HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Jelly Bean
|
4.1.1_r1
下载
查看原文件
收藏
根目录
external
openfst
src
include
fst
float-weight.h
// float-weight.h // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Copyright 2005-2010 Google, Inc. // Author: riley@google.com (Michael Riley) // // \file // Float weight set and associated semiring operation definitions. // #ifndef FST_LIB_FLOAT_WEIGHT_H__ #define FST_LIB_FLOAT_WEIGHT_H__ #include
#include
#include
#include
#include
#include
namespace fst { // numeric limits class template
class FloatLimits { public: static const T kPosInfinity; static const T kNegInfinity; static const T kNumberBad; }; template
const T FloatLimits
::kPosInfinity = numeric_limits
::infinity(); template
const T FloatLimits
::kNegInfinity = -FloatLimits
::kPosInfinity; template
const T FloatLimits
::kNumberBad = numeric_limits
::quiet_NaN(); // weight class to be templated on floating-points types template
class FloatWeightTpl { public: FloatWeightTpl() {} FloatWeightTpl(T f) : value_(f) {} FloatWeightTpl(const FloatWeightTpl
&w) : value_(w.value_) {} FloatWeightTpl
&operator=(const FloatWeightTpl
&w) { value_ = w.value_; return *this; } istream &Read(istream &strm) { return ReadType(strm, &value_); } ostream &Write(ostream &strm) const { return WriteType(strm, value_); } size_t Hash() const { union { T f; size_t s; } u; u.s = 0; u.f = value_; return u.s; } const T &Value() const { return value_; } protected: void SetValue(const T &f) { value_ = f; } inline static string GetPrecisionString() { int64 size = sizeof(T); if (size == sizeof(float)) return ""; size *= CHAR_BIT; string result; Int64ToStr(size, &result); return result; } private: T value_; }; // Single-precision float weight typedef FloatWeightTpl
FloatWeight; template
inline bool operator==(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2) { // Volatile qualifier thwarts over-aggressive compiler optimizations // that lead to problems esp. with NaturalLess(). volatile T v1 = w1.Value(); volatile T v2 = w2.Value(); return v1 == v2; } inline bool operator==(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2) { return operator==
(w1, w2); } inline bool operator==(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2) { return operator==
(w1, w2); } template
inline bool operator!=(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2) { return !(w1 == w2); } inline bool operator!=(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2) { return operator!=
(w1, w2); } inline bool operator!=(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2) { return operator!=
(w1, w2); } template
inline bool ApproxEqual(const FloatWeightTpl
&w1, const FloatWeightTpl
&w2, float delta = kDelta) { return w1.Value() <= w2.Value() + delta && w2.Value() <= w1.Value() + delta; } template
inline ostream &operator<<(ostream &strm, const FloatWeightTpl
&w) { if (w.Value() == FloatLimits
::kPosInfinity) return strm << "Infinity"; else if (w.Value() == FloatLimits
::kNegInfinity) return strm << "-Infinity"; else if (w.Value() != w.Value()) // Fails for NaN return strm << "BadNumber"; else return strm << w.Value(); } template
inline istream &operator>>(istream &strm, FloatWeightTpl
&w) { string s; strm >> s; if (s == "Infinity") { w = FloatWeightTpl
(FloatLimits
::kPosInfinity); } else if (s == "-Infinity") { w = FloatWeightTpl
(FloatLimits
::kNegInfinity); } else { char *p; T f = strtod(s.c_str(), &p); if (p < s.c_str() + s.size()) strm.clear(std::ios::badbit); else w = FloatWeightTpl
(f); } return strm; } // Tropical semiring: (min, +, inf, 0) template
class TropicalWeightTpl : public FloatWeightTpl
{ public: using FloatWeightTpl
::Value; typedef TropicalWeightTpl
ReverseWeight; TropicalWeightTpl() : FloatWeightTpl
() {} TropicalWeightTpl(T f) : FloatWeightTpl
(f) {} TropicalWeightTpl(const TropicalWeightTpl
&w) : FloatWeightTpl
(w) {} static const TropicalWeightTpl
Zero() { return TropicalWeightTpl
(FloatLimits
::kPosInfinity); } static const TropicalWeightTpl
One() { return TropicalWeightTpl
