// determinize.h
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// \file
// Functions and classes to determinize an FST.
#ifndef FST_LIB_DETERMINIZE_H__
#define FST_LIB_DETERMINIZE_H__
#include <algorithm>
#include <map>
#include <ext/hash_map>
using __gnu_cxx::hash_map;
#include <ext/slist>
using __gnu_cxx::slist;
#include "fst/lib/cache.h"
#include "fst/lib/factor-weight.h"
#include "fst/lib/map.h"
#include "fst/lib/test-properties.h"
namespace fst {
//
// COMMON DIVISORS - these are used in determinization to compute
// the transition weights. In the simplest case, it is just the same
// as the semiring Plus(). However, other choices permit more efficient
// determinization when the output contains strings.
//
// The default common divisor uses the semiring Plus.
template <class W>
class DefaultCommonDivisor {
public:
typedef W Weight;
W operator()(const W &w1, const W &w2) const { return Plus(w1, w2); }
};
// The label common divisor for a (left) string semiring selects a
// single letter common prefix or the empty string. This is used in
// the determinization of output strings so that at most a single
// letter will appear in the output of a transtion.
template <typename L, StringType S>
class LabelCommonDivisor {
public:
typedef StringWeight<L, S> Weight;
Weight operator()(const Weight &w1, const Weight &w2) const {
StringWeightIterator<L, S> iter1(w1);
StringWeightIterator<L, S> iter2(w2);
if (!(StringWeight<L, S>::Properties() & kLeftSemiring))
LOG(FATAL) << "LabelCommonDivisor: Weight needs to be left semiring";
if (w1.Size() == 0 || w2.Size() == 0)
return Weight::One();
else if (w1 == Weight::Zero())
return Weight(iter2.Value());
else if (w2 == Weight::Zero())
return Weight(iter1.Value());
else if (iter1.Value() == iter2.Value())
return Weight(iter1.Value());
else
return Weight::One();
}
};
// The gallic common divisor uses the label common divisor on the
// string component and the template argument D common divisor on the
// weight component, which defaults to the default common divisor.
template <class L, class W, StringType S, class D = DefaultCommonDivisor<W> >
class GallicCommonDivisor {
public:
typedef GallicWeight<L, W, S> Weight;
Weight operator()(const Weight &w1, const Weight &w2) const {
return Weight(label_common_divisor_(w1.Value1(), w2.Value1()),
weight_common_divisor_(w1.Value2(), w2.Value2()));
}
private:
LabelCommonDivisor<L, S> label_common_divisor_;
D weight_common_divisor_;
};
// Options for finite-state transducer determinization.
struct DeterminizeFstOptions : CacheOptions {
float delta; // Quantization delta for subset weights
explicit DeterminizeFstOptions(const CacheOptions &opts, float del = kDelta)
: CacheOptions(opts), delta(del) {}
explicit DeterminizeFstOptions(float del = kDelta) : delta(del) {}
};
// Implementation of delayed DeterminizeFst. This base class is
// common to the variants that implement acceptor and transducer
// determinization.
template <class A>
class DeterminizeFstImplBase : public CacheImpl<A> {
public:
using FstImpl<A>::SetType;
using FstImpl<A>::SetProperties;
using FstImpl<A>::Properties;
using FstImpl<A>::SetInputSymbols;
using FstImpl<A>::SetOutputSymbols;
using CacheBaseImpl< CacheState<A> >::HasStart;
using CacheBaseImpl< CacheState<A> >::HasFinal;
using CacheBaseImpl< CacheState<A> >::HasArcs;
typedef typename A::Label Label;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
typedef CacheState<A> State;
DeterminizeFstImplBase(const Fst<A> &fst, const CacheOptions &opts)
: CacheImpl<A>(opts), fst_(fst.Copy()) {
SetType("determinize");
uint64 props = fst.Properties(kFstProperties, false);
SetProperties(DeterminizeProperties(props), kCopyProperties);
SetInputSymbols(fst.InputSymbols());
SetOutputSymbols(fst.OutputSymbols());
}
virtual ~DeterminizeFstImplBase() { delete fst_; }
StateId Start() {
if (!HasStart()) {
StateId start = ComputeStart();
if (start != kNoStateId) {
SetStart(start);
}
}
return CacheImpl<A>::Start();
}
Weight Final(StateId s) {
if (!HasFinal(s)) {
Weight final = ComputeFinal(s);
SetFinal(s, final);
}
return CacheImpl<A>::Final(s);
}
virtual void Expand(StateId s) = 0;
size_t NumArcs(StateId s) {
if (!HasArcs(s))
Expand(s);
return CacheImpl<A>::NumArcs(s);
}
size_t NumInputEpsilons(StateId s) {
if (!HasArcs(s))
Expand(s);
return CacheImpl<A>::NumInputEpsilons(s);
}
size_t NumOutputEpsilons(StateId s) {
if (!HasArcs(s))
Expand(s);
return CacheImpl<A>::NumOutputEpsilons(s);
}
void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
if (!HasArcs(s))
Expand(s);
CacheImpl<A>::InitArcIterator(s, data);
}
virtual StateId ComputeStart() = 0;
virtual Weight ComputeFinal(StateId s) = 0;
protected:
const Fst<A> *fst_; // Input Fst
DISALLOW_EVIL_CONSTRUCTORS(DeterminizeFstImplBase);
};
// Implementation of delayed determinization for weighted acceptors.
