C++程序  |  2740行  |  79.45 KB

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
//  32 bit Bochs BIOS init code
//  Copyright (C) 2006 Fabrice Bellard
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA
#include <stdarg.h>
#include <stddef.h>

#include "rombios.h"

typedef signed char  int8_t;
typedef short int16_t;
typedef int   int32_t;
typedef long long int64_t;
typedef unsigned char  uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int   uint32_t;
typedef unsigned long long uint64_t;

/* if true, put the MP float table and ACPI RSDT in EBDA and the MP
   table in RAM. Unfortunately, Linux has bugs with that, so we prefer
   to modify the BIOS in shadow RAM */
//#define BX_USE_EBDA_TABLES

/* define it if the (emulated) hardware supports SMM mode */
#define BX_USE_SMM

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))

#define wbinvd() asm volatile("wbinvd")

#define CPUID_MSR (1 << 5)
#define CPUID_APIC (1 << 9)
#define CPUID_MTRR (1 << 12)

#define APIC_BASE    ((uint8_t *)0xfee00000)
#define APIC_ICR_LOW 0x300
#define APIC_SVR     0x0F0
#define APIC_ID      0x020
#define APIC_LVT3    0x370

#define APIC_ENABLED 0x0100

#define AP_BOOT_ADDR 0x9f000

#define MPTABLE_MAX_SIZE  0x00002000
#define SMI_CMD_IO_ADDR   0xb2

#define BIOS_TMP_STORAGE  0x00030000 /* 64 KB used to copy the BIOS to shadow RAM */

#define MSR_MTRRcap                     0x000000fe
#define MSR_MTRRfix64K_00000            0x00000250
#define MSR_MTRRfix16K_80000            0x00000258
#define MSR_MTRRfix16K_A0000            0x00000259
#define MSR_MTRRfix4K_C0000             0x00000268
#define MSR_MTRRfix4K_C8000             0x00000269
#define MSR_MTRRfix4K_D0000             0x0000026a
#define MSR_MTRRfix4K_D8000             0x0000026b
#define MSR_MTRRfix4K_E0000             0x0000026c
#define MSR_MTRRfix4K_E8000             0x0000026d
#define MSR_MTRRfix4K_F0000             0x0000026e
#define MSR_MTRRfix4K_F8000             0x0000026f
#define MSR_MTRRdefType                 0x000002ff

#define MTRRphysBase_MSR(reg) (0x200 + 2 * (reg))
#define MTRRphysMask_MSR(reg) (0x200 + 2 * (reg) + 1)

static inline void outl(int addr, int val)
{
    asm volatile ("outl %1, %w0" : : "d" (addr), "a" (val));
}

static inline void outw(int addr, int val)
{
    asm volatile ("outw %w1, %w0" : : "d" (addr), "a" (val));
}

static inline void outb(int addr, int val)
{
    asm volatile ("outb %b1, %w0" : : "d" (addr), "a" (val));
}

static inline uint32_t inl(int addr)
{
    uint32_t val;
    asm volatile ("inl %w1, %0" : "=a" (val) : "d" (addr));
    return val;
}

static inline uint16_t inw(int addr)
{
    uint16_t val;
    asm volatile ("inw %w1, %w0" : "=a" (val) : "d" (addr));
    return val;
}

static inline uint8_t inb(int addr)
{
    uint8_t val;
    asm volatile ("inb %w1, %b0" : "=a" (val) : "d" (addr));
    return val;
}

static inline void writel(void *addr, uint32_t val)
{
    *(volatile uint32_t *)addr = val;
}

static inline void writew(void *addr, uint16_t val)
{
    *(volatile uint16_t *)addr = val;
}

static inline void writeb(void *addr, uint8_t val)
{
    *(volatile uint8_t *)addr = val;
}

static inline uint32_t readl(const void *addr)
{
    return *(volatile const uint32_t *)addr;
}

static inline uint16_t readw(const void *addr)
{
    return *(volatile const uint16_t *)addr;
}

static inline uint8_t readb(const void *addr)
{
    return *(volatile const uint8_t *)addr;
}

static inline void putc(int c)
{
    outb(INFO_PORT, c);
}

static uint64_t rdmsr(unsigned index)
{
    unsigned long long ret;

    asm ("rdmsr" : "=A"(ret) : "c"(index));
    return ret;
}

static void wrmsr(unsigned index, uint64_t val)
{
    asm volatile ("wrmsr" : : "c"(index), "A"(val));
}

static inline int isdigit(int c)
{
    return c >= '0' && c <= '9';
}

void *memset(void *d1, int val, size_t len)
{
    uint8_t *d = d1;

    while (len--) {
        *d++ = val;
    }
    return d1;
}

void *memcpy(void *d1, const void *s1, size_t len)
{
    uint8_t *d = d1;
    const uint8_t *s = s1;

    while (len--) {
        *d++ = *s++;
    }
    return d1;
}

void *memmove(void *d1, const void *s1, size_t len)
{
    uint8_t *d = d1;
    const uint8_t *s = s1;

    if (d <= s) {
        while (len--) {
            *d++ = *s++;
        }
    } else {
        d += len;
        s += len;
        while (len--) {
            *--d = *--s;
        }
    }
    return d1;
}

int memcmp(const void *s1, const void *s2, size_t len)
{
    const int8_t *p1 = s1;
    const int8_t *p2 = s2;

    while (len--) {
        int r = *p1++ - *p2++;
        if(r)
            return r;
    }

    return 0;
}

size_t strlen(const char *s)
{
    const char *s1;
    for(s1 = s; *s1 != '\0'; s1++);
    return s1 - s;
}

/* from BSD ppp sources */
int vsnprintf(char *buf, int buflen, const char *fmt, va_list args)
{
    int c, i, n;
    int width, prec, fillch;
    int base, len, neg;
    unsigned long val = 0;
    const char *f;
    char *str, *buf0;
    char num[32];
    static const char hexchars[] = "0123456789abcdef";

    buf0 = buf;
    --buflen;
    while (buflen > 0) {
	for (f = fmt; *f != '%' && *f != 0; ++f)
	    ;
	if (f > fmt) {
	    len = f - fmt;
	    if (len > buflen)
		len = buflen;
	    memcpy(buf, fmt, len);
	    buf += len;
	    buflen -= len;
	    fmt = f;
	}
	if (*fmt == 0)
	    break;
	c = *++fmt;
	width = prec = 0;
	fillch = ' ';
	if (c == '0') {
	    fillch = '0';
	    c = *++fmt;
	}
	if (c == '*') {
	    width = va_arg(args, int);
	    c = *++fmt;
	} else {
	    while (isdigit(c)) {
		width = width * 10 + c - '0';
		c = *++fmt;
	    }
	}
	if (c == '.') {
	    c = *++fmt;
	    if (c == '*') {
		prec = va_arg(args, int);
		c = *++fmt;
	    } else {
		while (isdigit(c)) {
		    prec = prec * 10 + c - '0';
		    c = *++fmt;
		}
	    }
	}
        /* modifiers */
        switch(c) {
        case 'l':
            c = *++fmt;
            break;
        default:
            break;
        }
        str = 0;
	base = 0;
	neg = 0;
	++fmt;
	switch (c) {
	case 'd':
	    i = va_arg(args, int);
	    if (i < 0) {
		neg = 1;
		val = -i;
	    } else
		val = i;
	    base = 10;
	    break;
	case 'o':
	    val = va_arg(args, unsigned int);
	    base = 8;
	    break;
	case 'x':
	case 'X':
	    val = va_arg(args, unsigned int);
	    base = 16;
	    break;
	case 'p':
	    val = (unsigned long) va_arg(args, void *);
	    base = 16;
	    neg = 2;
	    break;
	case 's':
	    str = va_arg(args, char *);
	    break;
	case 'c':
	    num[0] = va_arg(args, int);
	    num[1] = 0;
	    str = num;
	    break;
	default:
	    *buf++ = '%';
	    if (c != '%')
		--fmt;		/* so %z outputs %z etc. */
	    --buflen;
	    continue;
	}
	if (base != 0) {
	    str = num + sizeof(num);
	    *--str = 0;
	    while (str > num + neg) {
		*--str = hexchars[val % base];
		val = val / base;
		if (--prec <= 0 && val == 0)
		    break;
	    }
	    switch (neg) {
	    case 1:
		*--str = '-';
		break;
	    case 2:
		*--str = 'x';
		*--str = '0';
		break;
	    }
	    len = num + sizeof(num) - 1 - str;
	} else {
	    len = strlen(str);
	    if (prec > 0 && len > prec)
		len = prec;
	}
	if (width > 0) {
	    if (width > buflen)
		width = buflen;
	    if ((n = width - len) > 0) {
		buflen -= n;
		for (; n > 0; --n)
		    *buf++ = fillch;
	    }
	}
	if (len > buflen)
	    len = buflen;
	memcpy(buf, str, len);
	buf += len;
	buflen -= len;
    }
    *buf = 0;
    return buf - buf0;
}

int snprintf(char * buf, size_t size, const char *fmt, ...)
{
	va_list args;
	int i;

	va_start(args, fmt);
	i=vsnprintf(buf,size,fmt,args);
	va_end(args);
	return i;
}

void bios_printf(int flags, const char *fmt, ...)
{
    va_list ap;
    char buf[1024];
    const char *s;

    if ((flags & BIOS_PRINTF_DEBHALT) == BIOS_PRINTF_DEBHALT)
        outb(PANIC_PORT2, 0x00);

    va_start(ap, fmt);
    vsnprintf(buf, sizeof(buf), fmt, ap);
    s = buf;
    while (*s)
        putc(*s++);
    va_end(ap);
}

void delay_ms(int n)
{
    int i, j;
    for(i = 0; i < n; i++) {
#ifdef BX_QEMU
        /* approximative ! */
        for(j = 0; j < 1000000; j++);
#else
        {
          int r1, r2;
          j = 66;
          r1 = inb(0x61) & 0x10;
          do {
            r2 = inb(0x61) & 0x10;
            if (r1 != r2) {
              j--;
              r1 = r2;
            }
          } while (j > 0);
        }
#endif
    }
}

uint16_t smp_cpus;
uint32_t cpuid_signature;
uint32_t cpuid_features;
uint32_t cpuid_ext_features;
unsigned long ram_size;
uint64_t ram_end;
#ifdef BX_USE_EBDA_TABLES
unsigned long ebda_cur_addr;
#endif
int acpi_enabled;
uint32_t pm_io_base, smb_io_base;
int pm_sci_int;
unsigned long bios_table_cur_addr;
unsigned long bios_table_end_addr;

static inline uint64_t le64_to_cpu(uint64_t x)
{
    return x;
}

void wrmsr_smp(uint32_t index, uint64_t val)
{
    static struct { uint32_t ecx, eax, edx; } *p = (void *)SMP_MSR_ADDR;

    wrmsr(index, val);
    p->ecx = index;
    p->eax = val;
    p->edx = val >> 32;
    ++p;
    p->ecx = 0;
}

