(ArgList, isVarArg))
return true;
// Reject names on the arguments lists.
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
if (!ArgList[i].Name.empty())
return Error(ArgList[i].Loc, "argument name invalid in function type");
if (ArgList[i].Attrs)
return Error(ArgList[i].Loc,
"argument attributes invalid in function type");
}
SmallVector<Type*, 16> ArgListTy;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ArgListTy.push_back(ArgList[i].Ty);
Result = FunctionType::get(Result, ArgListTy, isVarArg);
return false;
}
/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
/// other structs.
bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
SmallVector<Type*, 8> Elts;
if (ParseStructBody(Elts)) return true;
Result = StructType::get(Context, Elts, Packed);
return false;
}
/// ParseStructDefinition - Parse a struct in a 'type' definition.
bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
std::pair<Type*, LocTy> &Entry,
Type *&ResultTy) {
// If the type was already defined, diagnose the redefinition.
if (Entry.first && !Entry.second.isValid())
return Error(TypeLoc, "redefinition of type");
// If we have opaque, just return without filling in the definition for the
// struct. This counts as a definition as far as the .ll file goes.
if (EatIfPresent(lltok::kw_opaque)) {
// This type is being defined, so clear the location to indicate this.
Entry.second = SMLoc();
// If this type number has never been uttered, create it.
if (Entry.first == 0)
Entry.first = StructType::create(Context, Name);
ResultTy = Entry.first;
return false;
}
// If the type starts with '<', then it is either a packed struct or a vector.
bool isPacked = EatIfPresent(lltok::less);
// If we don't have a struct, then we have a random type alias, which we
// accept for compatibility with old files. These types are not allowed to be
// forward referenced and not allowed to be recursive.
if (Lex.getKind() != lltok::lbrace) {
if (Entry.first)
return Error(TypeLoc, "forward references to non-struct type");
ResultTy = 0;
if (isPacked)
return ParseArrayVectorType(ResultTy, true);
return ParseType(ResultTy);
}
// This type is being defined, so clear the location to indicate this.
Entry.second = SMLoc();
// If this type number has never been uttered, create it.
if (Entry.first == 0)
Entry.first = StructType::create(Context, Name);
StructType *STy = cast<StructType>(Entry.first);
SmallVector<Type*, 8> Body;
if (ParseStructBody(Body) ||
(isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
return true;
STy->setBody(Body, isPacked);
ResultTy = STy;
return false;
}
/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
/// StructType
/// ::= '{' '}'
/// ::= '{' Type (',' Type)* '}'
/// ::= '<' '{' '}' '>'
/// ::= '<' '{' Type (',' Type)* '}' '>'
bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex(); // Consume the '{'
// Handle the empty struct.
if (EatIfPresent(lltok::rbrace))
return false;
LocTy EltTyLoc = Lex.getLoc();
Type *Ty = 0;
if (ParseType(Ty)) return true;
Body.push_back(Ty);
if (!StructType::isValidElementType(Ty))
return Error(EltTyLoc, "invalid element type for struct");
while (EatIfPresent(lltok::comma)) {
EltTyLoc = Lex.getLoc();
if (ParseType(Ty)) return true;
if (!StructType::isValidElementType(Ty))
return Error(EltTyLoc, "invalid element type for struct");
Body.push_back(Ty);
}
return ParseToken(lltok::rbrace, "expected '}' at end of struct");
}
/// ParseArrayVectorType - Parse an array or vector type, assuming the first
/// token has already been consumed.
/// Type
/// ::= '[' APSINTVAL 'x' Types ']'
/// ::= '<' APSINTVAL 'x' Types '>'
bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
Lex.getAPSIntVal().getBitWidth() > 64)
return TokError("expected number in address space");
LocTy SizeLoc = Lex.getLoc();
uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Lex.Lex();
if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
return true;
LocTy TypeLoc = Lex.getLoc();
Type *EltTy = 0;
if (ParseType(EltTy)) return true;
if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
"expected end of sequential type"))
return true;
if (isVector) {
if (Size == 0)
return Error(SizeLoc, "zero element vector is illegal");
if ((unsigned)Size != Size)
return Error(SizeLoc, "size too large for vector");
if (!VectorType::isValidElementType(EltTy))
return Error(TypeLoc,
"vector element type must be fp, integer or a pointer to these types");
Result = VectorType::get(EltTy, unsigned(Size));
} else {
if (!ArrayType::isValidElementType(EltTy))
return Error(TypeLoc, "invalid array element type");
Result = ArrayType::get(EltTy, Size);
}
return false;
}
//===----------------------------------------------------------------------===//
// Function Semantic Analysis.
//===----------------------------------------------------------------------===//
LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
int functionNumber)
: P(p), F(f), FunctionNumber(functionNumber) {
// Insert unnamed arguments into the NumberedVals list.
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI)
if (!AI->hasName())
NumberedVals.push_back(AI);
}
LLParser::PerFunctionState::~PerFunctionState() {
// If there were any forward referenced non-basicblock values, delete them.
for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
UndefValue::get(I->second.first->getType()));
delete I->second.first;
I->second.first = 0;
}
for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
UndefValue::get(I->second.first->getType()));
delete I->second.first;
I->second.first = 0;
}
}
bool LLParser::PerFunctionState::FinishFunction() {
// Check to see if someone took the address of labels in this block.
if (!P.ForwardRefBlockAddresses.empty()) {
ValID FunctionID;
if (!F.getName().empty()) {
FunctionID.Kind = ValID::t_GlobalName;
FunctionID.StrVal = F.getName();
} else {
FunctionID.Kind = ValID::t_GlobalID;
FunctionID.UIntVal = FunctionNumber;
}
std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
if (FRBAI != P.ForwardRefBlockAddresses.end()) {
// Resolve all these references.
if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
return true;
P.ForwardRefBlockAddresses.erase(FRBAI);
}
}
if (!ForwardRefVals.empty())
return P.Error(ForwardRefVals.begin()->second.second,
"use of undefined value '%" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return P.Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '%" +
Twine(ForwardRefValIDs.begin()->first) + "'");
return false;
}
/// GetVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
Type *Ty, LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = F.getValueSymbolTable().lookup(Name);
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<std::string, std::pair<Value*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
if (Ty->isLabelTy())
P.Error(Loc, "'%" + Name + "' is not a basic block");
else
P.Error(Loc, "'%" + Name + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return 0;
}
// Don't make placeholders with invalid type.
if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty->isLabelTy())
FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
else
FwdVal = new Argument(Ty, Name);
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
if (Ty->isLabelTy())
P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
else
P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return 0;
}
if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty->isLabelTy())
FwdVal = BasicBlock::Create(F.getContext(), "", &F);
else
FwdVal = new Argument(Ty);
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
/// SetInstName - After an instruction is parsed and inserted into its
/// basic block, this installs its name.