// It is templated on the arc type A and the common divisor C.
template <class A, class C>
class DeterminizeFsaImpl : public DeterminizeFstImplBase<A> {
public:
using DeterminizeFstImplBase<A>::fst_;
typedef typename A::Label Label;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
struct Element {
Element() {}
Element(StateId s, Weight w) : state_id(s), weight(w) {}
StateId state_id; // Input state Id
Weight weight; // Residual weight
};
typedef slist<Element> Subset;
typedef map<Label, Subset*> LabelMap;
DeterminizeFsaImpl(const Fst<A> &fst, C common_divisor,
const DeterminizeFstOptions &opts)
: DeterminizeFstImplBase<A>(fst, opts),
delta_(opts.delta), common_divisor_(common_divisor),
subset_hash_(0, SubsetKey(), SubsetEqual(&elements_)) {
if (!fst.Properties(kAcceptor, true))
LOG(FATAL) << "DeterminizeFst: argument not an acceptor";
if (!(Weight::Properties() & kLeftSemiring))
LOG(FATAL) << "DeterminizeFst: Weight needs to be left distributive: "
<< Weight::Type();
}
virtual ~DeterminizeFsaImpl() {
for (unsigned int i = 0; i < subsets_.size(); ++i)
delete subsets_[i];
}
virtual StateId ComputeStart() {
StateId s = fst_->Start();
if (s == kNoStateId)
return kNoStateId;
Element element(s, Weight::One());
Subset *subset = new Subset;
subset->push_front(element);
return FindState(subset);
}
virtual Weight ComputeFinal(StateId s) {
Subset *subset = subsets_[s];
Weight final = Weight::Zero();
for (typename Subset::iterator siter = subset->begin();
siter != subset->end();
++siter) {
Element &element = *siter;
final = Plus(final, Times(element.weight,
fst_->Final(element.state_id)));
}
return final;
}
// Finds the state corresponding to a subset. Only creates a new state
// if the subset is not found in the subset hash. FindState takes
// ownership of the subset argument (so that it doesn't have to copy it
// if it creates a new state).
//
// The method exploits the following device: all pairs stored in the
// associative container subset_hash_ are of the form (subset,
// id(subset) + 1), i.e. subset_hash_[subset] > 0 if subset has been
// stored previously. For unassigned subsets, the call to
// subset_hash_[subset] creates a new pair (subset, 0). As a result,
// subset_hash_[subset] == 0 iff subset is new.
StateId FindState(Subset *subset) {
StateId &assoc_value = subset_hash_[subset];
if (assoc_value == 0) { // subset wasn't present; assign it a new ID
subsets_.push_back(subset);
assoc_value = subsets_.size();
} else {
delete subset;
}
return assoc_value - 1; // NB: assoc_value = ID + 1
}
// Computes the outgoing transitions from a state, creating new destination
// states as needed.
virtual void Expand(StateId s) {
LabelMap label_map;
LabelSubsets(s, &label_map);
for (typename LabelMap::iterator liter = label_map.begin();
liter != label_map.end();
++liter)
AddArc(s, liter->first, liter->second);
SetArcs(s);
}
private:
// Constructs destination subsets per label. At return, subset
// element weights include the input automaton label weights and the
// subsets may contain duplicate states.