#ifdef BX_QEMU
#define QEMU_CFG_CTL_PORT 0x510
#define QEMU_CFG_DATA_PORT 0x511
#define QEMU_CFG_SIGNATURE  0x00
#define QEMU_CFG_ID         0x01
#define QEMU_CFG_UUID       0x02
#define QEMU_CFG_NUMA       0x0D
#define QEMU_CFG_ARCH_LOCAL     0x8000
#define QEMU_CFG_ACPI_TABLES  (QEMU_CFG_ARCH_LOCAL + 0)
#define QEMU_CFG_SMBIOS_ENTRIES  (QEMU_CFG_ARCH_LOCAL + 1)

int qemu_cfg_port;

void qemu_cfg_select(int f)
{
    outw(QEMU_CFG_CTL_PORT, f);
}

int qemu_cfg_port_probe()
{
    char *sig = "QEMU";
    int i;

    qemu_cfg_select(QEMU_CFG_SIGNATURE);

    for (i = 0; i < 4; i++)
        if (inb(QEMU_CFG_DATA_PORT) != sig[i])
            return 0;

    return 1;
}

void qemu_cfg_read(uint8_t *buf, int len)
{
    while (len--)
        *(buf++) = inb(QEMU_CFG_DATA_PORT);
}

static uint16_t acpi_additional_tables(void)
{
    uint16_t cnt;

    qemu_cfg_select(QEMU_CFG_ACPI_TABLES);
    qemu_cfg_read((uint8_t*)&cnt, sizeof(cnt));

    return cnt;
}

static int acpi_load_table(int i, uint32_t addr, uint16_t *len)
{
    qemu_cfg_read((uint8_t*)len, sizeof(*len));

    if (!*len)
        return -1;

    qemu_cfg_read((uint8_t*)addr, *len);
    return 0;
}

static uint16_t smbios_entries(void)
{
    uint16_t cnt;

    qemu_cfg_select(QEMU_CFG_SMBIOS_ENTRIES);
    qemu_cfg_read((uint8_t*)&cnt, sizeof(cnt));

    return cnt;
}

uint64_t qemu_cfg_get64 (void)
{
    uint64_t ret;

    qemu_cfg_read((uint8_t*)&ret, 8);
    return le64_to_cpu(ret);
}
#endif

void cpu_probe(void)
{
    uint32_t eax, ebx, ecx, edx;
    cpuid(1, eax, ebx, ecx, edx);
    cpuid_signature = eax;
    cpuid_features = edx;
    cpuid_ext_features = ecx;
}

static int cmos_readb(int addr)
{
    outb(0x70, addr);
    return inb(0x71);
}

void setup_mtrr(void)
{
    int i, vcnt, fix, wc;
    uint32_t mtrr_cap;
    union {
        uint8_t valb[8];
        uint64_t val;
    } u;

    *(uint32_t *)SMP_MSR_ADDR = 0;

    if (!(cpuid_features & CPUID_MTRR))
        return;

    if (!(cpuid_features & CPUID_MSR))
        return;

    mtrr_cap = rdmsr(MSR_MTRRcap);
    vcnt = mtrr_cap & 0xff;
    fix = mtrr_cap & 0x100;
    wc = mtrr_cap & 0x400;
    if (!vcnt || !fix)
        return;

    u.val = 0;
    for (i = 0; i < 8; ++i)
        if (ram_size >= 65536 * (i + 1))
            u.valb[i] = 6;
    wrmsr_smp(MSR_MTRRfix64K_00000, u.val);
    u.val = 0;
    for (i = 0; i < 8; ++i)
        if (ram_size >= 65536 * 8 + 16384 * (i + 1))
            u.valb[i] = 6;
    wrmsr_smp(MSR_MTRRfix16K_80000, u.val);
    wrmsr_smp(MSR_MTRRfix16K_A0000, 0);
    wrmsr_smp(MSR_MTRRfix4K_C0000, 0);
    wrmsr_smp(MSR_MTRRfix4K_C8000, 0);
    wrmsr_smp(MSR_MTRRfix4K_D0000, 0);
    wrmsr_smp(MSR_MTRRfix4K_D8000, 0);
    wrmsr_smp(MSR_MTRRfix4K_E0000, 0);
    wrmsr_smp(MSR_MTRRfix4K_E8000, 0);
    wrmsr_smp(MSR_MTRRfix4K_F0000, 0);
    wrmsr_smp(MSR_MTRRfix4K_F8000, 0);
    /* Mark 3.5-4GB as UC, anything not specified defaults to WB */
    wrmsr_smp(MTRRphysBase_MSR(0), 0xe0000000ull | 0);
    wrmsr_smp(MTRRphysMask_MSR(0), ~(0x20000000ull - 1) | 0x800);
    wrmsr_smp(MSR_MTRRdefType, 0xc06);
}

void ram_probe(void)
{
  if (cmos_readb(0x34) | cmos_readb(0x35))
    ram_size = (cmos_readb(0x34) | (cmos_readb(0x35) << 8)) * 65536 +
        16 * 1024 * 1024;
  else
    ram_size = (cmos_readb(0x30) | (cmos_readb(0x31) << 8)) * 1024 +
        1 * 1024 * 1024;
  BX_INFO("ram_size=0x%08lx\n", ram_size);
  if (cmos_readb(0x5b) | cmos_readb(0x5c) | cmos_readb(0x5d))
    ram_end = (((uint64_t)cmos_readb(0x5b) << 16) |
               ((uint64_t)cmos_readb(0x5c) << 24) |
               ((uint64_t)cmos_readb(0x5d) << 32)) + (1ull << 32);
  else
    ram_end = ram_size;
  BX_INFO("end of ram=%ldMB\n", ram_end >> 20);
#ifdef BX_USE_EBDA_TABLES
  ebda_cur_addr = ((*(uint16_t *)(0x40e)) << 4) + 0x380;
  BX_INFO("ebda_cur_addr: 0x%08lx\n", ebda_cur_addr);
#endif
}

/****************************************************/
/* SMP probe */

extern uint8_t smp_ap_boot_code_start;
extern uint8_t smp_ap_boot_code_end;

/* find the number of CPUs by launching a SIPI to them */
void smp_probe(void)
{
    uint32_t val, sipi_vector;

    writew(&smp_cpus, 1);
    if (cpuid_features & CPUID_APIC) {

        /* enable local APIC */
        val = readl(APIC_BASE + APIC_SVR);
        val |= APIC_ENABLED;
        writel(APIC_BASE + APIC_SVR, val);

        /* copy AP boot code */
        memcpy((void *)AP_BOOT_ADDR, &smp_ap_boot_code_start,
               &smp_ap_boot_code_end - &smp_ap_boot_code_start);

        /* broadcast SIPI */
        writel(APIC_BASE + APIC_ICR_LOW, 0x000C4500);
        sipi_vector = AP_BOOT_ADDR >> 12;
        writel(APIC_BASE + APIC_ICR_LOW, 0x000C4600 | sipi_vector);

#ifndef BX_QEMU
        delay_ms(10);
#else
        while (cmos_readb(0x5f) + 1 != readw(&smp_cpus))
            ;
#endif
    }
    BX_INFO("Found %d cpu(s)\n", readw(&smp_cpus));
}

/****************************************************/
/* PCI init */

#define PCI_ADDRESS_SPACE_MEM		0x00
#define PCI_ADDRESS_SPACE_IO		0x01
#define PCI_ADDRESS_SPACE_MEM_PREFETCH	0x08

#define PCI_ROM_SLOT 6
#define PCI_NUM_REGIONS 7

#define PCI_DEVICES_MAX 64

#define PCI_VENDOR_ID		0x00	/* 16 bits */
#define PCI_DEVICE_ID		0x02	/* 16 bits */
#define PCI_COMMAND		0x04	/* 16 bits */
#define  PCI_COMMAND_IO		0x1	/* Enable response in I/O space */
#define  PCI_COMMAND_MEMORY	0x2	/* Enable response in Memory space */
#define PCI_CLASS_DEVICE        0x0a    /* Device class */
#define PCI_INTERRUPT_LINE	0x3c	/* 8 bits */
#define PCI_INTERRUPT_PIN	0x3d	/* 8 bits */
#define PCI_MIN_GNT		0x3e	/* 8 bits */
#define PCI_MAX_LAT		0x3f	/* 8 bits */

#define PCI_VENDOR_ID_INTEL             0x8086
#define PCI_DEVICE_ID_INTEL_82441       0x1237
#define PCI_DEVICE_ID_INTEL_82371SB_0   0x7000
#define PCI_DEVICE_ID_INTEL_82371SB_1   0x7010
#define PCI_DEVICE_ID_INTEL_82371AB_0   0x7110
#define PCI_DEVICE_ID_INTEL_82371AB     0x7111
#define PCI_DEVICE_ID_INTEL_82371AB_3   0x7113

#define PCI_VENDOR_ID_IBM               0x1014
#define PCI_VENDOR_ID_APPLE             0x106b

typedef struct PCIDevice {
    int bus;
    int devfn;
} PCIDevice;

static uint32_t pci_bios_io_addr;
static uint32_t pci_bios_mem_addr;
static uint32_t pci_bios_bigmem_addr;
/* host irqs corresponding to PCI irqs A-D */
static uint8_t pci_irqs[4] = { 11, 9, 11, 9 };
static PCIDevice i440_pcidev;

static void pci_config_writel(PCIDevice *d, uint32_t addr, uint32_t val)
{
    outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
    outl(0xcfc, val);
}

static void pci_config_writew(PCIDevice *d, uint32_t addr, uint32_t val)
{
    outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
    outw(0xcfc + (addr & 2), val);
}

static void pci_config_writeb(PCIDevice *d, uint32_t addr, uint32_t val)
{
    outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
    outb(0xcfc + (addr & 3), val);
}

static uint32_t pci_config_readl(PCIDevice *d, uint32_t addr)
{
    outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
    return inl(0xcfc);
}

static uint32_t pci_config_readw(PCIDevice *d, uint32_t addr)
{
    outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
    return inw(0xcfc + (addr & 2));
}

static uint32_t pci_config_readb(PCIDevice *d, uint32_t addr)
{
    outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
    return inb(0xcfc + (addr & 3));
}

static void pci_set_io_region_addr(PCIDevice *d, int region_num, uint32_t addr)
{
    uint16_t cmd;
    uint32_t ofs, old_addr;

    if ( region_num == PCI_ROM_SLOT ) {
        ofs = 0x30;
    }else{
        ofs = 0x10 + region_num * 4;
    }

    old_addr = pci_config_readl(d, ofs);

    pci_config_writel(d, ofs, addr);
    BX_INFO("region %d: 0x%08x\n", region_num, addr);

    /* enable memory mappings */
    cmd = pci_config_readw(d, PCI_COMMAND);
    if ( region_num == PCI_ROM_SLOT )
        cmd |= 2;
    else if (old_addr & PCI_ADDRESS_SPACE_IO)
        cmd |= 1;
    else
        cmd |= 2;
    pci_config_writew(d, PCI_COMMAND, cmd);
}

/* return the global irq number corresponding to a given device irq
   pin. We could also use the bus number to have a more precise
   mapping. */
static int pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
{
    int slot_addend;
    slot_addend = (pci_dev->devfn >> 3) - 1;
    return (irq_num + slot_addend) & 3;
}

static void find_bios_table_area(void)
{
    unsigned long addr;
    for(addr = 0xf0000; addr < 0x100000; addr += 16) {
        if (*(uint32_t *)addr == 0xaafb4442) {
            bios_table_cur_addr = addr + 8;
            bios_table_end_addr = bios_table_cur_addr + *(uint32_t *)(addr + 4);
            BX_INFO("bios_table_addr: 0x%08lx end=0x%08lx\n",
                    bios_table_cur_addr, bios_table_end_addr);
            return;
        }
    }
    return;
}

static void bios_shadow_init(PCIDevice *d)
{
    int v;

    if (bios_table_cur_addr == 0)
        return;