bool LLParser::PerFunctionState::SetInstName(int NameID,
const std::string &NameStr,
LocTy NameLoc, Instruction *Inst) {
// If this instruction has void type, it cannot have a name or ID specified.
if (Inst->getType()->isVoidTy()) {
if (NameID != -1 || !NameStr.empty())
return P.Error(NameLoc, "instructions returning void cannot have a name");
return false;
}
// If this was a numbered instruction, verify that the instruction is the
// expected value and resolve any forward references.
if (NameStr.empty()) {
// If neither a name nor an ID was specified, just use the next ID.
if (NameID == -1)
NameID = NumberedVals.size();
if (unsigned(NameID) != NumberedVals.size())
return P.Error(NameLoc, "instruction expected to be numbered '%" +
Twine(NumberedVals.size()) + "'");
std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
ForwardRefValIDs.find(NameID);
if (FI != ForwardRefValIDs.end()) {
if (FI->second.first->getType() != Inst->getType())
return P.Error(NameLoc, "instruction forward referenced with type '" +
getTypeString(FI->second.first->getType()) + "'");
FI->second.first->replaceAllUsesWith(Inst);
delete FI->second.first;
ForwardRefValIDs.erase(FI);
}
NumberedVals.push_back(Inst);
return false;
}
// Otherwise, the instruction had a name. Resolve forward refs and set it.
std::map<std::string, std::pair<Value*, LocTy> >::iterator
FI = ForwardRefVals.find(NameStr);
if (FI != ForwardRefVals.end()) {
if (FI->second.first->getType() != Inst->getType())
return P.Error(NameLoc, "instruction forward referenced with type '" +
getTypeString(FI->second.first->getType()) + "'");
FI->second.first->replaceAllUsesWith(Inst);
delete FI->second.first;
ForwardRefVals.erase(FI);
}
// Set the name on the instruction.
Inst->setName(NameStr);
if (Inst->getName() != NameStr)
return P.Error(NameLoc, "multiple definition of local value named '" +
NameStr + "'");
return false;
}
/// GetBB - Get a basic block with the specified name or ID, creating a
/// forward reference record if needed.
BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
LocTy Loc) {
return cast_or_null<BasicBlock>(GetVal(Name,
Type::getLabelTy(F.getContext()), Loc));
}
BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
return cast_or_null<BasicBlock>(GetVal(ID,
Type::getLabelTy(F.getContext()), Loc));
}
/// DefineBB - Define the specified basic block, which is either named or
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
LocTy Loc) {
BasicBlock *BB;
if (Name.empty())
BB = GetBB(NumberedVals.size(), Loc);
else
BB = GetBB(Name, Loc);
if (BB == 0) return 0; // Already diagnosed error.
// Move the block to the end of the function. Forward ref'd blocks are
// inserted wherever they happen to be referenced.
F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
// Remove the block from forward ref sets.
if (Name.empty()) {
ForwardRefValIDs.erase(NumberedVals.size());
NumberedVals.push_back(BB);
} else {
// BB forward references are already in the function symbol table.
ForwardRefVals.erase(Name);
}
return BB;
}
//===----------------------------------------------------------------------===//
// Constants.
//===----------------------------------------------------------------------===//
/// ParseValID - Parse an abstract value that doesn't necessarily have a
/// type implied. For example, if we parse "4" we don't know what integer type
/// it has. The value will later be combined with its type and checked for
/// sanity. PFS is used to convert function-local operands of metadata (since
/// metadata operands are not just parsed here but also converted to values).
/// PFS can be null when we are not parsing metadata values inside a function.
bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
ID.Loc = Lex.getLoc();
switch (Lex.getKind()) {
default: return TokError("expected value token");
case lltok::GlobalID: // @42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_GlobalID;
break;
case lltok::GlobalVar: // @foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_GlobalName;
break;
case lltok::LocalVarID: // %42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_LocalID;
break;
case lltok::LocalVar: // %foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_LocalName;
break;
case lltok::exclaim: // !42, !{...}, or !"foo"
return ParseMetadataValue(ID, PFS);
case lltok::APSInt:
ID.APSIntVal = Lex.getAPSIntVal();
ID.Kind = ValID::t_APSInt;
break;
case lltok::APFloat:
ID.APFloatVal = Lex.getAPFloatVal();
ID.Kind = ValID::t_APFloat;
break;
case lltok::kw_true:
ID.ConstantVal = ConstantInt::getTrue(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_false:
ID.ConstantVal = ConstantInt::getFalse(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_null: ID.Kind = ValID::t_Null; break;
case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
case lltok::lbrace: {
// ValID ::= '{' ConstVector '}'
Lex.Lex();
SmallVector<Constant*, 16> Elts;
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rbrace, "expected end of struct constant"))
return true;
ID.ConstantStructElts = new Constant*[Elts.size()];
ID.UIntVal = Elts.size();
memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
ID.Kind = ValID::t_ConstantStruct;
return false;
}
case lltok::less: {
// ValID ::= '<' ConstVector '>' --> Vector.
// ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
Lex.Lex();
bool isPackedStruct = EatIfPresent(lltok::lbrace);
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
(isPackedStruct &&
ParseToken(lltok::rbrace, "expected end of packed struct")) ||
ParseToken(lltok::greater, "expected end of constant"))
return true;
if (isPackedStruct) {
ID.ConstantStructElts = new Constant*[Elts.size()];
memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
ID.UIntVal = Elts.size();
ID.Kind = ValID::t_PackedConstantStruct;
return false;
}
if (Elts.empty())
return Error(ID.Loc, "constant vector must not be empty");
if (!Elts[0]->getType()->isIntegerTy() &&
!Elts[0]->getType()->isFloatingPointTy() &&
!Elts[0]->getType()->isPointerTy())
return Error(FirstEltLoc,
"vector elements must have integer, pointer or floating point type");
// Verify that all the vector elements have the same type.
for (unsigned i = 1, e = Elts.size(); i != e; ++i)
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"vector element #" + Twine(i) +
" is not of type '" + getTypeString(Elts[0]->getType()));
ID.ConstantVal = ConstantVector::get(Elts);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::lsquare: { // Array Constant
Lex.Lex();
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rsquare, "expected end of array constant"))
return true;
// Handle empty element.
if (Elts.empty()) {
// Use undef instead of an array because it's inconvenient to determine
// the element type at this point, there being no elements to examine.
