// symbol-table.h
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// \file
// Classes to provide symbol-to-integer and integer-to-symbol mappings.
#ifndef FST_LIB_SYMBOL_TABLE_H__
#define FST_LIB_SYMBOL_TABLE_H__
#include <ext/hash_map>
using __gnu_cxx::hash_map;
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "fst/lib/compat.h"
DECLARE_bool(fst_compat_symbols);
namespace fst {
class SymbolTableImpl {
friend class SymbolTableIterator;
public:
SymbolTableImpl(const string &name)
: name_(name), available_key_(0), ref_count_(1),
check_sum_finalized_(false) {}
~SymbolTableImpl() {
for (size_t i = 0; i < symbols_.size(); ++i)
delete[] symbols_[i];
}
int64 AddSymbol(const string& symbol, int64 key);
int64 AddSymbol(const string& symbol) {
int64 key = Find(symbol);
return (key == -1) ? AddSymbol(symbol, available_key_++) : key;
}
void AddTable(SymbolTableImpl* table) {
for (size_t i = 0; i < table->symbols_.size(); ++i) {
AddSymbol(table->symbols_[i]);
}
}
static SymbolTableImpl* ReadText(const string& filename);
static SymbolTableImpl* Read(istream &strm, const string& source);
bool Write(ostream &strm) const;
bool WriteText(ostream &strm) const;
//
// Return the string associated with the key. If the key is out of
// range (<0, >max), return an empty string.
string Find(int64 key) const {
hash_map<int64, string>::const_iterator it =
key_map_.find(key);
if (it == key_map_.end()) {
return "";
}
return it->second;
}
//
// Return the key associated with the symbol. If the symbol
// does not exists, return -1.
int64 Find(const string& symbol) const {
return Find(symbol.c_str());
}
//
// Return the key associated with the symbol. If the symbol
// does not exists, return -1.
int64 Find(const char* symbol) const {
hash_map<string, int64>::const_iterator it =
symbol_map_.find(symbol);
if (it == symbol_map_.end()) {
return -1;
}
return it->second;
}
const string& Name() const { return name_; }
int IncrRefCount() const {
return ++ref_count_;
}
int DecrRefCount() const {
return --ref_count_;
}
string CheckSum() const {
if (!check_sum_finalized_) {
RecomputeCheckSum();
check_sum_string_ = check_sum_.Digest();
}
return check_sum_string_;
}
int64 AvailableKey() const {
return available_key_;
}
// private support methods
private:
void RecomputeCheckSum() const;
static SymbolTableImpl* Read1(istream &, const string &);
string name_;
int64 available_key_;
vector<const char *> symbols_;
hash_map<int64, string> key_map_;
hash_map<string, int64> symbol_map_;
mutable int ref_count_;
mutable bool check_sum_finalized_;
mutable MD5 check_sum_;
mutable string check_sum_string_;
DISALLOW_EVIL_CONSTRUCTORS(SymbolTableImpl);
};
class SymbolTableIterator;
//
// \class SymbolTable
// \brief Symbol (string) to int and reverse mapping
//
// The SymbolTable implements the mappings of labels to strings and reverse.
// SymbolTables are used to describe the alphabet of the input and output
// labels for arcs in a Finite State Transducer.
//
// SymbolTables are reference counted and can therefore be shared across
// multiple machines. For example a language model grammar G, with a
// SymbolTable for the words in the language model can share this symbol
// table with the lexical representation L o G.
//
class SymbolTable {
friend class SymbolTableIterator;
public:
static const int64 kNoSymbol = -1;
// Construct symbol table with a unique name.
SymbolTable(const string& name) : impl_(new SymbolTableImpl(name)) {}
// Create a reference counted copy.
SymbolTable(const SymbolTable& table) : impl_(table.impl_) {
impl_->IncrRefCount();
}
// Derefence implentation object. When reference count hits 0, delete
// implementation.
~SymbolTable() {
if (!impl_->DecrRefCount()) delete impl_;
}
// create a reference counted copy
SymbolTable* Copy() const {
return new SymbolTable(*this);
}
// Add a symbol with given key to table. A symbol table also
// keeps track of the last available key (highest key value in
// the symbol table).
//
// \param symbol string symbol to add
// \param key associated key for string symbol
// \return the key created by the symbol table. Symbols allready added to
// the symbol table will not get a different key.
int64 AddSymbol(const string& symbol, int64 key) {
return impl_->AddSymbol(symbol, key);
}
// Add a symbol to the table. The associated value key is automatically
// assigned by the symbol table.