    /* remap the BIOS to shadow RAM an keep it read/write while we
       are writing tables */
    v = pci_config_readb(d, 0x59);
    v &= 0xcf;
    pci_config_writeb(d, 0x59, v);
    memcpy((void *)BIOS_TMP_STORAGE, (void *)0x000f0000, 0x10000);
    v |= 0x30;
    pci_config_writeb(d, 0x59, v);
    memcpy((void *)0x000f0000, (void *)BIOS_TMP_STORAGE, 0x10000);

    i440_pcidev = *d;
}

static void bios_lock_shadow_ram(void)
{
    PCIDevice *d = &i440_pcidev;
    int v;

    wbinvd();
    v = pci_config_readb(d, 0x59);
    v = (v & 0x0f) | (0x10);
    pci_config_writeb(d, 0x59, v);
}

static void pci_bios_init_bridges(PCIDevice *d)
{
    uint16_t vendor_id, device_id;

    vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
    device_id = pci_config_readw(d, PCI_DEVICE_ID);

    if (vendor_id == PCI_VENDOR_ID_INTEL &&
       (device_id == PCI_DEVICE_ID_INTEL_82371SB_0 ||
        device_id == PCI_DEVICE_ID_INTEL_82371AB_0)) {
        int i, irq;
        uint8_t elcr[2];

        /* PIIX3/PIIX4 PCI to ISA bridge */

        elcr[0] = 0x00;
        elcr[1] = 0x00;
        for(i = 0; i < 4; i++) {
            irq = pci_irqs[i];
            /* set to trigger level */
            elcr[irq >> 3] |= (1 << (irq & 7));
            /* activate irq remapping in PIIX */
            pci_config_writeb(d, 0x60 + i, irq);
        }
        outb(0x4d0, elcr[0]);
        outb(0x4d1, elcr[1]);
        BX_INFO("PIIX3/PIIX4 init: elcr=%02x %02x\n",
                elcr[0], elcr[1]);
    } else if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82441) {
        /* i440 PCI bridge */
        bios_shadow_init(d);
    }
}

extern uint8_t smm_relocation_start, smm_relocation_end;
extern uint8_t smm_code_start, smm_code_end;

#ifdef BX_USE_SMM
static void smm_init(PCIDevice *d)
{
    uint32_t value;

    /* check if SMM init is already done */
    value = pci_config_readl(d, 0x58);
    if ((value & (1 << 25)) == 0) {

        /* enable the SMM memory window */
        pci_config_writeb(&i440_pcidev, 0x72, 0x02 | 0x48);

        /* save original memory content */
        memcpy((void *)0xa8000, (void *)0x38000, 0x8000);

        /* copy the SMM relocation code */
        memcpy((void *)0x38000, &smm_relocation_start,
               &smm_relocation_end - &smm_relocation_start);

        /* enable SMI generation when writing to the APMC register */
        pci_config_writel(d, 0x58, value | (1 << 25));

        /* init APM status port */
        outb(0xb3, 0x01);

        /* raise an SMI interrupt */
        outb(0xb2, 0x00);

        /* wait until SMM code executed */
        while (inb(0xb3) != 0x00);

        /* restore original memory content */
        memcpy((void *)0x38000, (void *)0xa8000, 0x8000);

        /* copy the SMM code */
        memcpy((void *)0xa8000, &smm_code_start,
               &smm_code_end - &smm_code_start);
        wbinvd();

        /* close the SMM memory window and enable normal SMM */
        pci_config_writeb(&i440_pcidev, 0x72, 0x02 | 0x08);
    }
}
#endif

static void piix4_pm_enable(PCIDevice *d)
{
        /* PIIX4 Power Management device (for ACPI) */
        pci_config_writel(d, 0x40, PM_IO_BASE | 1);
        pci_config_writeb(d, 0x80, 0x01); /* enable PM io space */
        pci_config_writel(d, 0x90, SMB_IO_BASE | 1);
        pci_config_writeb(d, 0xd2, 0x09); /* enable SMBus io space */
#ifdef BX_USE_SMM
        smm_init(d);
#endif
}

static void pci_bios_init_device(PCIDevice *d)
{
    int class;
    uint32_t *paddr;
    int i, pin, pic_irq, vendor_id, device_id;

    class = pci_config_readw(d, PCI_CLASS_DEVICE);
    vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
    device_id = pci_config_readw(d, PCI_DEVICE_ID);
    BX_INFO("PCI: bus=%d devfn=0x%02x: vendor_id=0x%04x device_id=0x%04x class=0x%04x\n",
            d->bus, d->devfn, vendor_id, device_id, class);
    switch(class) {
    case 0x0101: /* Mass storage controller - IDE interface */
        if (vendor_id == PCI_VENDOR_ID_INTEL &&
           (device_id == PCI_DEVICE_ID_INTEL_82371SB_1 ||
            device_id == PCI_DEVICE_ID_INTEL_82371AB)) {
            /* PIIX3/PIIX4 IDE */
            pci_config_writew(d, 0x40, 0x8000); // enable IDE0
            pci_config_writew(d, 0x42, 0x8000); // enable IDE1
            goto default_map;
        } else {
            /* IDE: we map it as in ISA mode */
            pci_set_io_region_addr(d, 0, 0x1f0);
            pci_set_io_region_addr(d, 1, 0x3f4);
            pci_set_io_region_addr(d, 2, 0x170);
            pci_set_io_region_addr(d, 3, 0x374);
        }
        break;
    case 0x0300: /* Display controller - VGA compatible controller */
        if (vendor_id != 0x1234)
            goto default_map;
        /* VGA: map frame buffer to default Bochs VBE address */
        pci_set_io_region_addr(d, 0, 0xE0000000);
        break;
    case 0x0800: /* Generic system peripheral - PIC */
        if (vendor_id == PCI_VENDOR_ID_IBM) {
            /* IBM */
            if (device_id == 0x0046 || device_id == 0xFFFF) {
                /* MPIC & MPIC2 */
                pci_set_io_region_addr(d, 0, 0x80800000 + 0x00040000);
            }
        }
        break;
    case 0xff00:
        if (vendor_id == PCI_VENDOR_ID_APPLE &&
            (device_id == 0x0017 || device_id == 0x0022)) {
            /* macio bridge */
            pci_set_io_region_addr(d, 0, 0x80800000);
        }
        break;
    default:
    default_map:
        /* default memory mappings */
        for(i = 0; i < PCI_NUM_REGIONS; i++) {
            int ofs;
            uint32_t val, size ;

            if (i == PCI_ROM_SLOT) {
                ofs = 0x30;
                pci_config_writel(d, ofs, 0xfffffffe);
            } else {
                ofs = 0x10 + i * 4;
                pci_config_writel(d, ofs, 0xffffffff);
            }
            val = pci_config_readl(d, ofs);
            if (val != 0) {
                size = (~(val & ~0xf)) + 1;
                if (val & PCI_ADDRESS_SPACE_IO)
                    paddr = &pci_bios_io_addr;
                else if (size >= 0x04000000)
                    paddr = &pci_bios_bigmem_addr;
                else
                    paddr = &pci_bios_mem_addr;
                *paddr = (*paddr + size - 1) & ~(size - 1);
                pci_set_io_region_addr(d, i, *paddr);
                *paddr += size;
            }
        }
        break;
    }

    /* map the interrupt */
    pin = pci_config_readb(d, PCI_INTERRUPT_PIN);
    if (pin != 0) {
        pin = pci_slot_get_pirq(d, pin - 1);
        pic_irq = pci_irqs[pin];
        pci_config_writeb(d, PCI_INTERRUPT_LINE, pic_irq);
    }

    if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82371AB_3) {
        /* PIIX4 Power Management device (for ACPI) */
        pm_io_base = PM_IO_BASE;
        smb_io_base = SMB_IO_BASE;
        // acpi sci is hardwired to 9
        pci_config_writeb(d, PCI_INTERRUPT_LINE, 9);
        pm_sci_int = pci_config_readb(d, PCI_INTERRUPT_LINE);
        piix4_pm_enable(d);
        acpi_enabled = 1;
    }
}

void pci_for_each_device(void (*init_func)(PCIDevice *d))
{
    PCIDevice d1, *d = &d1;
    int bus, devfn;
    uint16_t vendor_id, device_id;

    for(bus = 0; bus < 1; bus++) {
        for(devfn = 0; devfn < 256; devfn++) {
            d->bus = bus;
            d->devfn = devfn;
            vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
            device_id = pci_config_readw(d, PCI_DEVICE_ID);
            if (vendor_id != 0xffff || device_id != 0xffff) {
                init_func(d);
            }
        }
    }
}

void pci_bios_init(void)
{
    pci_bios_io_addr = 0xc000;
    pci_bios_mem_addr = 0xf0000000;
    pci_bios_bigmem_addr = ram_size;
    if (pci_bios_bigmem_addr < 0x90000000)
        pci_bios_bigmem_addr = 0x90000000;

    pci_for_each_device(pci_bios_init_bridges);

    pci_for_each_device(pci_bios_init_device);
}

/****************************************************/
/* Multi Processor table init */

static void putb(uint8_t **pp, int val)
{
    uint8_t *q;
    q = *pp;
    *q++ = val;
    *pp = q;
}

static void putstr(uint8_t **pp, const char *str)
{
    uint8_t *q;
    q = *pp;
    while (*str)
        *q++ = *str++;
    *pp = q;
}

static void putle16(uint8_t **pp, int val)
{
    uint8_t *q;
    q = *pp;
    *q++ = val;
    *q++ = val >> 8;
    *pp = q;
}

static void putle32(uint8_t **pp, int val)
{
    uint8_t *q;
    q = *pp;
    *q++ = val;
    *q++ = val >> 8;
    *q++ = val >> 16;
    *q++ = val >> 24;
    *pp = q;
}

static int mpf_checksum(const uint8_t *data, int len)
{
    int sum, i;
    sum = 0;
    for(i = 0; i < len; i++)
        sum += data[i];
    return sum & 0xff;
}

static unsigned long align(unsigned long addr, unsigned long v)
{
    return (addr + v - 1) & ~(v - 1);
}

static void mptable_init(void)
{
    uint8_t *mp_config_table, *q, *float_pointer_struct;
    int ioapic_id, i, len;
    int mp_config_table_size;

#ifdef BX_USE_EBDA_TABLES
    mp_config_table = (uint8_t *)(ram_size - ACPI_DATA_SIZE - MPTABLE_MAX_SIZE);
#else
    bios_table_cur_addr = align(bios_table_cur_addr, 16);
    mp_config_table = (uint8_t *)bios_table_cur_addr;
#endif
    q = mp_config_table;
    putstr(&q, "PCMP"); /* "PCMP signature */
    putle16(&q, 0); /* table length (patched later) */
    putb(&q, 4); /* spec rev */
    putb(&q, 0); /* checksum (patched later) */
#ifdef BX_QEMU
    putstr(&q, "QEMUCPU "); /* OEM id */
#else
    putstr(&q, "BOCHSCPU");
#endif
    putstr(&q, "0.1         "); /* vendor id */
    putle32(&q, 0); /* OEM table ptr */
    putle16(&q, 0); /* OEM table size */
    putle16(&q, smp_cpus + 18); /* entry count */
    putle32(&q, 0xfee00000); /* local APIC addr */
    putle16(&q, 0); /* ext table length */
    putb(&q, 0); /* ext table checksum */
    putb(&q, 0); /* reserved */

    for(i = 0; i < smp_cpus; i++) {
        putb(&q, 0); /* entry type = processor */
        putb(&q, i); /* APIC id */
        putb(&q, 0x11); /* local APIC version number */
        if (i == 0)
            putb(&q, 3); /* cpu flags: enabled, bootstrap cpu */
        else
            putb(&q, 1); /* cpu flags: enabled */
        putb(&q, 0); /* cpu signature */
        putb(&q, 6);
        putb(&q, 0);
        putb(&q, 0);
        putle16(&q, 0x201); /* feature flags */
        putle16(&q, 0);

        putle16(&q, 0); /* reserved */
        putle16(&q, 0);
        putle16(&q, 0);
        putle16(&q, 0);
    }