ID.Kind = ValID::t_EmptyArray;
return false;
}
if (!Elts[0]->getType()->isFirstClassType())
return Error(FirstEltLoc, "invalid array element type: " +
getTypeString(Elts[0]->getType()));
ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
// Verify all elements are correct type!
for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"array element #" + Twine(i) +
" is not of type '" + getTypeString(Elts[0]->getType()));
}
ID.ConstantVal = ConstantArray::get(ATy, Elts);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_c: // c "foo"
Lex.Lex();
ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
false);
if (ParseToken(lltok::StringConstant, "expected string")) return true;
ID.Kind = ValID::t_Constant;
return false;
case lltok::kw_asm: {
// ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
bool HasSideEffect, AlignStack;
Lex.Lex();
if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
ParseStringConstant(ID.StrVal) ||
ParseToken(lltok::comma, "expected comma in inline asm expression") ||
ParseToken(lltok::StringConstant, "expected constraint string"))
return true;
ID.StrVal2 = Lex.getStrVal();
ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
ID.Kind = ValID::t_InlineAsm;
return false;
}
case lltok::kw_blockaddress: {
// ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
Lex.Lex();
ValID Fn, Label;
LocTy FnLoc, LabelLoc;
if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
ParseValID(Fn) ||
ParseToken(lltok::comma, "expected comma in block address expression")||
ParseValID(Label) ||
ParseToken(lltok::rparen, "expected ')' in block address expression"))
return true;
if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
return Error(Fn.Loc, "expected function name in blockaddress");
if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
return Error(Label.Loc, "expected basic block name in blockaddress");
// Make a global variable as a placeholder for this reference.
GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
false, GlobalValue::InternalLinkage,
0, "");
ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
ID.ConstantVal = FwdRef;
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: {
unsigned Opc = Lex.getUIntVal();
Type *DestTy = 0;
Constant *SrcVal;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
ParseGlobalTypeAndValue(SrcVal) ||
ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
ParseType(DestTy) ||
ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
return Error(ID.Loc, "invalid cast opcode for cast from '" +
getTypeString(SrcVal->getType()) + "' to '" +
getTypeString(DestTy) + "'");
ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
SrcVal, DestTy);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_extractvalue: {
Lex.Lex();
Constant *Val;
SmallVector<unsigned, 4> Indices;
if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
ParseGlobalTypeAndValue(Val) ||
ParseIndexList(Indices) ||
ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
return true;
if (!Val->getType()->isAggregateType())
return Error(ID.Loc, "extractvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
return Error(ID.Loc, "invalid indices for extractvalue");
ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_insertvalue: {
Lex.Lex();
Constant *Val0, *Val1;
SmallVector<unsigned, 4> Indices;
if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
ParseGlobalTypeAndValue(Val1) ||
ParseIndexList(Indices) ||
ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
return true;
if (!Val0->getType()->isAggregateType())
return Error(ID.Loc, "insertvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
return Error(ID.Loc, "invalid indices for insertvalue");
ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_icmp:
case lltok::kw_fcmp: {
unsigned PredVal, Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseCmpPredicate(PredVal, Opc) ||
ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "compare operands must have the same type");
CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
if (Opc == Instruction::FCmp) {
if (!Val0->getType()->isFPOrFPVectorTy())
return Error(ID.Loc, "fcmp requires floating point operands");
ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
} else {
assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
if (!Val0->getType()->isIntOrIntVectorTy() &&
!Val0->getType()->getScalarType()->isPointerTy())
return Error(ID.Loc, "icmp requires pointer or integer operands");
ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
}
ID.Kind = ValID::t_Constant;
return false;
}
// Binary Operators.
case lltok::kw_add:
case lltok::kw_fadd:
case lltok::kw_sub:
case lltok::kw_fsub:
case lltok::kw_mul:
case lltok::kw_fmul:
case lltok::kw_udiv:
case lltok::kw_sdiv:
case lltok::kw_fdiv:
case lltok::kw_urem:
case lltok::kw_srem:
case lltok::kw_frem:
case lltok::kw_shl:
case lltok::kw_lshr:
case lltok::kw_ashr: {
bool NUW = false;
bool NSW = false;
bool Exact = false;
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
LocTy ModifierLoc = Lex.getLoc();
if (Opc == Instruction::Add || Opc == Instruction::Sub ||
Opc == Instruction::Mul || Opc == Instruction::Shl) {
if (EatIfPresent(lltok::kw_nuw))
NUW = true;
if (EatIfPresent(lltok::kw_nsw)) {
NSW = true;
if (EatIfPresent(lltok::kw_nuw))
NUW = true;
}
} else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
Opc == Instruction::LShr || Opc == Instruction::AShr) {
if (EatIfPresent(lltok::kw_exact))
Exact = true;
}
if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVectorTy()) {
if (NUW)
return Error(ModifierLoc, "nuw only applies to integer operations");
if (NSW)
return Error(ModifierLoc, "nsw only applies to integer operations");
}
// Check that the type is valid for the operator.
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::AShr:
case Instruction::LShr:
if (!Val0->getType()->isIntOrIntVectorTy())
return Error(ID.Loc, "constexpr requires integer operands");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
if (!Val0->getType()->isFPOrFPVectorTy())
return Error(ID.Loc, "constexpr requires fp operands");
break;
default: llvm_unreachable("Unknown binary operator!");
}
unsigned Flags = 0;
if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Exact) Flags |= PossiblyExactOperator::IsExact;
Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
ID.ConstantVal = C;
ID.Kind = ValID::t_Constant;
return false;
}
// Logical Operations
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: {
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVectorTy())
return Error(ID.Loc,
"constexpr requires integer or integer vector operands");
ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_getelementptr:
case lltok::kw_shufflevector:
case lltok::kw_insertelement:
case lltok::kw_extractelement:
case lltok::kw_select: {
unsigned Opc = Lex.getUIntVal();
SmallVector<Constant*, 16> Elts;
bool InBounds = false;
Lex.Lex();
if (Opc == Instruction::GetElementPtr)
InBounds = EatIfPresent(lltok::kw_inbounds);
if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rparen, "expected ')' in constantexpr"))
return true;
if (Opc == Instruction::GetElementPtr) {
if (Elts.size() == 0 ||
!Elts[0]->getType()->getScalarType()->isPointerTy())
return Error(ID.Loc, "getelementptr requires pointer operand");
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
return Error(ID.Loc, "invalid indices for getelementptr");
ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
InBounds);
} else if (Opc == Instruction::Select) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to select");
if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
Elts[2]))
return Error(ID.Loc, Reason);
ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
} else if (Opc == Instruction::ShuffleVector) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to shufflevector");
if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid operands to shufflevector");
ID.ConstantVal =
ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
} else if (Opc == Instruction::ExtractElement) {
if (Elts.size() != 2)
return Error(ID.Loc, "expected two operands to extractelement");
if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
return Error(ID.Loc, "invalid extractelement operands");
ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
} else {
assert(Opc == Instruction::InsertElement && "Unknown opcode");
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to insertelement");
if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid insertelement operands");
ID.ConstantVal =
ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
}
ID.Kind = ValID::t_Constant;
return false;
}
}
Lex.Lex();
return false;
}
/// ParseGlobalValue - Parse a global value with the specified type.
bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
C = 0;
ValID ID;
Value *V = NULL;
bool Parsed = ParseValID(ID) ||
ConvertValIDToValue(Ty, ID, V, NULL);
if (V && !(C = dyn_cast<Constant>(V)))
return Error(ID.Loc, "global values must be constants");
return Parsed;
}
bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
Type *Ty = 0;
return ParseType(Ty) ||
ParseGlobalValue(Ty, V);
}
/// ParseGlobalValueVector
/// ::= /*empty*/
/// ::= TypeAndValue (',' TypeAndValue)*
bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
// Empty list.
if (Lex.getKind() == lltok::rbrace ||
Lex.getKind() == lltok::rsquare ||
Lex.getKind() == lltok::greater ||
Lex.getKind() == lltok::rparen)
return false;
Constant *C;
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
while (EatIfPresent(lltok::comma)) {
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
}
return false;
}
bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex();
SmallVector<Value*, 16> Elts;
if (ParseMDNodeVector(Elts, PFS) ||
ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
ID.MDNodeVal = MDNode::get(Context, Elts);
ID.Kind = ValID::t_MDNode;
return false;
}
/// ParseMetadataValue
/// ::= !42
/// ::= !{...}
/// ::= !"string"
bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
assert(Lex.getKind() == lltok::exclaim);
Lex.Lex();
// MDNode:
// !{ ... }
if (Lex.getKind() == lltok::lbrace)
return ParseMetadataListValue(ID, PFS);
// Standalone metadata reference
// !42
if (Lex.getKind() == lltok::APSInt) {
if (ParseMDNodeID(ID.MDNodeVal)) return true;
ID.Kind = ValID::t_MDNode;
return false;
}
// MDString:
// ::= '!' STRINGCONSTANT
if (ParseMDString(ID.MDStringVal)) return true;
ID.Kind = ValID::t_MDString;
return false;
}
//===----------------------------------------------------------------------===//
// Function Parsing.
//===----------------------------------------------------------------------===//
bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
PerFunctionState *PFS) {
if (Ty->isFunctionTy())
return Error(ID.Loc, "functions are not values, refer to them as pointers");
switch (ID.Kind) {
case ValID::t_LocalID:
if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
return (V == 0);
case ValID::t_LocalName:
if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
return (V == 0);
case ValID::t_InlineAsm: {
PointerType *PTy = dyn_cast<PointerType>(Ty);
FunctionType *FTy =
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
return Error(ID.Loc, "invalid type for inline asm constraint string");
V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
return false;
}
case ValID::t_MDNode:
if (!Ty->isMetadataTy())
return Error(ID.Loc, "metadata value must have metadata type");
V = ID.MDNodeVal;
return false;
case ValID::t_MDString:
if (!Ty->isMetadataTy())
return Error(ID.Loc, "metadata value must have metadata type");
V = ID.MDStringVal;
return false;
case ValID::t_GlobalName:
V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
return V == 0;
case ValID::t_GlobalID:
V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
return V == 0;
case ValID::t_APSInt:
if (!Ty->isIntegerTy())
return Error(ID.Loc, "integer constant must have integer type");
ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
V = ConstantInt::get(Context, ID.APSIntVal);
return false;
case ValID::t_APFloat:
if (!Ty->isFloatingPointTy() ||
!ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
return Error(ID.Loc, "floating point constant invalid for type");
// The lexer has no type info, so builds all half, float, and double FP
// constants as double. Fix this here. Long double does not need this.
if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
bool Ignored;
if (Ty->isHalfTy())
ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
&Ignored);
else if (Ty->isFloatTy())
ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
&Ignored);
}
V = ConstantFP::get(Context, ID.APFloatVal);
if (V->getType() != Ty)
return Error(ID.Loc, "floating point constant does not have type '" +
getTypeString(Ty) + "'");
return false;
case ValID::t_Null:
if (!Ty->isPointerTy())
return Error(ID.Loc, "null must be a pointer type");
V = ConstantPointerNull::get(cast<PointerType>(Ty));
return false;
case ValID::t_Undef:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return Error(ID.Loc, "invalid type for undef constant");
V = UndefValue::get(Ty);
return false;
case ValID::t_EmptyArray:
if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
return Error(ID.Loc, "invalid empty array initializer");
V = UndefValue::get(Ty);
return false;
case ValID::t_Zero:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return Error(ID.Loc, "invalid type for null constant");
V = Constant::getNullValue(Ty);
return false;
case ValID::t_Constant:
if (ID.ConstantVal->getType() != Ty)
return Error(ID.Loc, "constant expression type mismatch");
V = ID.ConstantVal;
return false;
case ValID::t_ConstantStruct:
case ValID::t_PackedConstantStruct:
if (StructType *ST = dyn_cast<StructType>(Ty)) {
if (ST->getNumElements() != ID.UIntVal)
return Error(ID.Loc,
"initializer with struct type has wrong # elements");
if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
return Error(ID.Loc, "packed'ness of initializer and type don't match");
// Verify that the elements are compatible with the structtype.
for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
return Error(ID.Loc, "element " + Twine(i) +
" of struct initializer doesn't match struct element type");
V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
ID.UIntVal));
} else
return Error(ID.Loc, "constant expression type mismatch");
return false;
}
llvm_unreachable("Invalid ValID");
}
bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
V = 0;
ValID ID;
return ParseValID(ID, PFS) ||
ConvertValIDToValue(Ty, ID, V, PFS);
}
bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
Type *Ty = 0;
return ParseType(Ty) ||
ParseValue(Ty, V, PFS);
}
bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
PerFunctionState &PFS) {
Value *V;
Loc = Lex.getLoc();
if (ParseTypeAndValue(V, PFS)) return true;
if (!isa<BasicBlock>(V))
return Error(Loc, "expected a basic block");
BB = cast<BasicBlock>(V);
return false;
}
/// FunctionHeader
/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
/// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
/// OptionalAlign OptGC
bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
// Parse the linkage.
