// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for POSIX goes here. This is not a platform on its
// own but contains the parts which are the same across POSIX platforms Linux,
// Mac OS, FreeBSD and OpenBSD.
#include "platform-posix.h"
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netdb.h>
#undef MAP_TYPE
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
#define LOG_TAG "v8"
#include <android/log.h>
#endif
#include "v8.h"
#include "codegen.h"
#include "platform.h"
namespace v8 {
namespace internal {
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
intptr_t OS::MaxVirtualMemory() {
struct rlimit limit;
int result = getrlimit(RLIMIT_DATA, &limit);
if (result != 0) return 0;
return limit.rlim_cur;
}
intptr_t OS::CommitPageSize() {
static intptr_t page_size = getpagesize();
return page_size;
}
#ifndef __CYGWIN__
// Get rid of writable permission on code allocations.
void OS::ProtectCode(void* address, const size_t size) {
mprotect(address, size, PROT_READ | PROT_EXEC);
}
// Create guard pages.
void OS::Guard(void* address, const size_t size) {
mprotect(address, size, PROT_NONE);
}
#endif // __CYGWIN__
void* OS::GetRandomMmapAddr() {
Isolate* isolate = Isolate::UncheckedCurrent();
// Note that the current isolate isn't set up in a call path via
// CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed.
if (isolate != NULL) {
#ifdef V8_TARGET_ARCH_X64
uint64_t rnd1 = V8::RandomPrivate(isolate);
uint64_t rnd2 = V8::RandomPrivate(isolate);
uint64_t raw_addr = (rnd1 << 32) ^ rnd2;
// Currently available CPUs have 48 bits of virtual addressing. Truncate
// the hint address to 46 bits to give the kernel a fighting chance of
// fulfilling our placement request.
raw_addr &= V8_UINT64_C(0x3ffffffff000);
#else
uint32_t raw_addr = V8::RandomPrivate(isolate);
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macos
// 10.6 and 10.7.
raw_addr &= 0x3ffff000;
raw_addr += 0x20000000;
#endif
return reinterpret_cast<void*>(raw_addr);
}
return NULL;
}
// ----------------------------------------------------------------------------
// Math functions
double modulo(double x, double y) {
return fmod(x, y);
}
#define UNARY_MATH_FUNCTION(name, generator) \
static UnaryMathFunction fast_##name##_function = NULL; \
void init_fast_##name##_function() { \
fast_##name##_function = generator; \
} \
double fast_##name(double x) { \
return (*fast_##name##_function)(x); \
}
UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN))
UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS))
UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN))
UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG))
UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction())
#undef MATH_FUNCTION
void MathSetup() {
init_fast_sin_function();
init_fast_cos_function();
init_fast_tan_function();
init_fast_log_function();
init_fast_sqrt_function();
}
double OS::nan_value() {
// NAN from math.h is defined in C99 and not in POSIX.
return NAN;
}
// ----------------------------------------------------------------------------
// POSIX date/time support.
//
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) < 0) return -1;
*secs = usage.ru_utime.tv_sec;
*usecs = usage.ru_utime.tv_usec;
return 0;
}
double OS::TimeCurrentMillis() {
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) return 0.0;
return (static_cast<double>(tv.tv_sec) * 1000) +
(static_cast<double>(tv.tv_usec) / 1000);
}
int64_t OS::Ticks() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0)
return 0;
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
double OS::DaylightSavingsOffset(double time) {
if (isnan(time)) return nan_value();
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return nan_value();
return t->tm_isdst > 0 ? 3600 * msPerSecond : 0;
}
int OS::GetLastError() {
return errno;
}
// ----------------------------------------------------------------------------
// POSIX stdio support.
//
FILE* OS::FOpen(const char* path, const char* mode) {
FILE* file = fopen(path, mode);
if (file == NULL) return NULL;
struct stat file_stat;
if (fstat(fileno(file), &file_stat) != 0) return NULL;
bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
if (is_regular_file) return file;
fclose(file);
return NULL;
}
bool OS::Remove(const char* path) {
return (remove(path) == 0);
}
FILE* OS::OpenTemporaryFile() {
return tmpfile();
}
const char* const OS::LogFileOpenMode = "w";
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VPrint(format, args);
va_end(args);
}
void OS::VPrint(const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_INFO, LOG_TAG, format, args);
#else
vprintf(format, args);
#endif
}
void OS::FPrint(FILE* out, const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(out, format, args);
va_end(args);
}
void OS::VFPrint(FILE* out, const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_INFO, LOG_TAG, format, args);
#else
vfprintf(out, format, args);
#endif
}
void OS::PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
void OS::VPrintError(const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_ERROR, LOG_TAG, format, args);
#else
vfprintf(stderr, format, args);
#endif
}
int OS::SNPrintF(Vector<char> str, const char* format, ...) {
va_list args;
va_start(args, format);
int result = VSNPrintF(str, format, args);
va_end(args);
return result;
}
int OS::VSNPrintF(Vector<char> str,
const char* format,
va_list args) {
int n = vsnprintf(str.start(), str.length(), format, args);
if (n < 0 || n >= str.length()) {
// If the length is zero, the assignment fails.
if (str.length() > 0)
str[str.length() - 1] = '\0';
return -1;
} else {
return n;
}
}
#if defined(V8_TARGET_ARCH_IA32)
static OS::MemCopyFunction memcopy_function = NULL;
static LazyMutex memcopy_function_mutex = LAZY_MUTEX_INITIALIZER;
// Defined in codegen-ia32.cc.