(0.0F); } static const TropicalWeightTpl
NoWeight() { return TropicalWeightTpl
(FloatLimits
::kNumberBad); } static const string &Type() { static const string type = "tropical" + FloatWeightTpl
::GetPrecisionString(); return type; } bool Member() const { // First part fails for IEEE NaN return Value() == Value() && Value() != FloatLimits
::kNegInfinity; } TropicalWeightTpl
Quantize(float delta = kDelta) const { if (Value() == FloatLimits
::kNegInfinity || Value() == FloatLimits
::kPosInfinity || Value() != Value()) return *this; else return TropicalWeightTpl
(floor(Value()/delta + 0.5F) * delta); } TropicalWeightTpl
Reverse() const { return *this; } static uint64 Properties() { return kLeftSemiring | kRightSemiring | kCommutative | kPath | kIdempotent; } }; // Single precision tropical weight typedef TropicalWeightTpl
TropicalWeight; template
inline TropicalWeightTpl
Plus(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2) { if (!w1.Member() || !w2.Member()) return TropicalWeightTpl
::NoWeight(); return w1.Value() < w2.Value() ? w1 : w2; } inline TropicalWeightTpl
Plus(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2) { return Plus
(w1, w2); } inline TropicalWeightTpl
Plus(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2) { return Plus
(w1, w2); } template
inline TropicalWeightTpl
Times(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2) { if (!w1.Member() || !w2.Member()) return TropicalWeightTpl
::NoWeight(); T f1 = w1.Value(), f2 = w2.Value(); if (f1 == FloatLimits
::kPosInfinity) return w1; else if (f2 == FloatLimits
::kPosInfinity) return w2; else return TropicalWeightTpl
(f1 + f2); } inline TropicalWeightTpl
Times(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2) { return Times
(w1, w2); } inline TropicalWeightTpl
Times(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2) { return Times
(w1, w2); } template
inline TropicalWeightTpl
Divide(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { if (!w1.Member() || !w2.Member()) return TropicalWeightTpl
::NoWeight(); T f1 = w1.Value(), f2 = w2.Value(); if (f2 == FloatLimits
::kPosInfinity) return FloatLimits
::kNumberBad; else if (f1 == FloatLimits
::kPosInfinity) return FloatLimits
::kPosInfinity; else return TropicalWeightTpl
(f1 - f2); } inline TropicalWeightTpl
Divide(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { return Divide
(w1, w2, typ); } inline TropicalWeightTpl
Divide(const TropicalWeightTpl
&w1, const TropicalWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { return Divide
(w1, w2, typ); } // Log semiring: (log(e^-x + e^y), +, inf, 0) template
class LogWeightTpl : public FloatWeightTpl
{ public: using FloatWeightTpl
::Value; typedef LogWeightTpl ReverseWeight; LogWeightTpl() : FloatWeightTpl
() {} LogWeightTpl(T f) : FloatWeightTpl
(f) {} LogWeightTpl(const LogWeightTpl
&w) : FloatWeightTpl
(w) {} static const LogWeightTpl
Zero() { return LogWeightTpl
(FloatLimits
::kPosInfinity); } static const LogWeightTpl
One() { return LogWeightTpl
(0.0F); } static const LogWeightTpl
NoWeight() { return LogWeightTpl
(FloatLimits
::kNumberBad); } static const string &Type() { static const string type = "log" + FloatWeightTpl
::GetPrecisionString(); return type; } bool Member() const { // First part fails for IEEE NaN return Value() == Value() && Value() != FloatLimits
::kNegInfinity; } LogWeightTpl
Quantize(float delta = kDelta) const { if (Value() == FloatLimits
::kNegInfinity || Value() == FloatLimits
::kPosInfinity || Value() != Value()) return *this; else return LogWeightTpl
(floor(Value()/delta + 0.5F) * delta); } LogWeightTpl
Reverse() const { return *this; } static uint64 Properties() { return kLeftSemiring | kRightSemiring | kCommutative; } }; // Single-precision log weight typedef LogWeightTpl
LogWeight; // Double-precision log weight typedef LogWeightTpl
Log64Weight; template
inline T LogExp(T x) { return log(1.0F + exp(-x)); } template
inline LogWeightTpl
Plus(const LogWeightTpl
&w1, const LogWeightTpl
&w2) { T f1 = w1.Value(), f2 = w2.Value(); if (f1 == FloatLimits