LocTy LinkageLoc = Lex.getLoc();
unsigned Linkage;
unsigned Visibility;
Attributes RetAttrs;
CallingConv::ID CC;
Type *RetType = 0;
LocTy RetTypeLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/))
return true;
// Verify that the linkage is ok.
switch ((GlobalValue::LinkageTypes)Linkage) {
case GlobalValue::ExternalLinkage:
break; // always ok.
case GlobalValue::DLLImportLinkage:
case GlobalValue::ExternalWeakLinkage:
if (isDefine)
return Error(LinkageLoc, "invalid linkage for function definition");
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::LinkerPrivateLinkage:
case GlobalValue::LinkerPrivateWeakLinkage:
case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::DLLExportLinkage:
if (!isDefine)
return Error(LinkageLoc, "invalid linkage for function declaration");
break;
case GlobalValue::AppendingLinkage:
case GlobalValue::CommonLinkage:
return Error(LinkageLoc, "invalid function linkage type");
}
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "invalid function return type");
LocTy NameLoc = Lex.getLoc();
std::string FunctionName;
if (Lex.getKind() == lltok::GlobalVar) {
FunctionName = Lex.getStrVal();
} else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
unsigned NameID = Lex.getUIntVal();
if (NameID != NumberedVals.size())
return TokError("function expected to be numbered '%" +
Twine(NumberedVals.size()) + "'");
} else {
return TokError("expected function name");
}
Lex.Lex();
if (Lex.getKind() != lltok::lparen)
return TokError("expected '(' in function argument list");
SmallVector<ArgInfo, 8> ArgList;
bool isVarArg;
Attributes FuncAttrs;
std::string Section;
unsigned Alignment;
std::string GC;
bool UnnamedAddr;
LocTy UnnamedAddrLoc;
if (ParseArgumentList(ArgList, isVarArg) ||
ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
&UnnamedAddrLoc) ||
ParseOptionalAttrs(FuncAttrs, 2) ||
(EatIfPresent(lltok::kw_section) &&
ParseStringConstant(Section)) ||
ParseOptionalAlignment(Alignment) ||
(EatIfPresent(lltok::kw_gc) &&
ParseStringConstant(GC)))
return true;
// If the alignment was parsed as an attribute, move to the alignment field.
if (FuncAttrs & Attribute::Alignment) {
Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
FuncAttrs &= ~Attribute::Alignment;
}
// Okay, if we got here, the function is syntactically valid. Convert types
// and do semantic checks.
std::vector<Type*> ParamTypeList;
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
ParamTypeList.push_back(ArgList[i].Ty);
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
if (FuncAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
return Error(RetTypeLoc, "functions with 'sret' argument must return void");
FunctionType *FT =
FunctionType::get(RetType, ParamTypeList, isVarArg);
PointerType *PFT = PointerType::getUnqual(FT);
Fn = 0;
if (!FunctionName.empty()) {
// If this was a definition of a forward reference, remove the definition
// from the forward reference table and fill in the forward ref.
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
ForwardRefVals.find(FunctionName);
if (FRVI != ForwardRefVals.end()) {
Fn = M->getFunction(FunctionName);
if (Fn->getType() != PFT)
return Error(FRVI->second.second, "invalid forward reference to "
"function '" + FunctionName + "' with wrong type!");
ForwardRefVals.erase(FRVI);
} else if ((Fn = M->getFunction(FunctionName))) {
// Reject redefinitions.
return Error(NameLoc, "invalid redefinition of function '" +
FunctionName + "'");
} else if (M->getNamedValue(FunctionName)) {
return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
}
} else {
// If this is a definition of a forward referenced function, make sure the
// types agree.
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
= ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
Fn = cast<Function>(I->second.first);
if (Fn->getType() != PFT)
return Error(NameLoc, "type of definition and forward reference of '@" +
Twine(NumberedVals.size()) + "' disagree");
ForwardRefValIDs.erase(I);
}
}
if (Fn == 0)
Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
else // Move the forward-reference to the correct spot in the module.
M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
if (FunctionName.empty())
NumberedVals.push_back(Fn);
Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
Fn->setCallingConv(CC);
Fn->setAttributes(PAL);
Fn->setUnnamedAddr(UnnamedAddr);
Fn->setAlignment(Alignment);
Fn->setSection(Section);
if (!GC.empty()) Fn->setGC(GC.c_str());
// Add all of the arguments we parsed to the function.
Function::arg_iterator ArgIt = Fn->arg_begin();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
// If the argument has a name, insert it into the argument symbol table.
if (ArgList[i].Name.empty()) continue;
// Set the name, if it conflicted, it will be auto-renamed.
ArgIt->setName(ArgList[i].Name);
if (ArgIt->getName() != ArgList[i].Name)
return Error(ArgList[i].Loc, "redefinition of argument '%" +
ArgList[i].Name + "'");
}
return false;
}
/// ParseFunctionBody
/// ::= '{' BasicBlock+ '}'
///
bool LLParser::ParseFunctionBody(Function &Fn) {
if (Lex.getKind() != lltok::lbrace)
return TokError("expected '{' in function body");
Lex.Lex(); // eat the {.
int FunctionNumber = -1;
if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
PerFunctionState PFS(*this, Fn, FunctionNumber);
// We need at least one basic block.
if (Lex.getKind() == lltok::rbrace)
return TokError("function body requires at least one basic block");
while (Lex.getKind() != lltok::rbrace)
if (ParseBasicBlock(PFS)) return true;
// Eat the }.
Lex.Lex();
// Verify function is ok.
return PFS.FinishFunction();
}
/// ParseBasicBlock
/// ::= LabelStr? Instruction*
bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
// If this basic block starts out with a name, remember it.
std::string Name;
LocTy NameLoc = Lex.getLoc();
if (Lex.getKind() == lltok::LabelStr) {
Name = Lex.getStrVal();
Lex.Lex();
}
BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
if (BB == 0) return true;
std::string NameStr;
// Parse the instructions in this block until we get a terminator.
Instruction *Inst;
SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
do {
// This instruction may have three possibilities for a name: a) none
// specified, b) name specified "%foo =", c) number specified: "%4 =".
LocTy NameLoc = Lex.getLoc();
int NameID = -1;
NameStr = "";
if (Lex.getKind() == lltok::LocalVarID) {
NameID = Lex.getUIntVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after instruction id"))
return true;
} else if (Lex.getKind() == lltok::LocalVar) {
NameStr = Lex.getStrVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after instruction name"))
return true;
}
switch (ParseInstruction(Inst, BB, PFS)) {
default: llvm_unreachable("Unknown ParseInstruction result!");
case InstError: return true;
case InstNormal:
BB->getInstList().push_back(Inst);
// With a normal result, we check to see if the instruction is followed by
// a comma and metadata.
if (EatIfPresent(lltok::comma))
if (ParseInstructionMetadata(Inst, &PFS))
return true;
break;
case InstExtraComma:
BB->getInstList().push_back(Inst);
// If the instruction parser ate an extra comma at the end of it, it
// *must* be followed by metadata.
if (ParseInstructionMetadata(Inst, &PFS))
return true;
break;
}
// Set the name on the instruction.
if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
} while (!isa<TerminatorInst>(Inst));
return false;
}
//===----------------------------------------------------------------------===//
// Instruction Parsing.
//===----------------------------------------------------------------------===//
/// ParseInstruction - Parse one of the many different instructions.