void LabelSubsets(StateId s, LabelMap *label_map) {
Subset *src_subset = subsets_[s];
for (typename Subset::iterator siter = src_subset->begin();
siter != src_subset->end();
++siter) {
Element &src_element = *siter;
for (ArcIterator< Fst<A> > aiter(*fst_, src_element.state_id);
!aiter.Done();
aiter.Next()) {
const A &arc = aiter.Value();
Element dest_element(arc.nextstate,
Times(src_element.weight, arc.weight));
Subset* &dest_subset = (*label_map)[arc.ilabel];
if (dest_subset == 0)
dest_subset = new Subset;
dest_subset->push_front(dest_element);
}
}
}
// Adds an arc from state S to the destination state associated
// with subset DEST_SUBSET (as created by LabelSubsets).
void AddArc(StateId s, Label label, Subset *dest_subset) {
A arc;
arc.ilabel = label;
arc.olabel = label;
arc.weight = Weight::Zero();
typename Subset::iterator oiter;
for (typename Subset::iterator diter = dest_subset->begin();
diter != dest_subset->end();) {
Element &dest_element = *diter;
// Computes label weight.
arc.weight = common_divisor_(arc.weight, dest_element.weight);
while ((StateId)elements_.size() <= dest_element.state_id)
elements_.push_back(0);
Element *matching_element = elements_[dest_element.state_id];
if (matching_element) {
// Found duplicate state: sums state weight and deletes dup.
matching_element->weight = Plus(matching_element->weight,
dest_element.weight);
++diter;
dest_subset->erase_after(oiter);
} else {
// Saves element so we can check for duplicate for this state.
elements_[dest_element.state_id] = &dest_element;
oiter = diter;
++diter;
}
}
// Divides out label weight from destination subset elements.
// Quantizes to ensure comparisons are effective.
// Clears element vector.
for (typename Subset::iterator diter = dest_subset->begin();
diter != dest_subset->end();
++diter) {
Element &dest_element = *diter;
dest_element.weight = Divide(dest_element.weight, arc.weight,
DIVIDE_LEFT);
dest_element.weight = dest_element.weight.Quantize(delta_);
elements_[dest_element.state_id] = 0;
}
arc.nextstate = FindState(dest_subset);
CacheImpl<A>::AddArc(s, arc);
}
// Comparison object for hashing Subset(s). Subsets are not sorted in this
// implementation, so ordering must not be assumed in the equivalence
// test.
class SubsetEqual {
public:
// Constructor takes vector needed to check equality. See immediately
// below for constraints on it.
explicit SubsetEqual(vector<Element *> *elements)
: elements_(elements) {}
// At each call to operator(), elements_[state] must be defined and
// NULL for each state in the subset arguments. When this operator
// returns, elements_ will preserve that property. We keep it
// full of NULLs so that it is ready for the next call.
bool operator()(Subset* subset1, Subset* subset2) const {
if (subset1->size() != subset2->size())
return false;
// Loads first subset elements in element vector.
for (typename Subset::iterator iter1 = subset1->begin();
iter1 != subset1->end();
++iter1) {
Element &element1 = *iter1;
(*elements_)[element1.state_id] = &element1;
}
// Checks second subset matches first via element vector.
for (typename Subset::iterator iter2 = subset2->begin();
iter2 != subset2->end();
++iter2) {
Element &element2 = *iter2;
Element *element1 = (*elements_)[element2.state_id];
if (!element1 || element1->weight != element2.weight) {
// Mismatch found. Resets element vector before returning false.
for (typename Subset::iterator iter1 = subset1->begin();
iter1 != subset1->end();
++iter1)
(*elements_)[iter1->state_id] = 0;
return false;
} else {
(*elements_)[element2.state_id] = 0; // Clears entry
}
}
return true;
}
private:
vector<Element *> *elements_;
};
// Hash function for Subset to Fst states. Subset elements are not
// sorted in this implementation, so the hash must be invariant
// under subset reordering.
class SubsetKey {
public:
size_t operator()(const Subset* subset) const {
size_t hash = 0;
for (typename Subset::const_iterator iter = subset->begin();
iter != subset->end();
++iter) {
const Element &element = *iter;
int lshift = element.state_id % kPrime;
int rshift = sizeof(size_t) - lshift;
hash ^= element.state_id << lshift ^
element.state_id >> rshift ^
element.weight.Hash();
}
return hash;
}
private:
static const int kPrime = sizeof(size_t) == 8 ? 23 : 13;
};
float delta_; // Quantization delta for subset weights
C common_divisor_;
// Used to test equivalence of subsets.
vector<Element *> elements_;
// Maps from StateId to Subset.
vector<Subset *> subsets_;
// Hashes from Subset to its StateId in the output automaton.
typedef hash_map<Subset *, StateId, SubsetKey, SubsetEqual>
SubsetHash;
// Hashes from Label to Subsets corr. to destination states of current state.