//
// \param symbol string to add to the table
// \return the value key assigned to the associated string symbol
int64 AddSymbol(const string& symbol) {
return impl_->AddSymbol(symbol);
}
// Add another symbol table to this table. All key values will be offset
// by the current available key (highest key value in the symbol table).
// Note string symbols with the same key value with still have the same
// key value after the symbol table has been merged, but a different
// value. Adding symbol tables do not result in changes in the base table.
//
// Merging N symbol tables is often useful when combining the various
// name spaces of transducers to a unified representation.
//
// \param table the symbol table to add to this table
void AddTable(const SymbolTable& table) {
return impl_->AddTable(table.impl_);
}
// return the name of the symbol table
const string& Name() const {
return impl_->Name();
}
// return the MD5 check-sum for this table. All new symbols added to
// the table will result in an updated checksum.
string CheckSum() const {
return impl_->CheckSum();
}
// read an ascii representation of the symbol table
static SymbolTable* ReadText(const string& filename) {
SymbolTableImpl* impl = SymbolTableImpl::ReadText(filename);
if (!impl)
return 0;
else
return new SymbolTable(impl);
}
// read a binary dump of the symbol table
static SymbolTable* Read(istream &strm, const string& source) {
SymbolTableImpl* impl = SymbolTableImpl::Read(strm, source);
if (!impl)
return 0;
else
return new SymbolTable(impl);
}
// read a binary dump of the symbol table
static SymbolTable* Read(const string& filename) {
ifstream strm(filename.c_str());
if (!strm) {
LOG(ERROR) << "SymbolTable::Read: Can't open file " << filename;
return 0;
}
return Read(strm, filename);
}
bool Write(ostream &strm) const {
return impl_->Write(strm);
}
bool Write(const string& filename) const {
ofstream strm(filename.c_str());
if (!strm) {
LOG(ERROR) << "SymbolTable::Write: Can't open file " << filename;
return false;
}
return Write(strm);
}
// Dump an ascii text representation of the symbol table
bool WriteText(ostream &strm) const {
return impl_->WriteText(strm);
}
// Dump an ascii text representation of the symbol table
bool WriteText(const string& filename) const {
ofstream strm(filename.c_str());
if (!strm) {
LOG(ERROR) << "SymbolTable::WriteText: Can't open file " << filename;
return false;
}
return WriteText(strm);
}
// Return the string associated with the key. If the key is out of
// range (<0, >max), log error and return an empty string.
string Find(int64 key) const {
return impl_->Find(key);
}
// Return the key associated with the symbol. If the symbol
// does not exists, log error and return -1
int64 Find(const string& symbol) const {
return impl_->Find(symbol);
}
// Return the key associated with the symbol. If the symbol
// does not exists, log error and return -1
int64 Find(const char* symbol) const {
return impl_->Find(symbol);
}
// return the current available key (i.e highest key number) in
// the symbol table
int64 AvailableKey(void) const {
return impl_->AvailableKey();
}
protected:
explicit SymbolTable(SymbolTableImpl* impl) : impl_(impl) {}
const SymbolTableImpl* Impl() const {
return impl_;
}
private:
SymbolTableImpl* impl_;
void operator=(const SymbolTable &table); // disallow
};
//
// \class SymbolTableIterator
// \brief Iterator class for symbols in a symbol table
class SymbolTableIterator {
public:
// Constructor creates a refcounted copy of underlying implementation
SymbolTableIterator(const SymbolTable& symbol_table) {
impl_ = symbol_table.Impl();
impl_->IncrRefCount();
pos_ = 0;
size_ = impl_->symbols_.size();
}
// decrement implementation refcount, and delete if 0
~SymbolTableIterator() {
if (!impl_->DecrRefCount()) delete impl_;
}
// is iterator done
bool Done(void) {
return (pos_ == size_);
}
// return the Value() of the current symbol (in64 key)
int64 Value(void) {
return impl_->Find(impl_->symbols_[pos_]);
}
// return the string of the current symbol
const char* Symbol(void) {
return impl_->symbols_[pos_];
}
// advance iterator forward
void Next(void) {
if (Done()) return;
++pos_;
}
// reset iterator
void Reset(void) {
pos_ = 0;
}
private:
const SymbolTableImpl* impl_;
size_t pos_;
size_t size_;
};
// Tests compatibilty between two sets of symbol tables
inline bool CompatSymbols(const SymbolTable *syms1,
const SymbolTable *syms2) {
if (!FLAGS_fst_compat_symbols)
return true;
else if (!syms1 && !syms2)
return true;
else if (syms1 && !syms2 || !syms1 && syms2)
return false;
else
return syms1->CheckSum() == syms2->CheckSum();
}
} // namespace fst
#endif // FST_LIB_SYMBOL_TABLE_H__