///
int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::Eof)
return TokError("found end of file when expecting more instructions");
LocTy Loc = Lex.getLoc();
unsigned KeywordVal = Lex.getUIntVal();
Lex.Lex(); // Eat the keyword.
switch (Token) {
default: return Error(Loc, "expected instruction opcode");
// Terminator Instructions.
case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
case lltok::kw_br: return ParseBr(Inst, PFS);
case lltok::kw_switch: return ParseSwitch(Inst, PFS);
case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
case lltok::kw_resume: return ParseResume(Inst, PFS);
// Binary Operators.
case lltok::kw_add:
case lltok::kw_sub:
case lltok::kw_mul:
case lltok::kw_shl: {
bool NUW = EatIfPresent(lltok::kw_nuw);
bool NSW = EatIfPresent(lltok::kw_nsw);
if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
return false;
}
case lltok::kw_fadd:
case lltok::kw_fsub:
case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
case lltok::kw_sdiv:
case lltok::kw_udiv:
case lltok::kw_lshr:
case lltok::kw_ashr: {
bool Exact = EatIfPresent(lltok::kw_exact);
if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
return false;
}
case lltok::kw_urem:
case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
case lltok::kw_fdiv:
case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
case lltok::kw_icmp:
case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
// Casts.
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
// Other.
case lltok::kw_select: return ParseSelect(Inst, PFS);
case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
case lltok::kw_phi: return ParsePHI(Inst, PFS);
case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
case lltok::kw_call: return ParseCall(Inst, PFS, false);
case lltok::kw_tail: return ParseCall(Inst, PFS, true);
// Memory.
case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
case lltok::kw_load: return ParseLoad(Inst, PFS);
case lltok::kw_store: return ParseStore(Inst, PFS);
case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
case lltok::kw_fence: return ParseFence(Inst, PFS);
case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
}
}
/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
if (Opc == Instruction::FCmp) {
switch (Lex.getKind()) {
default: TokError("expected fcmp predicate (e.g. 'oeq')");
case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
}
} else {
switch (Lex.getKind()) {
default: TokError("expected icmp predicate (e.g. 'eq')");
case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
}
}
Lex.Lex();
return false;
}
//===----------------------------------------------------------------------===//
// Terminator Instructions.
//===----------------------------------------------------------------------===//
/// ParseRet - Parse a return instruction.
/// ::= 'ret' void (',' !dbg, !1)*
/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
SMLoc TypeLoc = Lex.getLoc();
Type *Ty = 0;
if (ParseType(Ty, true /*void allowed*/)) return true;
Type *ResType = PFS.getFunction().getReturnType();
if (Ty->isVoidTy()) {
if (!ResType->isVoidTy())
return Error(TypeLoc, "value doesn't match function result type '" +
getTypeString(ResType) + "'");
Inst = ReturnInst::Create(Context);
return false;
}
Value *RV;
if (ParseValue(Ty, RV, PFS)) return true;
if (ResType != RV->getType())
return Error(TypeLoc, "value doesn't match function result type '" +
getTypeString(ResType) + "'");
Inst = ReturnInst::Create(Context, RV);
return false;
}
/// ParseBr
/// ::= 'br' TypeAndValue
/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc, Loc2;
Value *Op0;
BasicBlock *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
Inst = BranchInst::Create(BB);
return false;
}
if (Op0->getType() != Type::getInt1Ty(Context))
return Error(Loc, "branch condition must have 'i1' type");
if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after true destination") ||
ParseTypeAndBasicBlock(Op2, Loc2, PFS))
return true;
Inst = BranchInst::Create(Op1, Op2, Op0);
return false;
}
/// ParseSwitch
/// Instruction
/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
/// JumpTable
/// ::= (TypeAndValue ',' TypeAndValue)*
bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CondLoc, BBLoc;
Value *Cond;
BasicBlock *DefaultBB;
if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after switch condition") ||
ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
ParseToken(lltok::lsquare, "expected '[' with switch table"))
return true;
if (!Cond->getType()->isIntegerTy())
return Error(CondLoc, "switch condition must have integer type");
// Parse the jump table pairs.
SmallPtrSet<Value*, 32> SeenCases;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
while (Lex.getKind() != lltok::rsquare) {
Value *Constant;
BasicBlock *DestBB;
if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after case value") ||
ParseTypeAndBasicBlock(DestBB, PFS))
return true;
if (!SeenCases.insert(Constant))
return Error(CondLoc, "duplicate case value in switch");
if (!isa<ConstantInt>(Constant))
return Error(CondLoc, "case value is not a constant integer");
Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
}
Lex.Lex(); // Eat the ']'.
SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
for (unsigned i = 0, e = Table.size(); i != e; ++i)
SI->addCase(Table[i].first, Table[i].second);
Inst = SI;
return false;
}
/// ParseIndirectBr
/// Instruction
/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy AddrLoc;
Value *Address;
if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
return true;
if (!Address->getType()->isPointerTy())
return Error(AddrLoc, "indirectbr address must have pointer type");
// Parse the destination list.
SmallVector<BasicBlock*, 16> DestList;
if (Lex.getKind() != lltok::rsquare) {
BasicBlock *DestBB;
if (ParseTypeAndBasicBlock(DestBB, PFS))
return true;
DestList.push_back(DestBB);
while (EatIfPresent(lltok::comma)) {
if (ParseTypeAndBasicBlock(DestBB, PFS))
return true;
DestList.push_back(DestBB);
}
}
if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
return true;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
for (unsigned i = 0, e = DestList.size(); i != e; ++i)
IBI->addDestination(DestList[i]);
Inst = IBI;
return false;
}
/// ParseInvoke
/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CallLoc = Lex.getLoc();
Attributes RetAttrs, FnAttrs;
CallingConv::ID CC;
Type *RetType = 0;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
BasicBlock *NormalBB, *UnwindBB;
if (ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
ParseParameterList(ArgList, PFS) ||
ParseOptionalAttrs(FnAttrs, 2) ||
ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
ParseTypeAndBasicBlock(NormalBB, PFS) ||
ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
ParseTypeAndBasicBlock(UnwindBB, PFS))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
PointerType *PFTy = 0;
FunctionType *Ty = 0;
if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
PFTy = PointerType::getUnqual(Ty);
}
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
// Set up the Attributes for the function.
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = 0;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
if (FnAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Finish off the Attributes and check them
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
II->setCallingConv(CC);
II->setAttributes(PAL);
Inst = II;
return false;
}
/// ParseResume
/// ::= 'resume' TypeAndValue
bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
Value *Exn; LocTy ExnLoc;
if (ParseTypeAndValue(Exn, ExnLoc, PFS))
return true;
ResumeInst *RI = ResumeInst::Create(Exn);
Inst = RI;
return false;
}
//===----------------------------------------------------------------------===//
// Binary Operators.