OS::MemCopyFunction CreateMemCopyFunction();
// Copy memory area to disjoint memory area.
void OS::MemCopy(void* dest, const void* src, size_t size) {
if (memcopy_function == NULL) {
ScopedLock lock(memcopy_function_mutex.Pointer());
if (memcopy_function == NULL) {
OS::MemCopyFunction temp = CreateMemCopyFunction();
MemoryBarrier();
memcopy_function = temp;
}
}
// Note: here we rely on dependent reads being ordered. This is true
// on all architectures we currently support.
(*memcopy_function)(dest, src, size);
#ifdef DEBUG
CHECK_EQ(0, memcmp(dest, src, size));
#endif
}
#endif // V8_TARGET_ARCH_IA32
// ----------------------------------------------------------------------------
// POSIX string support.
//
char* OS::StrChr(char* str, int c) {
return strchr(str, c);
}
void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
strncpy(dest.start(), src, n);
}
// ----------------------------------------------------------------------------
// POSIX socket support.
//
class POSIXSocket : public Socket {
public:
explicit POSIXSocket() {
// Create the socket.
socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (IsValid()) {
// Allow rapid reuse.
static const int kOn = 1;
int ret = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
&kOn, sizeof(kOn));
ASSERT(ret == 0);
USE(ret);
}
}
explicit POSIXSocket(int socket): socket_(socket) { }
virtual ~POSIXSocket() { Shutdown(); }
// Server initialization.
bool Bind(const int port);
bool Listen(int backlog) const;
Socket* Accept() const;
// Client initialization.
bool Connect(const char* host, const char* port);
// Shutdown socket for both read and write.
bool Shutdown();
// Data Transimission
int Send(const char* data, int len) const;
int Receive(char* data, int len) const;
bool SetReuseAddress(bool reuse_address);
bool IsValid() const { return socket_ != -1; }
private:
int socket_;
};
bool POSIXSocket::Bind(const int port) {
if (!IsValid()) {
return false;
}
sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(port);
int status = bind(socket_,
BitCast<struct sockaddr *>(&addr),
sizeof(addr));
return status == 0;
}
bool POSIXSocket::Listen(int backlog) const {
if (!IsValid()) {
return false;
}
int status = listen(socket_, backlog);
return status == 0;
}
Socket* POSIXSocket::Accept() const {
if (!IsValid()) {
return NULL;
}
int socket = accept(socket_, NULL, NULL);
if (socket == -1) {
return NULL;
} else {
return new POSIXSocket(socket);
}
}
bool POSIXSocket::Connect(const char* host, const char* port) {
if (!IsValid()) {
return false;
}
// Lookup host and port.
struct addrinfo *result = NULL;
struct addrinfo hints;
memset(&hints, 0, sizeof(addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
int status = getaddrinfo(host, port, &hints, &result);
if (status != 0) {
return false;
}
// Connect.
status = connect(socket_, result->ai_addr, result->ai_addrlen);
freeaddrinfo(result);
return status == 0;
}
bool POSIXSocket::Shutdown() {
if (IsValid()) {
// Shutdown socket for both read and write.
int status = shutdown(socket_, SHUT_RDWR);
close(socket_);
socket_ = -1;
return status == 0;
}
return true;
}
int POSIXSocket::Send(const char* data, int len) const {
int status = send(socket_, data, len, 0);
return status;
}
int POSIXSocket::Receive(char* data, int len) const {
int status = recv(socket_, data, len, 0);
return status;
}
bool POSIXSocket::SetReuseAddress(bool reuse_address) {
int on = reuse_address ? 1 : 0;
int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
return status == 0;
}
bool Socket::SetUp() {
// Nothing to do on POSIX.
return true;
}
int Socket::LastError() {
return errno;
}
uint16_t Socket::HToN(uint16_t value) {
return htons(value);
}
uint16_t Socket::NToH(uint16_t value) {
return ntohs(value);
}
uint32_t Socket::HToN(uint32_t value) {
return htonl(value);
}
uint32_t Socket::NToH(uint32_t value) {
return ntohl(value);
}
Socket* OS::CreateSocket() {
return new POSIXSocket();
}
} } // namespace v8::internal