    /* isa bus */
    putb(&q, 1); /* entry type = bus */
    putb(&q, 0); /* bus ID */
    putstr(&q, "ISA   ");

    /* ioapic */
    ioapic_id = smp_cpus;
    putb(&q, 2); /* entry type = I/O APIC */
    putb(&q, ioapic_id); /* apic ID */
    putb(&q, 0x11); /* I/O APIC version number */
    putb(&q, 1); /* enable */
    putle32(&q, 0xfec00000); /* I/O APIC addr */

    /* irqs */
    for(i = 0; i < 32; i++) {
#ifdef BX_QEMU
        /* One entry per ioapic input. Input 2 is covered by 
           irq0->inti2 override (i == 0). irq 2 is unused */
        if (i == 2)
            continue;
#endif        
        putb(&q, 3); /* entry type = I/O interrupt */
        putb(&q, 0); /* interrupt type = vectored interrupt */
        putb(&q, 0); /* flags: po=0, el=0 */
        putb(&q, 0);
        putb(&q, 0); /* source bus ID = ISA */
        putb(&q, i); /* source bus IRQ */
        putb(&q, ioapic_id); /* dest I/O APIC ID */
#ifdef BX_QEMU
        putb(&q, i == 0 ? 2 : i); /* dest I/O APIC interrupt in */
#else
        putb(&q, i); /* dest I/O APIC interrupt in */
#endif        
    }
    /* patch length */
    len = q - mp_config_table;
    mp_config_table[4] = len;
    mp_config_table[5] = len >> 8;

    mp_config_table[7] = -mpf_checksum(mp_config_table, q - mp_config_table);

    mp_config_table_size = q - mp_config_table;

#ifndef BX_USE_EBDA_TABLES
    bios_table_cur_addr += mp_config_table_size;
#endif

    /* floating pointer structure */
#ifdef BX_USE_EBDA_TABLES
    ebda_cur_addr = align(ebda_cur_addr, 16);
    float_pointer_struct = (uint8_t *)ebda_cur_addr;
#else
    bios_table_cur_addr = align(bios_table_cur_addr, 16);
    float_pointer_struct = (uint8_t *)bios_table_cur_addr;
#endif
    q = float_pointer_struct;
    putstr(&q, "_MP_");
    /* pointer to MP config table */
    putle32(&q, (unsigned long)mp_config_table);

    putb(&q, 1); /* length in 16 byte units */
    putb(&q, 4); /* MP spec revision */
    putb(&q, 0); /* checksum (patched later) */
    putb(&q, 0); /* MP feature byte 1 */

    putb(&q, 0);
    putb(&q, 0);
    putb(&q, 0);
    putb(&q, 0);
    float_pointer_struct[10] =
        -mpf_checksum(float_pointer_struct, q - float_pointer_struct);
#ifdef BX_USE_EBDA_TABLES
    ebda_cur_addr += (q - float_pointer_struct);
#else
    bios_table_cur_addr += (q - float_pointer_struct);
#endif
    BX_INFO("MP table addr=0x%08lx MPC table addr=0x%08lx size=0x%x\n",
            (unsigned long)float_pointer_struct,
            (unsigned long)mp_config_table,
            mp_config_table_size);
}

/****************************************************/
/* ACPI tables init */

/* Table structure from Linux kernel (the ACPI tables are under the
   BSD license) */

/*
 * All tables must be byte-packed to match the ACPI specification, since
 * the tables are provided by the system BIOS.
 */

#define ACPI_TABLE_HEADER_DEF   /* ACPI common table header */ \
	uint8_t                            signature [4];          /* ACPI signature (4 ASCII characters) */\
	uint32_t                             length;                 /* Length of table, in bytes, including header */\
	uint8_t                              revision;               /* ACPI Specification minor version # */\
	uint8_t                              checksum;               /* To make sum of entire table == 0 */\
	uint8_t                            oem_id [6];             /* OEM identification */\
	uint8_t                            oem_table_id [8];       /* OEM table identification */\
	uint32_t                             oem_revision;           /* OEM revision number */\
	uint8_t                            asl_compiler_id [4];    /* ASL compiler vendor ID */\
	uint32_t                             asl_compiler_revision;  /* ASL compiler revision number */


struct acpi_table_header         /* ACPI common table header */
{
	ACPI_TABLE_HEADER_DEF
} __attribute__((__packed__));

struct rsdp_descriptor         /* Root System Descriptor Pointer */
{
	uint8_t                            signature [8];          /* ACPI signature, contains "RSD PTR " */
	uint8_t                              checksum;               /* To make sum of struct == 0 */
	uint8_t                            oem_id [6];             /* OEM identification */
	uint8_t                              revision;               /* Must be 0 for 1.0, 2 for 2.0 */
	uint32_t                             rsdt_physical_address;  /* 32-bit physical address of RSDT */
	uint32_t                             length;                 /* XSDT Length in bytes including hdr */
	uint64_t                             xsdt_physical_address;  /* 64-bit physical address of XSDT */
	uint8_t                              extended_checksum;      /* Checksum of entire table */
	uint8_t                            reserved [3];           /* Reserved field must be 0 */
} __attribute__((__packed__));

/*
 * ACPI 1.0 Root System Description Table (RSDT)
 */
struct rsdt_descriptor_rev1
{
	ACPI_TABLE_HEADER_DEF                           /* ACPI common table header */
#ifdef BX_QEMU
	uint32_t                             table_offset_entry [5]; /* Array of pointers to other */
#else
	uint32_t                             table_offset_entry [3]; /* Array of pointers to other */
#endif
			 /* ACPI tables */
} __attribute__((__packed__));

/*
 * ACPI 1.0 Firmware ACPI Control Structure (FACS)
 */
struct facs_descriptor_rev1
{
	uint8_t                            signature[4];           /* ACPI Signature */
	uint32_t                             length;                 /* Length of structure, in bytes */
	uint32_t                             hardware_signature;     /* Hardware configuration signature */
	uint32_t                             firmware_waking_vector; /* ACPI OS waking vector */
	uint32_t                             global_lock;            /* Global Lock */
	uint32_t                             S4bios_f        : 1;    /* Indicates if S4BIOS support is present */
	uint32_t                             reserved1       : 31;   /* Must be 0 */
	uint8_t                              resverved3 [40];        /* Reserved - must be zero */
} __attribute__((__packed__));


/*
 * ACPI 1.0 Fixed ACPI Description Table (FADT)
 */
struct fadt_descriptor_rev1
{
	ACPI_TABLE_HEADER_DEF                           /* ACPI common table header */
	uint32_t                             firmware_ctrl;          /* Physical address of FACS */
	uint32_t                             dsdt;                   /* Physical address of DSDT */
	uint8_t                              model;                  /* System Interrupt Model */
	uint8_t                              reserved1;              /* Reserved */
	uint16_t                             sci_int;                /* System vector of SCI interrupt */
	uint32_t                             smi_cmd;                /* Port address of SMI command port */
	uint8_t                              acpi_enable;            /* Value to write to smi_cmd to enable ACPI */
	uint8_t                              acpi_disable;           /* Value to write to smi_cmd to disable ACPI */
	uint8_t                              S4bios_req;             /* Value to write to SMI CMD to enter S4BIOS state */
	uint8_t                              reserved2;              /* Reserved - must be zero */
	uint32_t                             pm1a_evt_blk;           /* Port address of Power Mgt 1a acpi_event Reg Blk */
	uint32_t                             pm1b_evt_blk;           /* Port address of Power Mgt 1b acpi_event Reg Blk */
	uint32_t                             pm1a_cnt_blk;           /* Port address of Power Mgt 1a Control Reg Blk */
	uint32_t                             pm1b_cnt_blk;           /* Port address of Power Mgt 1b Control Reg Blk */
	uint32_t                             pm2_cnt_blk;            /* Port address of Power Mgt 2 Control Reg Blk */
	uint32_t                             pm_tmr_blk;             /* Port address of Power Mgt Timer Ctrl Reg Blk */
	uint32_t                             gpe0_blk;               /* Port addr of General Purpose acpi_event 0 Reg Blk */
	uint32_t                             gpe1_blk;               /* Port addr of General Purpose acpi_event 1 Reg Blk */
	uint8_t                              pm1_evt_len;            /* Byte length of ports at pm1_x_evt_blk */
	uint8_t                              pm1_cnt_len;            /* Byte length of ports at pm1_x_cnt_blk */
	uint8_t                              pm2_cnt_len;            /* Byte Length of ports at pm2_cnt_blk */
	uint8_t                              pm_tmr_len;              /* Byte Length of ports at pm_tm_blk */
	uint8_t                              gpe0_blk_len;           /* Byte Length of ports at gpe0_blk */
	uint8_t                              gpe1_blk_len;           /* Byte Length of ports at gpe1_blk */
	uint8_t                              gpe1_base;              /* Offset in gpe model where gpe1 events start */
	uint8_t                              reserved3;              /* Reserved */
	uint16_t                             plvl2_lat;              /* Worst case HW latency to enter/exit C2 state */
	uint16_t                             plvl3_lat;              /* Worst case HW latency to enter/exit C3 state */
	uint16_t                             flush_size;             /* Size of area read to flush caches */
	uint16_t                             flush_stride;           /* Stride used in flushing caches */
	uint8_t                              duty_offset;            /* Bit location of duty cycle field in p_cnt reg */
	uint8_t                              duty_width;             /* Bit width of duty cycle field in p_cnt reg */
	uint8_t                              day_alrm;               /* Index to day-of-month alarm in RTC CMOS RAM */
	uint8_t                              mon_alrm;               /* Index to month-of-year alarm in RTC CMOS RAM */
	uint8_t                              century;                /* Index to century in RTC CMOS RAM */
	uint8_t                              reserved4;              /* Reserved */
	uint8_t                              reserved4a;             /* Reserved */
	uint8_t                              reserved4b;             /* Reserved */
#if 0
	uint32_t                             wb_invd         : 1;    /* The wbinvd instruction works properly */
	uint32_t                             wb_invd_flush   : 1;    /* The wbinvd flushes but does not invalidate */
	uint32_t                             proc_c1         : 1;    /* All processors support C1 state */
	uint32_t                             plvl2_up        : 1;    /* C2 state works on MP system */
	uint32_t                             pwr_button      : 1;    /* Power button is handled as a generic feature */
	uint32_t                             sleep_button    : 1;    /* Sleep button is handled as a generic feature, or not present */
	uint32_t                             fixed_rTC       : 1;    /* RTC wakeup stat not in fixed register space */
	uint32_t                             rtcs4           : 1;    /* RTC wakeup stat not possible from S4 */
	uint32_t                             tmr_val_ext     : 1;    /* The tmr_val width is 32 bits (0 = 24 bits) */
	uint32_t                             reserved5       : 23;   /* Reserved - must be zero */
#else
        uint32_t flags;
#endif
} __attribute__((__packed__));