//===----------------------------------------------------------------------===//
/// ParseArithmetic
/// ::= ArithmeticOps TypeAndValue ',' Value
///
/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc, unsigned OperandType) {
LocTy Loc; Value *LHS, *RHS;
if (ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
bool Valid;
switch (OperandType) {
default: llvm_unreachable("Unknown operand type!");
case 0: // int or FP.
Valid = LHS->getType()->isIntOrIntVectorTy() ||
LHS->getType()->isFPOrFPVectorTy();
break;
case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
}
if (!Valid)
return Error(Loc, "invalid operand type for instruction");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// ParseLogical
/// ::= ArithmeticOps TypeAndValue ',' Value {
bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc; Value *LHS, *RHS;
if (ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' in logical operation") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
if (!LHS->getType()->isIntOrIntVectorTy())
return Error(Loc,"instruction requires integer or integer vector operands");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// ParseCompare
/// ::= 'icmp' IPredicates TypeAndValue ',' Value
/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
// Parse the integer/fp comparison predicate.
LocTy Loc;
unsigned Pred;
Value *LHS, *RHS;
if (ParseCmpPredicate(Pred, Opc) ||
ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after compare value") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
if (Opc == Instruction::FCmp) {
if (!LHS->getType()->isFPOrFPVectorTy())
return Error(Loc, "fcmp requires floating point operands");
Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
} else {
assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
if (!LHS->getType()->isIntOrIntVectorTy() &&
!LHS->getType()->getScalarType()->isPointerTy())
return Error(Loc, "icmp requires integer operands");
Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
}
return false;
}
//===----------------------------------------------------------------------===//
// Other Instructions.
//===----------------------------------------------------------------------===//
/// ParseCast
/// ::= CastOpc TypeAndValue 'to' Type
bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc;
Value *Op;
Type *DestTy = 0;
if (ParseTypeAndValue(Op, Loc, PFS) ||
ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
ParseType(DestTy))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
return Error(Loc, "invalid cast opcode for cast from '" +
getTypeString(Op->getType()) + "' to '" +
getTypeString(DestTy) + "'");
}
Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
return false;
}
/// ParseSelect
/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after select condition") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after select value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
return Error(Loc, Reason);
Inst = SelectInst::Create(Op0, Op1, Op2);
return false;
}
/// ParseVA_Arg
/// ::= 'va_arg' TypeAndValue ',' Type
bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Op;
Type *EltTy = 0;
LocTy TypeLoc;
if (ParseTypeAndValue(Op, PFS) ||
ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
ParseType(EltTy, TypeLoc))
return true;
if (!EltTy->isFirstClassType())
return Error(TypeLoc, "va_arg requires operand with first class type");
Inst = new VAArgInst(Op, EltTy);
return false;
}
/// ParseExtractElement
/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after extract value") ||
ParseTypeAndValue(Op1, PFS))
return true;
if (!ExtractElementInst::isValidOperands(Op0, Op1))
return Error(Loc, "invalid extractelement operands");
Inst = ExtractElementInst::Create(Op0, Op1);
return false;
}
/// ParseInsertElement
/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid insertelement operands");
Inst = InsertElementInst::Create(Op0, Op1, Op2);
return false;
}
/// ParseShuffleVector
/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after shuffle value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid shufflevector operands");
Inst = new ShuffleVectorInst(Op0, Op1, Op2);
return false;
}
/// ParsePHI
/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
Type *Ty = 0; LocTy TypeLoc;
Value *Op0, *Op1;
if (ParseType(Ty, TypeLoc) ||
ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
bool AteExtraComma = false;
SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
while (1) {
PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
if (!EatIfPresent(lltok::comma))
break;
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
break;
}
if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
}
if (!Ty->isFirstClassType())
return Error(TypeLoc, "phi node must have first class type");
PHINode *PN = PHINode::Create(Ty, PHIVals.size());
for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
Inst = PN;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseLandingPad
/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
/// Clause
/// ::= 'catch' TypeAndValue
/// ::= 'filter'
/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
Type *Ty = 0; LocTy TyLoc;
Value *PersFn; LocTy PersFnLoc;
if (ParseType(Ty, TyLoc) ||
ParseToken(lltok::kw_personality, "expected 'personality'") ||
ParseTypeAndValue(PersFn, PersFnLoc, PFS))
return true;
LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
LandingPadInst::ClauseType CT;
if (EatIfPresent(lltok::kw_catch))
CT = LandingPadInst::Catch;
else if (EatIfPresent(lltok::kw_filter))
CT = LandingPadInst::Filter;
else
return TokError("expected 'catch' or 'filter' clause type");
Value *V; LocTy VLoc;
if (ParseTypeAndValue(V, VLoc, PFS)) {
delete LP;
return true;
}
// A 'catch' type expects a non-array constant. A filter clause expects an
// array constant.
if (CT == LandingPadInst::Catch) {
if (isa<ArrayType>(V->getType()))
Error(VLoc, "'catch' clause has an invalid type");
} else {
if (!isa<ArrayType>(V->getType()))
Error(VLoc, "'filter' clause has an invalid type");
}
LP->addClause(V);
}
Inst = LP;
return false;
}
/// ParseCall
/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
/// ParameterList OptionalAttrs
bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
bool isTail) {
Attributes RetAttrs, FnAttrs;
CallingConv::ID CC;
Type *RetType = 0;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
LocTy CallLoc = Lex.getLoc();
if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
ParseParameterList(ArgList, PFS) ||
ParseOptionalAttrs(FnAttrs, 2))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
PointerType *PFTy = 0;
FunctionType *Ty = 0;
if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
PFTy = PointerType::getUnqual(Ty);
}
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
// Set up the Attributes for the function.
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = 0;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
if (FnAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Finish off the Attributes and check them
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
CallInst *CI = CallInst::Create(Callee, Args);
CI->setTailCall(isTail);
CI->setCallingConv(CC);
CI->setAttributes(PAL);
Inst = CI;
return false;
}
//===----------------------------------------------------------------------===//
// Memory Instructions.