SubsetHash subset_hash_;
DISALLOW_EVIL_CONSTRUCTORS(DeterminizeFsaImpl);
};
// Implementation of delayed determinization for transducers.
// Transducer determinization is implemented by mapping the input to
// the Gallic semiring as an acceptor whose weights contain the output
// strings and using acceptor determinization above to determinize
// that acceptor.
template <class A, StringType S>
class DeterminizeFstImpl : public DeterminizeFstImplBase<A> {
public:
typedef typename A::Label Label;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
typedef ToGallicMapper<A, S> ToMapper;
typedef FromGallicMapper<A, S> FromMapper;
typedef typename ToMapper::ToArc ToArc;
typedef MapFst<A, ToArc, ToMapper> ToFst;
typedef MapFst<ToArc, A, FromMapper> FromFst;
typedef GallicCommonDivisor<Label, Weight, S> CommonDivisor;
typedef GallicFactor<Label, Weight, S> FactorIterator;
// Defined after DeterminizeFst since it calls it.
DeterminizeFstImpl(const Fst<A> &fst, const DeterminizeFstOptions &opts);
~DeterminizeFstImpl() { delete from_fst_; }
virtual StateId ComputeStart() { return from_fst_->Start(); }
virtual Weight ComputeFinal(StateId s) { return from_fst_->Final(s); }
virtual void Expand(StateId s) {
for (ArcIterator<FromFst> aiter(*from_fst_, s);
!aiter.Done();
aiter.Next())
CacheImpl<A>::AddArc(s, aiter.Value());
CacheImpl<A>::SetArcs(s);
}
private:
FromFst *from_fst_;
DISALLOW_EVIL_CONSTRUCTORS(DeterminizeFstImpl);
};
// Determinizes a weighted transducer. This version is a delayed
// Fst. The result will be an equivalent FST that has the property
// that no state has two transitions with the same input label.
// For this algorithm, epsilon transitions are treated as regular
// symbols (cf. RmEpsilon).
//
// The transducer must be functional. The weights must be (weakly)
// left divisible (valid for TropicalWeight and LogWeight).
//
// Complexity:
// - Determinizable: exponential (polynomial in the size of the output)
// - Non-determinizable) does not terminate
//
// The determinizable automata include all unweighted and all acyclic input.
//
// References:
// - Mehryar Mohri, "Finite-State Transducers in Language and Speech
// Processing". Computational Linguistics, 23:2, 1997.
template <class A>
class DeterminizeFst : public Fst<A> {
public:
friend class ArcIterator< DeterminizeFst<A> >;
friend class CacheStateIterator< DeterminizeFst<A> >;
friend class CacheArcIterator< DeterminizeFst<A> >;
template <class B, StringType S> friend class DeterminizeFstImpl;
typedef A Arc;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
typedef typename A::Label Label;
typedef CacheState<A> State;
explicit DeterminizeFst(const Fst<A> &fst,
const DeterminizeFstOptions &opts = DeterminizeFstOptions()) {
if (fst.Properties(kAcceptor, true)) {
// Calls implementation for acceptors.
typedef DefaultCommonDivisor<Weight> D;
impl_ = new DeterminizeFsaImpl<A, D>(fst, D(), opts);
} else {
// Calls implementation for transducers.
impl_ = new DeterminizeFstImpl<A, STRING_LEFT_RESTRICT>(fst, opts);
}
}
DeterminizeFst(const DeterminizeFst<A> &fst) : Fst<A>(fst), impl_(fst.impl_) {
impl_->IncrRefCount();
}
virtual ~DeterminizeFst() { if (!impl_->DecrRefCount()) delete impl_; }
virtual StateId Start() const { return impl_->Start(); }
virtual Weight Final(StateId s) const { return impl_->Final(s); }
virtual size_t NumArcs(StateId s) const { return impl_->NumArcs(s); }
virtual size_t NumInputEpsilons(StateId s) const {
return impl_->NumInputEpsilons(s);
}
virtual size_t NumOutputEpsilons(StateId s) const {
return impl_->NumOutputEpsilons(s);
}
virtual uint64 Properties(uint64 mask, bool test) const {
if (test) {
uint64 known, test = TestProperties(*this, mask, &known);
impl_->SetProperties(test, known);
return test & mask;
} else {
return impl_->Properties(mask);
}
}
virtual const string& Type() const { return impl_->Type(); }
virtual DeterminizeFst<A> *Copy() const {
return new DeterminizeFst<A>(*this);
}
virtual const SymbolTable* InputSymbols() const {
return impl_->InputSymbols();
}
virtual const SymbolTable* OutputSymbols() const {
return impl_->OutputSymbols();
}
virtual inline void InitStateIterator(StateIteratorData<A> *data) const;
virtual void InitArcIterator(StateId s, ArcIteratorData<A> *data) const {
impl_->InitArcIterator(s, data);
}
protected:
DeterminizeFstImplBase<A> *Impl() { return impl_; }
private:
// This private version is for passing the common divisor to
// FSA determinization.
template <class D>
DeterminizeFst(const Fst<A> &fst, const D &common_divisor,
const DeterminizeFstOptions &opts)
: impl_(new DeterminizeFsaImpl<A, D>(fst, common_divisor, opts)) {}
DeterminizeFstImplBase<A> *impl_;
void operator=(const DeterminizeFst<A> &fst); // Disallow
};
template <class A, StringType S>
DeterminizeFstImpl<A, S>::DeterminizeFstImpl(
const Fst<A> &fst, const DeterminizeFstOptions &opts)
: DeterminizeFstImplBase<A>(fst, opts) {
// Mapper to an acceptor.
ToFst to_fst(fst, ToMapper());
// Determinize acceptor.
// This recursive call terminates since it passes the common divisor
// to a private constructor.
DeterminizeFst<ToArc> det_fsa(to_fst, CommonDivisor(), opts);
// Mapper back to transducer.
FactorWeightOptions fopts(CacheOptions(true, 0), opts.delta, true);
FactorWeightFst<ToArc, FactorIterator> factored_fst(det_fsa, fopts);
from_fst_ = new FromFst(factored_fst, FromMapper());
}
// Specialization for DeterminizeFst.
template <class A>
class StateIterator< DeterminizeFst<A> >
: public CacheStateIterator< DeterminizeFst<A> > {
public:
explicit StateIterator(const DeterminizeFst<A> &fst)
: CacheStateIterator< DeterminizeFst<A> >(fst) {}
};
// Specialization for DeterminizeFst.
template <class A>
class ArcIterator< DeterminizeFst<A> >
: public CacheArcIterator< DeterminizeFst<A> > {
public:
typedef typename A::StateId StateId;
ArcIterator(const DeterminizeFst<A> &fst, StateId s)
: CacheArcIterator< DeterminizeFst<A> >(fst, s) {
if (!fst.impl_->HasArcs(s))
fst.impl_->Expand(s);
}
private:
DISALLOW_EVIL_CONSTRUCTORS(ArcIterator);
};
template <class A> inline
void DeterminizeFst<A>::InitStateIterator(StateIteratorData<A> *data) const
{
data->base = new StateIterator< DeterminizeFst<A> >(*this);
}
// Useful aliases when using StdArc.
typedef DeterminizeFst<StdArc> StdDeterminizeFst;
struct DeterminizeOptions {
float delta; // Quantization delta for subset weights
explicit DeterminizeOptions(float d) : delta(d) {}
DeterminizeOptions() :delta(kDelta) {}
};
// Determinizes a weighted transducer. This version writes the
// determinized Fst to an output MutableFst. The result will be an
// equivalent FSt that has the property that no state has two
// transitions with the same input label. For this algorithm, epsilon
// transitions are treated as regular symbols (cf. RmEpsilon).
//
// The transducer must be functional. The weights must be (weakly)
// left divisible (valid for TropicalWeight and LogWeight).
//
// Complexity:
// - Determinizable: exponential (polynomial in the size of the output)
// - Non-determinizable: does not terminate
//
// The determinizable automata include all unweighted and all acyclic input.
//
// References:
// - Mehryar Mohri, "Finite-State Transducers in Language and Speech
// Processing". Computational Linguistics, 23:2, 1997.
template <class Arc>
void Determinize(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
const DeterminizeOptions &opts = DeterminizeOptions()) {
DeterminizeFstOptions nopts;
nopts.delta = opts.delta;
nopts.gc_limit = 0; // Cache only the last state for fastest copy.
*ofst = DeterminizeFst<Arc>(ifst, nopts);
}
} // namespace fst
#endif // FST_LIB_DETERMINIZE_H__