/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrPathUtils.h"
#include "GrPoint.h"
#include "SkGeometry.h"
GrScalar GrPathUtils::scaleToleranceToSrc(GrScalar devTol,
const GrMatrix& viewM,
const GrRect& pathBounds) {
// In order to tesselate the path we get a bound on how much the matrix can
// stretch when mapping to screen coordinates.
GrScalar stretch = viewM.getMaxStretch();
GrScalar srcTol = devTol;
if (stretch < 0) {
// take worst case mapRadius amoung four corners.
// (less than perfect)
for (int i = 0; i < 4; ++i) {
GrMatrix mat;
mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
(i < 2) ? pathBounds.fTop : pathBounds.fBottom);
mat.postConcat(viewM);
stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
}
}
srcTol = GrScalarDiv(srcTol, stretch);
return srcTol;
}
static const int MAX_POINTS_PER_CURVE = 1 << 10;
static const GrScalar gMinCurveTol = GrFloatToScalar(0.0001f);
uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
GrScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
GrAssert(tol > 0);
GrScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
if (d <= tol) {
return 1;
} else {
// Each time we subdivide, d should be cut in 4. So we need to
// subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
// points.
// 2^(log4(x)) = sqrt(x);
int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return GrMin(pow2, MAX_POINTS_PER_CURVE);
}
}
uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
const GrPoint& p1,
const GrPoint& p2,
GrScalar tolSqd,
GrPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
(*points)[0] = p2;
*points += 1;
return 1;
}
GrPoint q[] = {
{ GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) },
{ GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) },
};
GrPoint r = { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
return a + b;
}
uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
GrScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
GrAssert(tol > 0);
GrScalar d = GrMax(
points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
d = SkScalarSqrt(d);
if (d <= tol) {
return 1;
} else {
int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return GrMin(pow2, MAX_POINTS_PER_CURVE);
}
}
uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
const GrPoint& p1,
const GrPoint& p2,
const GrPoint& p3,
GrScalar tolSqd,
GrPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
(*points)[0] = p3;
*points += 1;
return 1;
}
GrPoint q[] = {
{ GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) },
{ GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) },
{ GrScalarAve(p2.fX, p3.fX), GrScalarAve(p2.fY, p3.fY) }
};
GrPoint r[] = {
{ GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) },
{ GrScalarAve(q[1].fX, q[2].fX), GrScalarAve(q[1].fY, q[2].fY) }
};
GrPoint s = { GrScalarAve(r[0].fX, r[1].fX), GrScalarAve(r[0].fY, r[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
return a + b;
}
int GrPathUtils::worstCasePointCount(const GrPath& path, int* subpaths,
GrScalar tol) {
if (tol < gMinCurveTol) {
tol = gMinCurveTol;
}
GrAssert(tol > 0);
int pointCount = 0;
*subpaths = 1;
bool first = true;
SkPath::Iter iter(path, false);
GrPathCmd cmd;
GrPoint pts[4];
while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) {
switch (cmd) {
case kLine_PathCmd:
pointCount += 1;
break;
case kQuadratic_PathCmd:
pointCount += quadraticPointCount(pts, tol);
break;
case kCubic_PathCmd:
pointCount += cubicPointCount(pts, tol);
break;
case kMove_PathCmd:
pointCount += 1;
if (!first) {
++(*subpaths);
}
break;
default:
break;
}
first = false;
}
return pointCount;
}
namespace {
// The matrix computed for quadDesignSpaceToUVCoordsMatrix should never really
// have perspective and we really want to avoid perspective matrix muls.
// However, the first two entries of the perspective row may be really close to
// 0 and the third may not be 1 due to a scale on the entire matrix.
inline void fixup_matrix(GrMatrix* mat) {
#ifndef SK_SCALAR_IS_FLOAT
GrCrash("Expected scalar is float.");
#endif
static const GrScalar gTOL = 1.f / 100.f;
GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp0)) < gTOL);
GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp1)) < gTOL);
float m33 = mat->get(SkMatrix::kMPersp2);
if (1.f != m33) {
m33 = 1.f / m33;
mat->setAll(m33 * mat->get(SkMatrix::kMScaleX),
m33 * mat->get(SkMatrix::kMSkewX),
m33 * mat->get(SkMatrix::kMTransX),
m33 * mat->get(SkMatrix::kMSkewY),
m33 * mat->get(SkMatrix::kMScaleY),
m33 * mat->get(SkMatrix::kMTransY),
0.f, 0.f, 1.f);
} else {
mat->setPerspX(0);
mat->setPerspY(0);
}
}
}
// Compute a matrix that goes from the 2d space coordinates to UV space where
// u^2-v = 0 specifies the quad.
void GrPathUtils::quadDesignSpaceToUVCoordsMatrix(const SkPoint qPts[3],
GrMatrix* matrix) {
// can't make this static, no cons :(
SkMatrix UVpts;
#ifndef SK_SCALAR_IS_FLOAT
GrCrash("Expected scalar is float.");
#endif
// We want M such that M * xy_pt = uv_pt
// We know M * control_pts = [0 1/2 1]
// [0 0 1]
// [1 1 1]
// We invert the control pt matrix and post concat to both sides to get M.
UVpts.setAll(0, 0.5f, 1.f,
0, 0, 1.f,
1.f, 1.f, 1.f);
matrix->setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
qPts[0].fY, qPts[1].fY, qPts[2].fY,
1.f, 1.f, 1.f);
if (!matrix->invert(matrix)) {
// The quad is degenerate. Hopefully this is rare. Find the pts that are
// farthest apart to compute a line (unless it is really a pt).
SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
int maxEdge = 0;
SkScalar d = qPts[1].distanceToSqd(qPts[2]);
if (d > maxD) {
maxD = d;
maxEdge = 1;
}
d = qPts[2].distanceToSqd(qPts[0]);
if (d > maxD) {
maxD = d;
maxEdge = 2;
}
// We could have a tolerance here, not sure if it would improve anything
if (maxD > 0) {
// Set the matrix to give (u = 0, v = distance_to_line)
GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
// when looking from the point 0 down the line we want positive
// distances to be to the left. This matches the non-degenerate
// case.
lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
lineVec.dot(qPts[0]);
matrix->setAll(0, 0, 0,
lineVec.fX, lineVec.fY, -lineVec.dot(qPts[maxEdge]),
0, 0, 1.f);
} else {
// It's a point. It should cover zero area. Just set the matrix such
// that (u, v) will always be far away from the quad.
matrix->setAll(0, 0, 100 * SK_Scalar1,
0, 0, 100 * SK_Scalar1,
0, 0, 1.f);
}
} else {
matrix->postConcat(UVpts);
fixup_matrix(matrix);
}
}
namespace {
void convert_noninflect_cubic_to_quads(const SkPoint p[4],
SkScalar tolScale,
SkTArray<SkPoint, true>* quads,
int sublevel = 0) {
SkVector ab = p[1];
ab -= p[0];
SkVector dc = p[2];
dc -= p[3];
static const SkScalar gLengthScale = 3 * SK_Scalar1 / 2;
// base tolerance is 2 pixels in dev coords.
const SkScalar distanceSqdTol = SkScalarMul(tolScale, 1 * SK_Scalar1);
static const int kMaxSubdivs = 10;
ab.scale(gLengthScale);
dc.scale(gLengthScale);
SkVector c0 = p[0];
c0 += ab;
SkVector c1 = p[3];
c1 += dc;
SkScalar dSqd = c0.distanceToSqd(c1);
if (sublevel > kMaxSubdivs || dSqd <= distanceSqdTol) {
SkPoint cAvg = c0;
cAvg += c1;
cAvg.scale(SK_ScalarHalf);
SkPoint* pts = quads->push_back_n(3);
pts[0] = p[0];
pts[1] = cAvg;
pts[2] = p[3];
return;
} else {
SkPoint choppedPts[7];
SkChopCubicAtHalf(p, choppedPts);
convert_noninflect_cubic_to_quads(choppedPts + 0, tolScale,
quads, sublevel + 1);
convert_noninflect_cubic_to_quads(choppedPts + 3, tolScale,
quads, sublevel + 1);
}
}
}
void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
SkScalar tolScale,
SkTArray<SkPoint, true>* quads) {
SkPoint chopped[10];
int count = SkChopCubicAtInflections(p, chopped);
for (int i = 0; i < count; ++i) {
SkPoint* cubic = chopped + 3*i;
convert_noninflect_cubic_to_quads(cubic, tolScale, quads);
}
}