//===----------------------------------------------------------------------===//
/// ParseAlloc
/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
Value *Size = 0;
LocTy SizeLoc;
unsigned Alignment = 0;
Type *Ty = 0;
if (ParseType(Ty)) return true;
bool AteExtraComma = false;
if (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::kw_align) {
if (ParseOptionalAlignment(Alignment)) return true;
} else if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
} else {
if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
ParseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
}
}
if (Size && !Size->getType()->isIntegerTy())
return Error(SizeLoc, "element count must have integer type");
Inst = new AllocaInst(Ty, Size, Alignment);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseLoad
/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
/// ::= 'load' 'atomic' 'volatile'? TypeAndValue
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
unsigned Alignment = 0;
bool AteExtraComma = false;
bool isAtomic = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
if (Lex.getKind() == lltok::kw_atomic) {
isAtomic = true;
Lex.Lex();
}
bool isVolatile = false;
if (Lex.getKind() == lltok::kw_volatile) {
isVolatile = true;
Lex.Lex();
}
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
ParseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!Val->getType()->isPointerTy() ||
!cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
return Error(Loc, "load operand must be a pointer to a first class type");
if (isAtomic && !Alignment)
return Error(Loc, "atomic load must have explicit non-zero alignment");
if (Ordering == Release || Ordering == AcquireRelease)
return Error(Loc, "atomic load cannot use Release ordering");
Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseStore
/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val, *Ptr; LocTy Loc, PtrLoc;
unsigned Alignment = 0;
bool AteExtraComma = false;
bool isAtomic = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
if (Lex.getKind() == lltok::kw_atomic) {
isAtomic = true;
Lex.Lex();
}
bool isVolatile = false;
if (Lex.getKind() == lltok::kw_volatile) {
isVolatile = true;
Lex.Lex();
}
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after store operand") ||
ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
ParseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!Ptr->getType()->isPointerTy())
return Error(PtrLoc, "store operand must be a pointer");
if (!Val->getType()->isFirstClassType())
return Error(Loc, "store operand must be a first class value");
if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
return Error(Loc, "stored value and pointer type do not match");
if (isAtomic && !Alignment)
return Error(Loc, "atomic store must have explicit non-zero alignment");
if (Ordering == Acquire || Ordering == AcquireRelease)
return Error(Loc, "atomic store cannot use Acquire ordering");
Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseCmpXchg
/// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering
int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
bool AteExtraComma = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
bool isVolatile = false;
if (EatIfPresent(lltok::kw_volatile))
isVolatile = true;
if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
ParseTypeAndValue(New, NewLoc, PFS) ||
ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
return true;
if (Ordering == Unordered)
return TokError("cmpxchg cannot be unordered");
if (!Ptr->getType()->isPointerTy())
return Error(PtrLoc, "cmpxchg operand must be a pointer");
if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
return Error(CmpLoc, "compare value and pointer type do not match");
if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
return Error(NewLoc, "new value and pointer type do not match");
if (!New->getType()->isIntegerTy())
return Error(NewLoc, "cmpxchg operand must be an integer");
unsigned Size = New->getType()->getPrimitiveSizeInBits();
if (Size < 8 || (Size & (Size - 1)))
return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
" integer");
AtomicCmpXchgInst *CXI =
new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
CXI->setVolatile(isVolatile);
Inst = CXI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseAtomicRMW
/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering
int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
bool AteExtraComma = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
bool isVolatile = false;
AtomicRMWInst::BinOp Operation;
if (EatIfPresent(lltok::kw_volatile))
isVolatile = true;
switch (Lex.getKind()) {
default: return TokError("expected binary operation in atomicrmw");
case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
case lltok::kw_and: Operation = AtomicRMWInst::And; break;
case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
}
Lex.Lex(); // Eat the operation.
if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
ParseTypeAndValue(Val, ValLoc, PFS) ||
ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
return true;
if (Ordering == Unordered)
return TokError("atomicrmw cannot be unordered");
if (!Ptr->getType()->isPointerTy())
return Error(PtrLoc, "atomicrmw operand must be a pointer");
if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
return Error(ValLoc, "atomicrmw value and pointer type do not match");
if (!Val->getType()->isIntegerTy())
return Error(ValLoc, "atomicrmw operand must be an integer");
unsigned Size = Val->getType()->getPrimitiveSizeInBits();
if (Size < 8 || (Size & (Size - 1)))
return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
" integer");
AtomicRMWInst *RMWI =
new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
RMWI->setVolatile(isVolatile);
Inst = RMWI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseFence
/// ::= 'fence' 'singlethread'? AtomicOrdering
int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
return true;
if (Ordering == Unordered)
return TokError("fence cannot be unordered");
if (Ordering == Monotonic)
return TokError("fence cannot be monotonic");
Inst = new FenceInst(Context, Ordering, Scope);
return InstNormal;
}
/// ParseGetElementPtr
/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr = 0;
Value *Val = 0;
LocTy Loc, EltLoc;
bool InBounds = EatIfPresent(lltok::kw_inbounds);
if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
if (!Ptr->getType()->getScalarType()->isPointerTy())
return Error(Loc, "base of getelementptr must be a pointer");
SmallVector<Value*, 16> Indices;
bool AteExtraComma = false;
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
break;
}
if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
if (!Val->getType()->getScalarType()->isIntegerTy())
return Error(EltLoc, "getelementptr index must be an integer");
if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
return Error(EltLoc, "getelementptr index type missmatch");
if (Val->getType()->isVectorTy()) {
unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
if (ValNumEl != PtrNumEl)
return Error(EltLoc,
"getelementptr vector index has a wrong number of elements");
}
Indices.push_back(Val);
}
if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
return Error(EltLoc, "vector getelementptrs must have a single index");
if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
return Error(Loc, "invalid getelementptr indices");
Inst = GetElementPtrInst::Create(Ptr, Indices);
if (InBounds)
cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseExtractValue
/// ::= 'extractvalue' TypeAndValue (',' uint32)+
int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
SmallVector<unsigned, 4> Indices;
bool AteExtraComma;
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseIndexList(Indices, AteExtraComma))
return true;
if (!Val->getType()->isAggregateType())
return Error(Loc, "extractvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
return Error(Loc, "invalid indices for extractvalue");
Inst = ExtractValueInst::Create(Val, Indices);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseInsertValue
/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val0, *Val1; LocTy Loc0, Loc1;
SmallVector<unsigned, 4> Indices;
bool AteExtraComma;
if (ParseTypeAndValue(Val0, Loc0, PFS) ||
ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
ParseTypeAndValue(Val1, Loc1, PFS) ||
ParseIndexList(Indices, AteExtraComma))
return true;
if (!Val0->getType()->isAggregateType())
return Error(Loc0, "insertvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
return Error(Loc0, "invalid indices for insertvalue");
Inst = InsertValueInst::Create(Val0, Val1, Indices);
return AteExtraComma ? InstExtraComma : InstNormal;
}
//===----------------------------------------------------------------------===//
// Embedded metadata.
//===----------------------------------------------------------------------===//
/// ParseMDNodeVector
/// ::= Element (',' Element)*
/// Element
/// ::= 'null' | TypeAndValue
bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
PerFunctionState *PFS) {
// Check for an empty list.
if (Lex.getKind() == lltok::rbrace)
return false;
do {
// Null is a special case since it is typeless.
if (EatIfPresent(lltok::kw_null)) {
Elts.push_back(0);
continue;
}
Value *V = 0;
if (ParseTypeAndValue(V, PFS)) return true;
Elts.push_back(V);
} while (EatIfPresent(lltok::comma));
return false;
}