/*
 * MADT values and structures
 */

/* Values for MADT PCATCompat */

#define DUAL_PIC                0
#define MULTIPLE_APIC           1


/* Master MADT */

struct multiple_apic_table
{
	ACPI_TABLE_HEADER_DEF                           /* ACPI common table header */
	uint32_t                             local_apic_address;     /* Physical address of local APIC */
#if 0
	uint32_t                             PCATcompat      : 1;    /* A one indicates system also has dual 8259s */
	uint32_t                             reserved1       : 31;
#else
        uint32_t                             flags;
#endif
} __attribute__((__packed__));


/* Values for Type in APIC sub-headers */

#define APIC_PROCESSOR          0
#define APIC_IO                 1
#define APIC_XRUPT_OVERRIDE     2
#define APIC_NMI                3
#define APIC_LOCAL_NMI          4
#define APIC_ADDRESS_OVERRIDE   5
#define APIC_IO_SAPIC           6
#define APIC_LOCAL_SAPIC        7
#define APIC_XRUPT_SOURCE       8
#define APIC_RESERVED           9           /* 9 and greater are reserved */

#define ACPI_SUB_HEADER_DEF                 /* Common ACPI sub-structure header */\
	uint8_t                              type; \
	uint8_t                              length;

/*
 * MADT sub-structures (Follow MULTIPLE_APIC_DESCRIPTION_TABLE)
 */
/* Sub-structures for MADT */

struct madt_processor_apic
{
	ACPI_SUB_HEADER_DEF
	uint8_t                              processor_id;           /* ACPI processor id */
	uint8_t                              local_apic_id;          /* Processor's local APIC id */
#if 0
	uint32_t                             processor_enabled: 1;   /* Processor is usable if set */
	uint32_t                             reserved2       : 31;   /* Reserved, must be zero */
#else
        uint32_t flags;
#endif
} __attribute__((__packed__));

/*
 * SRAT (NUMA topology description) table
 */

#define SRAT_PROCESSOR          0
#define SRAT_MEMORY             1

struct system_resource_affinity_table
{
    ACPI_TABLE_HEADER_DEF
    uint32_t    reserved1;
    uint32_t    reserved2[2];
};

struct srat_processor_affinity
{
    ACPI_SUB_HEADER_DEF
    uint8_t     proximity_lo;
    uint8_t     local_apic_id;
    uint32_t    flags;
    uint8_t     local_sapic_eid;
    uint8_t     proximity_hi[3];
    uint32_t    reserved;
};

struct srat_memory_affinity
{
    ACPI_SUB_HEADER_DEF
    uint8_t     proximity[4];
    uint16_t    reserved1;
    uint32_t    base_addr_low,base_addr_high;
    uint32_t    length_low,length_high;
    uint32_t    reserved2;
    uint32_t    flags;
    uint32_t    reserved3[2];
};

#ifdef BX_QEMU
/*
 *  * ACPI 2.0 Generic Address Space definition.
 *   */
struct acpi_20_generic_address {
    uint8_t  address_space_id;
    uint8_t  register_bit_width;
    uint8_t  register_bit_offset;
    uint8_t  reserved;
    uint64_t address;
} __attribute__((__packed__));

/*
 *  * HPET Description Table
 *   */
struct acpi_20_hpet {
    ACPI_TABLE_HEADER_DEF                           /* ACPI common table header */
    uint32_t           timer_block_id;
    struct acpi_20_generic_address addr;
    uint8_t            hpet_number;
    uint16_t           min_tick;
    uint8_t            page_protect;
} __attribute__((__packed__));
#define ACPI_HPET_ADDRESS 0xFED00000UL
#endif

struct madt_io_apic
{
	ACPI_SUB_HEADER_DEF
	uint8_t                              io_apic_id;             /* I/O APIC ID */
	uint8_t                              reserved;               /* Reserved - must be zero */
	uint32_t                             address;                /* APIC physical address */
	uint32_t                             interrupt;              /* Global system interrupt where INTI
			  * lines start */
} __attribute__((__packed__));

#ifdef BX_QEMU
struct madt_int_override
{
	ACPI_SUB_HEADER_DEF
	uint8_t                bus;     /* Identifies ISA Bus */
	uint8_t                source;  /* Bus-relative interrupt source */
	uint32_t               gsi;     /* GSI that source will signal */
	uint16_t               flags;   /* MPS INTI flags */
} __attribute__((__packed__));
#endif

#include "acpi-dsdt.hex"

static inline uint16_t cpu_to_le16(uint16_t x)
{
    return x;
}

static inline uint32_t cpu_to_le32(uint32_t x)
{
    return x;
}

static int acpi_checksum(const uint8_t *data, int len)
{
    int sum, i;
    sum = 0;
    for(i = 0; i < len; i++)
        sum += data[i];
    return (-sum) & 0xff;
}

static void acpi_build_table_header(struct acpi_table_header *h,
                                    char *sig, int len, uint8_t rev)
{
    memcpy(h->signature, sig, 4);
    h->length = cpu_to_le32(len);
    h->revision = rev;
#ifdef BX_QEMU
    memcpy(h->oem_id, "QEMU  ", 6);
    memcpy(h->oem_table_id, "QEMU", 4);
#else
    memcpy(h->oem_id, "BOCHS ", 6);
    memcpy(h->oem_table_id, "BXPC", 4);
#endif
    memcpy(h->oem_table_id + 4, sig, 4);
    h->oem_revision = cpu_to_le32(1);
#ifdef BX_QEMU
    memcpy(h->asl_compiler_id, "QEMU", 4);
#else
    memcpy(h->asl_compiler_id, "BXPC", 4);
#endif
    h->asl_compiler_revision = cpu_to_le32(1);
    h->checksum = acpi_checksum((void *)h, len);
}

int acpi_build_processor_ssdt(uint8_t *ssdt)
{
    uint8_t *ssdt_ptr = ssdt;
    int i, length;
    int acpi_cpus = smp_cpus > 0xff ? 0xff : smp_cpus;

    ssdt_ptr[9] = 0; // checksum;
    ssdt_ptr += sizeof(struct acpi_table_header);

    // caluculate the length of processor block and scope block excluding PkgLength
    length = 0x0d * acpi_cpus + 4;

    // build processor scope header
    *(ssdt_ptr++) = 0x10; // ScopeOp
    if (length <= 0x3e) {
        *(ssdt_ptr++) = length + 1;
    } else {
        *(ssdt_ptr++) = 0x7F;
        *(ssdt_ptr++) = (length + 2) >> 6;
    }
    *(ssdt_ptr++) = '_'; // Name
    *(ssdt_ptr++) = 'P';
    *(ssdt_ptr++) = 'R';
    *(ssdt_ptr++) = '_';

    // build object for each processor
    for(i=0;i<acpi_cpus;i++) {
        *(ssdt_ptr++) = 0x5B; // ProcessorOp
        *(ssdt_ptr++) = 0x83;
        *(ssdt_ptr++) = 0x0B; // Length
        *(ssdt_ptr++) = 'C';  // Name (CPUxx)
        *(ssdt_ptr++) = 'P';
        if ((i & 0xf0) != 0)
            *(ssdt_ptr++) = (i >> 4) < 0xa ? (i >> 4) + '0' : (i >> 4) + 'A' - 0xa;
        else
            *(ssdt_ptr++) = 'U';
        *(ssdt_ptr++) = (i & 0xf) < 0xa ? (i & 0xf) + '0' : (i & 0xf) + 'A' - 0xa;
        *(ssdt_ptr++) = i;
        *(ssdt_ptr++) = 0x10; // Processor block address
        *(ssdt_ptr++) = 0xb0;
        *(ssdt_ptr++) = 0;
        *(ssdt_ptr++) = 0;
        *(ssdt_ptr++) = 6;    // Processor block length
    }

    acpi_build_table_header((struct acpi_table_header *)ssdt,
                            "SSDT", ssdt_ptr - ssdt, 1);

    return ssdt_ptr - ssdt;
}

static void acpi_build_srat_memory(struct srat_memory_affinity *numamem,
    uint64_t base, uint64_t len, int node, int enabled)
{
     numamem->type = SRAT_MEMORY;
     numamem->length = sizeof(*numamem);
     memset (numamem->proximity, 0 ,4);
     numamem->proximity[0] = node;
     numamem->flags = cpu_to_le32(!!enabled);
     numamem->base_addr_low = base & 0xFFFFFFFF;
     numamem->base_addr_high = base >> 32;
     numamem->length_low = len & 0xFFFFFFFF;
     numamem->length_high = len >> 32;
     return;
}

/* base_addr must be a multiple of 4KB */
void acpi_bios_init(void)
{
    struct rsdp_descriptor *rsdp;
    struct rsdt_descriptor_rev1 *rsdt;
    struct fadt_descriptor_rev1 *fadt;
    struct facs_descriptor_rev1 *facs;
    struct multiple_apic_table *madt;
    uint8_t *dsdt, *ssdt;
#ifdef BX_QEMU
    struct system_resource_affinity_table *srat;
    struct acpi_20_hpet *hpet;
    uint32_t hpet_addr;
#endif
    uint32_t base_addr, rsdt_addr, fadt_addr, addr, facs_addr, dsdt_addr, ssdt_addr;
    uint32_t acpi_tables_size, madt_addr, madt_size, rsdt_size;
    uint32_t srat_addr,srat_size;
    uint16_t i, external_tables;
    int nb_numa_nodes;

    /* reserve memory space for tables */
#ifdef BX_USE_EBDA_TABLES
    ebda_cur_addr = align(ebda_cur_addr, 16);
    rsdp = (void *)(ebda_cur_addr);
    ebda_cur_addr += sizeof(*rsdp);
#else
    bios_table_cur_addr = align(bios_table_cur_addr, 16);
    rsdp = (void *)(bios_table_cur_addr);
    bios_table_cur_addr += sizeof(*rsdp);
#endif

#ifdef BX_QEMU
    external_tables = acpi_additional_tables();
#else
    external_tables = 0;
#endif

    addr = base_addr = ram_size - ACPI_DATA_SIZE;
    rsdt_addr = addr;
    rsdt = (void *)(addr);
    rsdt_size = sizeof(*rsdt) + external_tables * 4;
    addr += rsdt_size;

    fadt_addr = addr;
    fadt = (void *)(addr);
    addr += sizeof(*fadt);

    /* XXX: FACS should be in RAM */
    addr = (addr + 63) & ~63; /* 64 byte alignment for FACS */
    facs_addr = addr;
    facs = (void *)(addr);
    addr += sizeof(*facs);

    dsdt_addr = addr;
    dsdt = (void *)(addr);
    addr += sizeof(AmlCode);

    ssdt_addr = addr;
    ssdt = (void *)(addr);
    addr += acpi_build_processor_ssdt(ssdt);
#ifdef BX_QEMU
    qemu_cfg_select(QEMU_CFG_NUMA);
    nb_numa_nodes = qemu_cfg_get64();
#else
    nb_numa_nodes = 0;
#endif
    if (nb_numa_nodes > 0) {
        addr = (addr + 7) & ~7;
        srat_addr = addr;
        srat_size = sizeof(*srat) +
            sizeof(struct srat_processor_affinity) * smp_cpus +
            sizeof(struct srat_memory_affinity) * (nb_numa_nodes + 2);
        srat = (void *)(addr);
        addr += srat_size;
    } else {
        srat_addr = addr;
        srat = (void*)(addr);
        srat_size = 0;
    }

    addr = (addr + 7) & ~7;
    madt_addr = addr;
    madt_size = sizeof(*madt) +
        sizeof(struct madt_processor_apic) * smp_cpus +
#ifdef BX_QEMU
        sizeof(struct madt_io_apic) + sizeof(struct madt_int_override);
#else
        sizeof(struct madt_io_apic);
#endif
    madt = (void *)(addr);
    addr += madt_size;

#ifdef BX_QEMU
    addr = (addr + 7) & ~7;
    hpet_addr = addr;
    hpet = (void *)(addr);
    addr += sizeof(*hpet);
#endif

    /* RSDP */
    memset(rsdp, 0, sizeof(*rsdp));
    memcpy(rsdp->signature, "RSD PTR ", 8);
#ifdef BX_QEMU
    memcpy(rsdp->oem_id, "QEMU  ", 6);
#else
    memcpy(rsdp->oem_id, "BOCHS ", 6);
#endif
    rsdp->rsdt_physical_address = cpu_to_le32(rsdt_addr);
    rsdp->checksum = acpi_checksum((void *)rsdp, 20);

    /* FADT */
    memset(fadt, 0, sizeof(*fadt));
    fadt->firmware_ctrl = cpu_to_le32(facs_addr);
    fadt->dsdt = cpu_to_le32(dsdt_addr);
    fadt->model = 1;
    fadt->reserved1 = 0;
    fadt->sci_int = cpu_to_le16(pm_sci_int);
    fadt->smi_cmd = cpu_to_le32(SMI_CMD_IO_ADDR);
    fadt->acpi_enable = 0xf1;
    fadt->acpi_disable = 0xf0;
    fadt->pm1a_evt_blk = cpu_to_le32(pm_io_base);
    fadt->pm1a_cnt_blk = cpu_to_le32(pm_io_base + 0x04);
    fadt->pm_tmr_blk = cpu_to_le32(pm_io_base + 0x08);
    fadt->pm1_evt_len = 4;
    fadt->pm1_cnt_len = 2;
    fadt->pm_tmr_len = 4;
    fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported
    fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported
    fadt->gpe0_blk = cpu_to_le32(0xafe0);
    fadt->gpe0_blk_len = 4;
    /* WBINVD + PROC_C1 + SLP_BUTTON + FIX_RTC */
    fadt->flags = cpu_to_le32((1 << 0) | (1 << 2) | (1 << 5) | (1 << 6));
    acpi_build_table_header((struct acpi_table_header *)fadt, "FACP",
                            sizeof(*fadt), 1);

    /* FACS */
    memset(facs, 0, sizeof(*facs));
    memcpy(facs->signature, "FACS", 4);
    facs->length = cpu_to_le32(sizeof(*facs));
    BX_INFO("Firmware waking vector %p\n", &facs->firmware_waking_vector);

    /* DSDT */
    memcpy(dsdt, AmlCode, sizeof(AmlCode));

    /* MADT */
    {
        struct madt_processor_apic *apic;
        struct madt_io_apic *io_apic;
#ifdef BX_QEMU
        struct madt_int_override *int_override;
#endif

        memset(madt, 0, madt_size);
        madt->local_apic_address = cpu_to_le32(0xfee00000);
        madt->flags = cpu_to_le32(1);
        apic = (void *)(madt + 1);
        for(i=0;i<smp_cpus;i++) {
            apic->type = APIC_PROCESSOR;
            apic->length = sizeof(*apic);
            apic->processor_id = i;
            apic->local_apic_id = i;
            apic->flags = cpu_to_le32(1);
            apic++;
        }
        io_apic = (void *)apic;
        io_apic->type = APIC_IO;
        io_apic->length = sizeof(*io_apic);
        io_apic->io_apic_id = smp_cpus;
        io_apic->address = cpu_to_le32(0xfec00000);
        io_apic->interrupt = cpu_to_le32(0);
#ifdef BX_QEMU
        io_apic++;

        int_override = (void *)io_apic;
        int_override->type = APIC_XRUPT_OVERRIDE;
        int_override->length = sizeof(*int_override);
        int_override->bus = cpu_to_le32(0);
        int_override->source = cpu_to_le32(0);
        int_override->gsi = cpu_to_le32(2);
        int_override->flags = cpu_to_le32(0);
#endif

        acpi_build_table_header((struct acpi_table_header *)madt,
                                "APIC", madt_size, 1);
    }

    memset(rsdt, 0, rsdt_size);
#ifdef BX_QEMU
    /* SRAT */
    if (nb_numa_nodes > 0) {
        struct srat_processor_affinity *core;
        struct srat_memory_affinity *numamem;
        int slots;
        uint64_t mem_len, mem_base, next_base = 0, curnode;

        qemu_cfg_select(QEMU_CFG_NUMA);
        qemu_cfg_get64();
        memset (srat, 0 , srat_size);
        srat->reserved1=1;
 
        core = (void*)(srat + 1);
        for (i = 0; i < smp_cpus; ++i) {
             core->type = SRAT_PROCESSOR;
             core->length = sizeof(*core);
             core->local_apic_id = i;
             curnode = qemu_cfg_get64();
             core->proximity_lo = curnode;
             memset (core->proximity_hi, 0, 3);
             core->local_sapic_eid = 0;
             if (i < smp_cpus)
                 core->flags = cpu_to_le32(1);
             else
                 core->flags = 0;
             core++;
        }

        /* the memory map is a bit tricky, it contains at least one hole
         * from 640k-1M and possibly another one from 3.5G-4G.
         */
        numamem = (void*)core; slots = 0;
        acpi_build_srat_memory(numamem, 0, 640*1024, 0, 1);
        next_base = 1024 * 1024; numamem++;slots++;
        for (i = 1; i < nb_numa_nodes + 1; ++i) {
            mem_base = next_base;
            mem_len = qemu_cfg_get64();
            if (i == 1) mem_len -= 1024 * 1024;
            next_base = mem_base + mem_len;
 
            /* Cut out the PCI hole */
            if (mem_base <= ram_size && next_base > ram_size) {
                mem_len -= next_base - ram_size;
                if (mem_len > 0) {
                    acpi_build_srat_memory(numamem, mem_base, mem_len, i-1, 1);
                    numamem++; slots++;
                }
                mem_base = 1ULL << 32;
                mem_len = next_base - ram_size;
                next_base += (1ULL << 32) - ram_size;
            }
            acpi_build_srat_memory(numamem, mem_base, mem_len, i-1, 1);
            numamem++; slots++;
        }
        for (; slots < nb_numa_nodes + 2; slots++) {
            acpi_build_srat_memory(numamem, 0, 0, 0, 0);
            numamem++;
        }

         acpi_build_table_header((struct acpi_table_header *)srat,
                                "SRAT", srat_size, 1);
    }

    /* HPET */
    memset(hpet, 0, sizeof(*hpet));
    /* Note timer_block_id value must be kept in sync with value advertised by
     * emulated hpet
     */
    hpet->timer_block_id = cpu_to_le32(0x8086a201);
    hpet->addr.address = cpu_to_le32(ACPI_HPET_ADDRESS);
    acpi_build_table_header((struct  acpi_table_header *)hpet,
                             "HPET", sizeof(*hpet), 1);

    acpi_additional_tables(); /* resets cfg to required entry */
    for(i = 0; i < external_tables; i++) {
        uint16_t len;
        if(acpi_load_table(i, addr, &len) < 0)
            BX_PANIC("Failed to load ACPI table from QEMU\n");
        rsdt->table_offset_entry[i+4] = cpu_to_le32(addr);
        addr += len;
        if(addr >= ram_size)
            BX_PANIC("ACPI table overflow\n");
    }
#endif

    /* RSDT */
    rsdt->table_offset_entry[0] = cpu_to_le32(fadt_addr);
    rsdt->table_offset_entry[1] = cpu_to_le32(madt_addr);
    rsdt->table_offset_entry[2] = cpu_to_le32(ssdt_addr);
#ifdef BX_QEMU
    rsdt->table_offset_entry[3] = cpu_to_le32(hpet_addr);
    if (nb_numa_nodes > 0)
        rsdt->table_offset_entry[4] = cpu_to_le32(srat_addr);
#endif
    acpi_build_table_header((struct acpi_table_header *)rsdt, "RSDT",
        rsdt_size - (nb_numa_nodes > 0? 0: sizeof(uint32_t)), 1);

    acpi_tables_size = addr - base_addr;

    BX_INFO("ACPI tables: RSDP addr=0x%08lx ACPI DATA addr=0x%08lx size=0x%x\n",
            (unsigned long)rsdp,
            (unsigned long)rsdt, acpi_tables_size);

}

/* SMBIOS entry point -- must be written to a 16-bit aligned address
   between 0xf0000 and 0xfffff.
 */
struct smbios_entry_point {
	char anchor_string[4];
	uint8_t checksum;
	uint8_t length;
	uint8_t smbios_major_version;
	uint8_t smbios_minor_version;
	uint16_t max_structure_size;
	uint8_t entry_point_revision;
	uint8_t formatted_area[5];
	char intermediate_anchor_string[5];
	uint8_t intermediate_checksum;
	uint16_t structure_table_length;
	uint32_t structure_table_address;
	uint16_t number_of_structures;
	uint8_t smbios_bcd_revision;
} __attribute__((__packed__));

/* This goes at the beginning of every SMBIOS structure. */
struct smbios_structure_header {
	uint8_t type;
	uint8_t length;
	uint16_t handle;
} __attribute__((__packed__));

/* SMBIOS type 0 - BIOS Information */
struct smbios_type_0 {
	struct smbios_structure_header header;
	uint8_t vendor_str;
	uint8_t bios_version_str;
	uint16_t bios_starting_address_segment;
	uint8_t bios_release_date_str;
	uint8_t bios_rom_size;
	uint8_t bios_characteristics[8];
	uint8_t bios_characteristics_extension_bytes[2];
	uint8_t system_bios_major_release;
	uint8_t system_bios_minor_release;
	uint8_t embedded_controller_major_release;
	uint8_t embedded_controller_minor_release;
} __attribute__((__packed__));

/* SMBIOS type 1 - System Information */
struct smbios_type_1 {
	struct smbios_structure_header header;
	uint8_t manufacturer_str;
	uint8_t product_name_str;
	uint8_t version_str;
	uint8_t serial_number_str;
	uint8_t uuid[16];
	uint8_t wake_up_type;
	uint8_t sku_number_str;
	uint8_t family_str;
} __attribute__((__packed__));

/* SMBIOS type 3 - System Enclosure (v2.3) */
struct smbios_type_3 {
	struct smbios_structure_header header;
	uint8_t manufacturer_str;
	uint8_t type;
	uint8_t version_str;
	uint8_t serial_number_str;
	uint8_t asset_tag_number_str;
	uint8_t boot_up_state;
	uint8_t power_supply_state;
	uint8_t thermal_state;
	uint8_t security_status;
    uint32_t oem_defined;
    uint8_t height;
    uint8_t number_of_power_cords;
    uint8_t contained_element_count;
    // contained elements follow
} __attribute__((__packed__));

/* SMBIOS type 4 - Processor Information (v2.0) */
struct smbios_type_4 {
	struct smbios_structure_header header;
	uint8_t socket_designation_str;
	uint8_t processor_type;
	uint8_t processor_family;
	uint8_t processor_manufacturer_str;
	uint32_t processor_id[2];
	uint8_t processor_version_str;
	uint8_t voltage;
	uint16_t external_clock;
	uint16_t max_speed;
	uint16_t current_speed;
	uint8_t status;
	uint8_t processor_upgrade;
        uint16_t l1_cache_handle;
        uint16_t l2_cache_handle;
        uint16_t l3_cache_handle;
} __attribute__((__packed__));

/* SMBIOS type 16 - Physical Memory Array
 *   Associated with one type 17 (Memory Device).
 */
struct smbios_type_16 {
	struct smbios_structure_header header;
	uint8_t location;
	uint8_t use;
	uint8_t error_correction;
	uint32_t maximum_capacity;
	uint16_t memory_error_information_handle;
	uint16_t number_of_memory_devices;
} __attribute__((__packed__));

/* SMBIOS type 17 - Memory Device
 *   Associated with one type 19
 */
struct smbios_type_17 {
	struct smbios_structure_header header;
	uint16_t physical_memory_array_handle;
	uint16_t memory_error_information_handle;
	uint16_t total_width;
	uint16_t data_width;
	uint16_t size;
	uint8_t form_factor;
	uint8_t device_set;
	uint8_t device_locator_str;
	uint8_t bank_locator_str;
	uint8_t memory_type;
	uint16_t type_detail;
} __attribute__((__packed__));

/* SMBIOS type 19 - Memory Array Mapped Address */
struct smbios_type_19 {
	struct smbios_structure_header header;
	uint32_t starting_address;
	uint32_t ending_address;
	uint16_t memory_array_handle;
	uint8_t partition_width;
} __attribute__((__packed__));

/* SMBIOS type 20 - Memory Device Mapped Address */
struct smbios_type_20 {
	struct smbios_structure_header header;
	uint32_t starting_address;
	uint32_t ending_address;
	uint16_t memory_device_handle;
	uint16_t memory_array_mapped_address_handle;
	uint8_t partition_row_position;
	uint8_t interleave_position;
	uint8_t interleaved_data_depth;
} __attribute__((__packed__));

/* SMBIOS type 32 - System Boot Information */
struct smbios_type_32 {
	struct smbios_structure_header header;
	uint8_t reserved[6];
	uint8_t boot_status;
} __attribute__((__packed__));

/* SMBIOS type 127 -- End-of-table */
struct smbios_type_127 {
	struct smbios_structure_header header;
} __attribute__((__packed__));

static void
smbios_entry_point_init(void *start,
                        uint16_t max_structure_size,
                        uint16_t structure_table_length,
                        uint32_t structure_table_address,
                        uint16_t number_of_structures)
{
    uint8_t sum;
    int i;
    struct smbios_entry_point *ep = (struct smbios_entry_point *)start;

    memcpy(ep->anchor_string, "_SM_", 4);
    ep->length = 0x1f;
    ep->smbios_major_version = 2;
    ep->smbios_minor_version = 4;
    ep->max_structure_size = max_structure_size;
    ep->entry_point_revision = 0;
    memset(ep->formatted_area, 0, 5);
    memcpy(ep->intermediate_anchor_string, "_DMI_", 5);

    ep->structure_table_length = structure_table_length;
    ep->structure_table_address = structure_table_address;
    ep->number_of_structures = number_of_structures;
    ep->smbios_bcd_revision = 0x24;

    ep->checksum = 0;
    ep->intermediate_checksum = 0;

    sum = 0;
    for (i = 0; i < 0x10; i++)
        sum += ((int8_t *)start)[i];
    ep->checksum = -sum;

    sum = 0;
    for (i = 0x10; i < ep->length; i++)
        sum += ((int8_t *)start)[i];
    ep->intermediate_checksum = -sum;
    }

struct smbios_header {
    uint16_t length;
    uint8_t type;
} __attribute__((__packed__));

struct smbios_field {
    struct smbios_header header;
    uint8_t type;
    uint16_t offset;
    uint8_t data[];
} __attribute__((__packed__));

struct smbios_table {
    struct smbios_header header;
    uint8_t data[];
} __attribute__((__packed__));

#define SMBIOS_FIELD_ENTRY 0
#define SMBIOS_TABLE_ENTRY 1

static size_t
smbios_load_field(int type, size_t offset, void *addr)
{
#ifdef BX_QEMU
    int i;

    for (i = smbios_entries(); i > 0; i--) {
        struct smbios_field field;

        qemu_cfg_read((uint8_t *)&field, sizeof(struct smbios_header));
        field.header.length -= sizeof(struct smbios_header);

        if (field.header.type != SMBIOS_FIELD_ENTRY) {
            while (field.header.length--)
                inb(QEMU_CFG_DATA_PORT);
            continue;
        }

        qemu_cfg_read((uint8_t *)&field.type,
                      sizeof(field) - sizeof(struct smbios_header));
        field.header.length -= sizeof(field) - sizeof(struct smbios_header);

        if (field.type != type || field.offset != offset) {
            while (field.header.length--)
                inb(QEMU_CFG_DATA_PORT);
            continue;
        }

        qemu_cfg_read(addr, field.header.length);
        return (size_t)field.header.length;
    }
#endif
    return 0;
}
 
#define load_str_field_with_default(type, field, def) do {             \
    size = smbios_load_field(type, offsetof(struct smbios_type_##type, \
                                            field), end);              \
    if (size > 0) {                                                    \
        end += size;                                                   \
    } else {                                                           \
        memcpy(end, def, sizeof(def));                                 \
        end += sizeof(def);                                            \
    }                                                                  \
    p->field = ++str_index;                                            \
} while (0)

#define load_str_field_or_skip(type, field) do {                       \
    size = smbios_load_field(type, offsetof(struct smbios_type_##type, \
                                            field), end);              \
    if (size > 0) {                                                    \
        end += size;                                                   \
        p->field = ++str_index;                                        \
    } else {                                                           \
        p->field = 0;                                                  \
    }                                                                  \
} while (0)

/* Type 0 -- BIOS Information */
#define RELEASE_DATE_STR "01/01/2007"
static void *
smbios_init_type_0(void *start)
{
    struct smbios_type_0 *p = (struct smbios_type_0 *)start;
    char *end = (char *)start + sizeof(struct smbios_type_0);
    size_t size;
    int str_index = 0;

    p->header.type = 0;
    p->header.length = sizeof(struct smbios_type_0);
    p->header.handle = 0;

    load_str_field_with_default(0, vendor_str, BX_APPNAME);
    load_str_field_with_default(0, bios_version_str, BX_APPNAME);

    p->bios_starting_address_segment = 0xe800;

    load_str_field_with_default(0, bios_release_date_str, RELEASE_DATE_STR);

    p->bios_rom_size = 0; /* FIXME */

    memset(p->bios_characteristics, 0, 8);
    p->bios_characteristics[0] = 0x08; /* BIOS characteristics not supported */
    p->bios_characteristics_extension_bytes[0] = 0;
    p->bios_characteristics_extension_bytes[1] = 0;

    if (!smbios_load_field(0, offsetof(struct smbios_type_0,
                                       system_bios_major_release),
                           &p->system_bios_major_release))
        p->system_bios_major_release = 1;

    if (!smbios_load_field(0, offsetof(struct smbios_type_0,
                                       system_bios_minor_release),
                           &p->system_bios_minor_release))
        p->system_bios_minor_release = 0;

    p->embedded_controller_major_release = 0xff;
    p->embedded_controller_minor_release = 0xff;

    *end = 0;
    end++;

    return end;
}

/* Type 1 -- System Information */
static void *
smbios_init_type_1(void *start)
{
    struct smbios_type_1 *p = (struct smbios_type_1 *)start;
    char *end = (char *)start + sizeof(struct smbios_type_1);
    size_t size;
    int str_index = 0;

    p->header.type = 1;
    p->header.length = sizeof(struct smbios_type_1);
    p->header.handle = 0x100;

    load_str_field_or_skip(1, manufacturer_str);
    load_str_field_or_skip(1, product_name_str);
    load_str_field_or_skip(1, version_str);
    load_str_field_or_skip(1, serial_number_str);

    size = smbios_load_field(1, offsetof(struct smbios_type_1,
                                         uuid), &p->uuid);
    if (size == 0)
        memset(p->uuid, 0, 16);

    p->wake_up_type = 0x06; /* power switch */

    load_str_field_or_skip(1, sku_number_str);
    load_str_field_or_skip(1, family_str);

    *end = 0;
    end++;
    if (!str_index) {
        *end = 0;
        end++;
    }

    return end;
}

/* Type 3 -- System Enclosure */
static void *
smbios_init_type_3(void *start)
{
    struct smbios_type_3 *p = (struct smbios_type_3 *)start;

    p->header.type = 3;
    p->header.length = sizeof(struct smbios_type_3);
    p->header.handle = 0x300;

    p->manufacturer_str = 0;
    p->type = 0x01; /* other */
    p->version_str = 0;
    p->serial_number_str = 0;
    p->asset_tag_number_str = 0;
    p->boot_up_state = 0x03; /* safe */
    p->power_supply_state = 0x03; /* safe */
    p->thermal_state = 0x03; /* safe */
    p->security_status = 0x02; /* unknown */
    p->oem_defined = 0;
    p->height = 0;
    p->number_of_power_cords = 0;
    p->contained_element_count = 0;

    start += sizeof(struct smbios_type_3);
    *((uint16_t *)start) = 0;

    return start+2;
}

/* Type 4 -- Processor Information */
static void *
smbios_init_type_4(void *start, unsigned int cpu_number)
{
    struct smbios_type_4 *p = (struct smbios_type_4 *)start;

    p->header.type = 4;
    p->header.length = sizeof(struct smbios_type_4);
    p->header.handle = 0x400 + cpu_number;

    p->socket_designation_str = 1;
    p->processor_type = 0x03; /* CPU */
    p->processor_family = 0x01; /* other */
    p->processor_manufacturer_str = 0;

    p->processor_id[0] = cpuid_signature;
    p->processor_id[1] = cpuid_features;

    p->processor_version_str = 0;
    p->voltage = 0;
    p->external_clock = 0;

    p->max_speed = 0; /* unknown */
    p->current_speed = 0; /* unknown */

    p->status = 0x41; /* socket populated, CPU enabled */
    p->processor_upgrade = 0x01; /* other */

    p->l1_cache_handle = 0xffff; /* cache information structure not provided */
    p->l2_cache_handle = 0xffff;
    p->l3_cache_handle = 0xffff;

    start += sizeof(struct smbios_type_4);

    memcpy((char *)start, "CPU  " "\0" "" "\0" "", 7);
	((char *)start)[4] = cpu_number + '0';

    return start+7;
}

/* Type 16 -- Physical Memory Array */
static void *
smbios_init_type_16(void *start, uint32_t memsize, int nr_mem_devs)
{
    struct smbios_type_16 *p = (struct smbios_type_16*)start;

    p->header.type = 16;
    p->header.length = sizeof(struct smbios_type_16);
    p->header.handle = 0x1000;

    p->location = 0x01; /* other */
    p->use = 0x03; /* system memory */
    p->error_correction = 0x01; /* other */
    p->maximum_capacity = memsize * 1024;
    p->memory_error_information_handle = 0xfffe; /* none provided */
    p->number_of_memory_devices = nr_mem_devs;

    start += sizeof(struct smbios_type_16);
    *((uint16_t *)start) = 0;

    return start + 2;
}

/* Type 17 -- Memory Device */
static void *
smbios_init_type_17(void *start, uint32_t memory_size_mb, int instance)
{
    struct smbios_type_17 *p = (struct smbios_type_17 *)start;

    p->header.type = 17;
    p->header.length = sizeof(struct smbios_type_17);
    p->header.handle = 0x1100 + instance;

    p->physical_memory_array_handle = 0x1000;
    p->total_width = 64;
    p->data_width = 64;
/* TODO: should assert in case something is wrong   ASSERT((memory_size_mb & ~0x7fff) == 0); */
    p->size = memory_size_mb;
    p->form_factor = 0x09; /* DIMM */
    p->device_set = 0;
    p->device_locator_str = 1;
    p->bank_locator_str = 0;
    p->memory_type = 0x07; /* RAM */
    p->type_detail = 0;

    start += sizeof(struct smbios_type_17);
    snprintf(start, 8, "DIMM %d", instance);
    start += strlen(start) + 1;
    *((uint8_t *)start) = 0;

    return start+1;
}

/* Type 19 -- Memory Array Mapped Address */
static void *
smbios_init_type_19(void *start, uint32_t memory_size_mb, int instance)
{
    struct smbios_type_19 *p = (struct smbios_type_19 *)start;

    p->header.type = 19;
    p->header.length = sizeof(struct smbios_type_19);
    p->header.handle = 0x1300 + instance;

    p->starting_address = instance << 24;
    p->ending_address = p->starting_address + (memory_size_mb << 10) - 1;
    p->memory_array_handle = 0x1000;
    p->partition_width = 1;

    start += sizeof(struct smbios_type_19);
    *((uint16_t *)start) = 0;

    return start + 2;
}

/* Type 20 -- Memory Device Mapped Address */
static void *
smbios_init_type_20(void *start, uint32_t memory_size_mb, int instance)
{
    struct smbios_type_20 *p = (struct smbios_type_20 *)start;

    p->header.type = 20;
    p->header.length = sizeof(struct smbios_type_20);
    p->header.handle = 0x1400 + instance;

    p->starting_address = instance << 24;
    p->ending_address = p->starting_address + (memory_size_mb << 10) - 1;
    p->memory_device_handle = 0x1100 + instance;
    p->memory_array_mapped_address_handle = 0x1300 + instance;
    p->partition_row_position = 1;
    p->interleave_position = 0;
    p->interleaved_data_depth = 0;

    start += sizeof(struct smbios_type_20);

    *((uint16_t *)start) = 0;
    return start+2;
}

/* Type 32 -- System Boot Information */
static void *
smbios_init_type_32(void *start)
{
    struct smbios_type_32 *p = (struct smbios_type_32 *)start;

    p->header.type = 32;
    p->header.length = sizeof(struct smbios_type_32);
    p->header.handle = 0x2000;
    memset(p->reserved, 0, 6);
    p->boot_status = 0; /* no errors detected */

    start += sizeof(struct smbios_type_32);
    *((uint16_t *)start) = 0;

    return start+2;
}

/* Type 127 -- End of Table */
static void *
smbios_init_type_127(void *start)
{
    struct smbios_type_127 *p = (struct smbios_type_127 *)start;

    p->header.type = 127;
    p->header.length = sizeof(struct smbios_type_127);
    p->header.handle = 0x7f00;

    start += sizeof(struct smbios_type_127);
    *((uint16_t *)start) = 0;

    return start + 2;
}

static int
smbios_load_external(int type, char **p, unsigned *nr_structs,
                     unsigned *max_struct_size)
{
#ifdef BX_QEMU
    static uint64_t used_bitmap[4] = { 0 };
    char *start = *p;
    int i;

    /* Check if we've already reported these tables */
    if (used_bitmap[(type >> 6) & 0x3] & (1ULL << (type & 0x3f)))
        return 1;

    /* Don't introduce spurious end markers */
    if (type == 127)
        return 0;

    for (i = smbios_entries(); i > 0; i--) {
        struct smbios_table table;
        struct smbios_structure_header *header = (void *)*p;
        int string;

        qemu_cfg_read((uint8_t *)&table, sizeof(struct smbios_header));
        table.header.length -= sizeof(struct smbios_header);

        if (table.header.type != SMBIOS_TABLE_ENTRY) {
            while (table.header.length--)
                inb(QEMU_CFG_DATA_PORT);
            continue;
        }

        qemu_cfg_read((uint8_t *)*p, sizeof(struct smbios_structure_header));
        table.header.length -= sizeof(struct smbios_structure_header);

        if (header->type != type) {
            while (table.header.length--)
                inb(QEMU_CFG_DATA_PORT);
            continue;
        }

        *p += sizeof(struct smbios_structure_header);

        /* Entries end with a double NULL char, if there's a string at
         * the end (length is greater than formatted length), the string
         * terminator provides the first NULL. */
        string = header->length < table.header.length +
                 sizeof(struct smbios_structure_header);

        /* Read the rest and terminate the entry */
        qemu_cfg_read((uint8_t *)*p, table.header.length);
        *p += table.header.length;
        *((uint8_t*)*p) = 0;
        (*p)++;
        if (!string) {
            *((uint8_t*)*p) = 0;
            (*p)++;
        }

        (*nr_structs)++;
        if (*p - (char *)header > *max_struct_size)
            *max_struct_size = *p - (char *)header;
    }

    /* Mark that we've reported on this type */
    used_bitmap[(type >> 6) & 0x3] |= (1ULL << (type & 0x3f));

    return (start != *p);
#else /* !BX_QEMU */
    return 0;
#endif
}

void smbios_init(void)
{
    unsigned cpu_num, nr_structs = 0, max_struct_size = 0;
    char *start, *p, *q;
    int memsize = (ram_end == ram_size) ? ram_size / (1024 * 1024) :
                  (ram_end - (1ull << 32) + ram_size) / (1024 * 1024);
    int i, nr_mem_devs;

#ifdef BX_USE_EBDA_TABLES
    ebda_cur_addr = align(ebda_cur_addr, 16);
    start = (void *)(ebda_cur_addr);
#else
    bios_table_cur_addr = align(bios_table_cur_addr, 16);
    start = (void *)(bios_table_cur_addr);
#endif

	p = (char *)start + sizeof(struct smbios_entry_point);

#define add_struct(type, args...) do {                                    \
    if (!smbios_load_external(type, &p, &nr_structs, &max_struct_size)) { \
        q = smbios_init_type_##type(args);                                \
        nr_structs++;                                                     \
        if ((q - p) > max_struct_size)                                    \
            max_struct_size = q - p;                                      \
        p = q;                                                            \
    }                                                                     \
} while (0)

    add_struct(0, p);
    add_struct(1, p);
    add_struct(3, p);
    for (cpu_num = 1; cpu_num <= smp_cpus; cpu_num++)
        add_struct(4, p, cpu_num);

    /* Each 'memory device' covers up to 16GB of address space. */
    nr_mem_devs = (memsize + 0x3fff) >> 14;
    add_struct(16, p, memsize, nr_mem_devs);
    for ( i = 0; i < nr_mem_devs; i++ )
    {
        uint32_t dev_memsize = ((i == (nr_mem_devs - 1))
                                ? (((memsize-1) & 0x3fff)+1) : 0x4000);
        add_struct(17, p, dev_memsize, i);
        add_struct(19, p, dev_memsize, i);
        add_struct(20, p, dev_memsize, i);
    }

    add_struct(32, p);
    /* Add any remaining provided entries before the end marker */
    for (i = 0; i < 256; i++)
        smbios_load_external(i, &p, &nr_structs, &max_struct_size);
    add_struct(127, p);

#undef add_struct

    smbios_entry_point_init(
        start, max_struct_size,
        (p - (char *)start) - sizeof(struct smbios_entry_point),
        (uint32_t)(start + sizeof(struct smbios_entry_point)),
        nr_structs);

#ifdef BX_USE_EBDA_TABLES
    ebda_cur_addr += (p - (char *)start);
#else
    bios_table_cur_addr += (p - (char *)start);
#endif

    BX_INFO("SMBIOS table addr=0x%08lx\n", (unsigned long)start);
}

static uint32_t find_resume_vector(void)
{
    unsigned long addr, start, end;

#ifdef BX_USE_EBDA_TABLES
    start = align(ebda_cur_addr, 16);
    end = 0xa000 << 4;
#else
    if (bios_table_cur_addr == 0)
        return 0;
    start = align(bios_table_cur_addr, 16);
    end = bios_table_end_addr;
#endif

    for (addr = start; addr < end; addr += 16) {
        if (!memcmp((void*)addr, "RSD PTR ", 8)) {
            struct rsdp_descriptor *rsdp = (void*)addr;
            struct rsdt_descriptor_rev1 *rsdt = (void*)rsdp->rsdt_physical_address;
            struct fadt_descriptor_rev1 *fadt = (void*)rsdt->table_offset_entry[0];
            struct facs_descriptor_rev1 *facs = (void*)fadt->firmware_ctrl;
            return facs->firmware_waking_vector;
        }
    }

    return 0;
}

static void find_440fx(PCIDevice *d)
{
    uint16_t vendor_id, device_id;

    vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
    device_id = pci_config_readw(d, PCI_DEVICE_ID);

    if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82441)
        i440_pcidev = *d;
}

static void reinit_piix4_pm(PCIDevice *d)
{
    uint16_t vendor_id, device_id;

    vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
    device_id = pci_config_readw(d, PCI_DEVICE_ID);

    if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82371AB_3)
        piix4_pm_enable(d);
}

void rombios32_init(uint32_t *s3_resume_vector, uint8_t *shutdown_flag)
{
    BX_INFO("Starting rombios32\n");
    BX_INFO("Shutdown flag %x\n", *shutdown_flag);

#ifdef BX_QEMU
    qemu_cfg_port = qemu_cfg_port_probe();
#endif

    ram_probe();

    cpu_probe();

    setup_mtrr();

    smp_probe();

    find_bios_table_area();

    if (*shutdown_flag == 0xfe) {
        /* redirect bios read access to RAM */
        pci_for_each_device(find_440fx);
        bios_lock_shadow_ram(); /* bios is already copied */
        *s3_resume_vector = find_resume_vector();
        if (!*s3_resume_vector) {
            BX_INFO("This is S3 resume but wakeup vector is NULL\n");
        } else {
            BX_INFO("S3 resume vector %p\n", *s3_resume_vector);
            pci_for_each_device(reinit_piix4_pm);
        }
        return;
    }

    pci_bios_init();

    if (bios_table_cur_addr != 0) {

        mptable_init();

        smbios_init();

        if (acpi_enabled)
            acpi_bios_init();

        bios_lock_shadow_ram();

        BX_INFO("bios_table_cur_addr: 0x%08lx\n", bios_table_cur_addr);
        if (bios_table_cur_addr > bios_table_end_addr)
            BX_PANIC("bios_table_end_addr overflow!\n");
#ifdef BX_USE_EBDA_TABLES
        BX_INFO("ebda_cur_addr: 0x%08lx\n", ebda_cur_addr);
        if (ebda_cur_addr > 0xA0000)
            BX_PANIC("ebda_cur_addr overflow!\n");
#endif
    }
}