::kPosInfinity) return w2; else if (f2 == FloatLimits
::kPosInfinity) return w1; else if (f1 > f2) return LogWeightTpl
(f2 - LogExp(f1 - f2)); else return LogWeightTpl
(f1 - LogExp(f2 - f1)); } inline LogWeightTpl
Plus(const LogWeightTpl
&w1, const LogWeightTpl
&w2) { return Plus
(w1, w2); } inline LogWeightTpl
Plus(const LogWeightTpl
&w1, const LogWeightTpl
&w2) { return Plus
(w1, w2); } template
inline LogWeightTpl
Times(const LogWeightTpl
&w1, const LogWeightTpl
&w2) { if (!w1.Member() || !w2.Member()) return LogWeightTpl
::NoWeight(); T f1 = w1.Value(), f2 = w2.Value(); if (f1 == FloatLimits
::kPosInfinity) return w1; else if (f2 == FloatLimits
::kPosInfinity) return w2; else return LogWeightTpl
(f1 + f2); } inline LogWeightTpl
Times(const LogWeightTpl
&w1, const LogWeightTpl
&w2) { return Times
(w1, w2); } inline LogWeightTpl
Times(const LogWeightTpl
&w1, const LogWeightTpl
&w2) { return Times
(w1, w2); } template
inline LogWeightTpl
Divide(const LogWeightTpl
&w1, const LogWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { if (!w1.Member() || !w2.Member()) return LogWeightTpl
::NoWeight(); T f1 = w1.Value(), f2 = w2.Value(); if (f2 == FloatLimits
::kPosInfinity) return FloatLimits
::kNumberBad; else if (f1 == FloatLimits
::kPosInfinity) return FloatLimits
::kPosInfinity; else return LogWeightTpl
(f1 - f2); } inline LogWeightTpl
Divide(const LogWeightTpl
&w1, const LogWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { return Divide
(w1, w2, typ); } inline LogWeightTpl
Divide(const LogWeightTpl
&w1, const LogWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { return Divide
(w1, w2, typ); } // MinMax semiring: (min, max, inf, -inf) template
class MinMaxWeightTpl : public FloatWeightTpl
{ public: using FloatWeightTpl
::Value; typedef MinMaxWeightTpl
ReverseWeight; MinMaxWeightTpl() : FloatWeightTpl
() {} MinMaxWeightTpl(T f) : FloatWeightTpl
(f) {} MinMaxWeightTpl(const MinMaxWeightTpl
&w) : FloatWeightTpl
(w) {} static const MinMaxWeightTpl
Zero() { return MinMaxWeightTpl
(FloatLimits
::kPosInfinity); } static const MinMaxWeightTpl
One() { return MinMaxWeightTpl
(FloatLimits
::kNegInfinity); } static const MinMaxWeightTpl
NoWeight() { return MinMaxWeightTpl
(FloatLimits
::kNumberBad); } static const string &Type() { static const string type = "minmax" + FloatWeightTpl
::GetPrecisionString(); return type; } bool Member() const { // Fails for IEEE NaN return Value() == Value(); } MinMaxWeightTpl
Quantize(float delta = kDelta) const { // If one of infinities, or a NaN if (Value() == FloatLimits
::kNegInfinity || Value() == FloatLimits
::kPosInfinity || Value() != Value()) return *this; else return MinMaxWeightTpl
(floor(Value()/delta + 0.5F) * delta); } MinMaxWeightTpl
Reverse() const { return *this; } static uint64 Properties() { return kLeftSemiring | kRightSemiring | kCommutative | kIdempotent | kPath; } }; // Single-precision min-max weight typedef MinMaxWeightTpl
MinMaxWeight; // Min template
inline MinMaxWeightTpl
Plus( const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2) { if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl
::NoWeight(); return w1.Value() < w2.Value() ? w1 : w2; } inline MinMaxWeightTpl
Plus( const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2) { return Plus
(w1, w2); } inline MinMaxWeightTpl
Plus( const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2) { return Plus
(w1, w2); } // Max template
inline MinMaxWeightTpl
Times( const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2) { if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl
::NoWeight(); return w1.Value() >= w2.Value() ? w1 : w2; } inline MinMaxWeightTpl
Times( const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2) { return Times
(w1, w2); } inline MinMaxWeightTpl
Times( const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2) { return Times
(w1, w2); } // Defined only for special cases template
inline MinMaxWeightTpl
Divide(const MinMaxWeightTpl
&w1, const MinMaxWeightTpl
&w2, DivideType typ = DIVIDE_ANY) { if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl