/*--------------------------------------------------------------------*/
/*--- An AVL tree based finite map for word keys and word values. ---*/
/*--- Inspired by Haskell's "FiniteMap" library. ---*/
/*--- m_wordfm.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2007-2011 Julian Seward
jseward@acm.org
This code is based on previous work by Nicholas Nethercote
(coregrind/m_oset.c) which is
Copyright (C) 2005-2011 Nicholas Nethercote
njn@valgrind.org
which in turn was derived partially from:
AVL C library
Copyright (C) 2000,2002 Daniel Nagy
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
[...]
(taken from libavl-0.4/debian/copyright)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_core_basics.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcbase.h"
#include "pub_core_wordfm.h" /* self */
//------------------------------------------------------------------//
//--- WordFM ---//
//--- Implementation ---//
//------------------------------------------------------------------//
/* One element of the AVL tree */
typedef
struct _AvlNode {
UWord key;
UWord val;
struct _AvlNode* child[2]; /* [0] is left subtree, [1] is right */
Char balance; /* do not make this unsigned */
}
AvlNode;
typedef
struct {
UWord w;
Bool b;
}
MaybeWord;
#define WFM_STKMAX 32 // At most 2**32 entries can be iterated over
struct _WordFM {
AvlNode* root;
void* (*alloc_nofail)( HChar*, SizeT );
HChar* cc;
void (*dealloc)(void*);
Word (*kCmp)(UWord,UWord);
AvlNode* nodeStack[WFM_STKMAX]; // Iterator node stack
Int numStack[WFM_STKMAX]; // Iterator num stack
Int stackTop; // Iterator stack pointer, one past end
};
/* forward */
static Bool avl_removeroot_wrk(AvlNode** t, Word(*kCmp)(UWord,UWord));
/* Swing to the left. Warning: no balance maintainance. */
static void avl_swl ( AvlNode** root )
{
AvlNode* a = *root;
AvlNode* b = a->child[1];
*root = b;
a->child[1] = b->child[0];
b->child[0] = a;
}
/* Swing to the right. Warning: no balance maintainance. */
static void avl_swr ( AvlNode** root )
{
AvlNode* a = *root;
AvlNode* b = a->child[0];
*root = b;
a->child[0] = b->child[1];
b->child[1] = a;
}
/* Balance maintainance after especially nasty swings. */
static void avl_nasty ( AvlNode* root )
{
switch (root->balance) {
case -1:
root->child[0]->balance = 0;
root->child[1]->balance = 1;
break;
case 1:
root->child[0]->balance = -1;
root->child[1]->balance = 0;
break;
case 0:
root->child[0]->balance = 0;
root->child[1]->balance = 0;
break;
default:
tl_assert(0);
}
root->balance=0;
}
/* Find size of a non-NULL tree. */
static UWord size_avl_nonNull ( AvlNode* nd )
{
return 1 + (nd->child[0] ? size_avl_nonNull(nd->child[0]) : 0)
+ (nd->child[1] ? size_avl_nonNull(nd->child[1]) : 0);
}
/* Unsignedly compare w1 and w2. If w1 < w2, produce a negative
number; if w1 > w2 produce a positive number, and if w1 == w2
produce zero. */
static inline Word cmp_unsigned_Words ( UWord w1, UWord w2 ) {
if (w1 < w2) return -1;
if (w1 > w2) return 1;
return 0;
}
/* Insert element a into the AVL tree t. Returns True if the depth of
the tree has grown. If element with that key is already present,
just copy a->val to existing node, first returning old ->val field
of existing node in *oldV, so that the caller can finalize it
however it wants.
*/
static
Bool avl_insert_wrk ( AvlNode** rootp,
/*OUT*/MaybeWord* oldV,
AvlNode* a,
Word (*kCmp)(UWord,UWord) )
{
Word cmpres;
/* initialize */
a->child[0] = 0;
a->child[1] = 0;
a->balance = 0;
oldV->b = False;
/* insert into an empty tree? */
if (!(*rootp)) {
(*rootp) = a;
return True;
}
cmpres = kCmp ? /*boxed*/ kCmp( (*rootp)->key, a->key )
: /*unboxed*/ cmp_unsigned_Words( (UWord)(*rootp)->key,
(UWord)a->key );
if (cmpres > 0) {
/* insert into the left subtree */
if ((*rootp)->child[0]) {
AvlNode* left_subtree = (*rootp)->child[0];
if (avl_insert_wrk(&left_subtree, oldV, a, kCmp)) {
switch ((*rootp)->balance--) {
case 1: return False;
case 0: return True;
case -1: break;
default: tl_assert(0);
}
if ((*rootp)->child[0]->balance < 0) {
avl_swr( rootp );
(*rootp)->balance = 0;
(*rootp)->child[1]->balance = 0;
} else {
avl_swl( &((*rootp)->child[0]) );
avl_swr( rootp );
avl_nasty( *rootp );
}
} else {
(*rootp)->child[0] = left_subtree;
}
return False;
} else {
(*rootp)->child[0] = a;
if ((*rootp)->balance--)
return False;
return True;
}
tl_assert(0);/*NOTREACHED*/
}
else
if (cmpres < 0) {
/* insert into the right subtree */
if ((*rootp)->child[1]) {
AvlNode* right_subtree = (*rootp)->child[1];
if (avl_insert_wrk(&right_subtree, oldV, a, kCmp)) {
switch((*rootp)->balance++){
case -1: return False;
case 0: return True;
case 1: break;
default: tl_assert(0);
}
if ((*rootp)->child[1]->balance > 0) {
avl_swl( rootp );
(*rootp)->balance = 0;
(*rootp)->child[0]->balance = 0;
} else {
avl_swr( &((*rootp)->child[1]) );
avl_swl( rootp );
avl_nasty( *rootp );
}
} else {
(*rootp)->child[1] = right_subtree;
}
return False;
} else {
(*rootp)->child[1] = a;
if ((*rootp)->balance++)
return False;
return True;
}
tl_assert(0);/*NOTREACHED*/
}
else {
/* cmpres == 0, a duplicate - replace the val, but don't
incorporate the node in the tree */
oldV->b = True;
oldV->w = (*rootp)->val;
(*rootp)->val = a->val;
return False;
}
}
/* Remove an element a from the AVL tree t. a must be part of
the tree. Returns True if the depth of the tree has shrunk.
*/
static
Bool avl_remove_wrk ( AvlNode** rootp,
AvlNode* a,
Word(*kCmp)(UWord,UWord) )
{
Bool ch;
Word cmpres;
cmpres = kCmp ? /*boxed*/ kCmp( (*rootp)->key, a->key )
: /*unboxed*/ cmp_unsigned_Words( (UWord)(*rootp)->key,
(UWord)a->key );
if (cmpres > 0){
/* remove from the left subtree */
AvlNode* left_subtree = (*rootp)->child[0];
tl_assert(left_subtree);
ch = avl_remove_wrk(&left_subtree, a, kCmp);
(*rootp)->child[0]=left_subtree;
if (ch) {
switch ((*rootp)->balance++) {
case -1: return True;
case 0: return False;
case 1: break;
default: tl_assert(0);
}
switch ((*rootp)->child[1]->balance) {
case 0:
avl_swl( rootp );
(*rootp)->balance = -1;
(*rootp)->child[0]->balance = 1;
return False;
case 1:
avl_swl( rootp );
(*rootp)->balance = 0;
(*rootp)->child[0]->balance = 0;
return True;
case -1:
break;
default:
tl_assert(0);
}
avl_swr( &((*rootp)->child[1]) );
avl_swl( rootp );
avl_nasty( *rootp );
return True;
}
}
else
if (cmpres < 0) {
/* remove from the right subtree */
AvlNode* right_subtree = (*rootp)->child[1];
tl_assert(right_subtree);
ch = avl_remove_wrk(&right_subtree, a, kCmp);
(*rootp)->child[1] = right_subtree;
if (ch) {
switch ((*rootp)->balance--) {
case 1: return True;
case 0: return False;
case -1: break;
default: tl_assert(0);
}
switch ((*rootp)->child[0]->balance) {
case 0:
avl_swr( rootp );
(*rootp)->balance = 1;
(*rootp)->child[1]->balance = -1;
return False;
case -1:
avl_swr( rootp );
(*rootp)->balance = 0;
(*rootp)->child[1]->balance = 0;
return True;
case 1:
break;
default:
tl_assert(0);
}
avl_swl( &((*rootp)->child[0]) );
avl_swr( rootp );
avl_nasty( *rootp );
return True;
}
}
else {
tl_assert(cmpres == 0);
tl_assert((*rootp)==a);
return avl_removeroot_wrk(rootp, kCmp);
}
return 0;
}
/* Remove the root of the AVL tree *rootp.
* Warning: dumps core if *rootp is empty
*/
static
Bool avl_removeroot_wrk ( AvlNode** rootp,
Word(*kCmp)(UWord,UWord) )
{
Bool ch;
AvlNode* a;
if (!(*rootp)->child[0]) {
if (!(*rootp)->child[1]) {
(*rootp) = 0;
return True;
}
(*rootp) = (*rootp)->child[1];
return True;
}
if (!(*rootp)->child[1]) {
(*rootp) = (*rootp)->child[0];
return True;
}
if ((*rootp)->balance < 0) {
/* remove from the left subtree */
a = (*rootp)->child[0];
while (a->child[1]) a = a->child[1];
} else {
/* remove from the right subtree */
a = (*rootp)->child[1];
while (a->child[0]) a = a->child[0];
}
ch = avl_remove_wrk(rootp, a, kCmp);
a->child[0] = (*rootp)->child[0];
a->child[1] = (*rootp)->child[1];
a->balance = (*rootp)->balance;
(*rootp) = a;
if(a->balance == 0) return ch;
return False;
}
static
AvlNode* avl_find_node ( AvlNode* t, Word k, Word(*kCmp)(UWord,UWord) )
{
if (kCmp) {
/* Boxed comparisons */
Word cmpresS;
while (True) {
if (t == NULL) return NULL;
cmpresS = kCmp(t->key, k);
if (cmpresS > 0) t = t->child[0]; else
if (cmpresS < 0) t = t->child[1]; else
return t;
}
} else {
/* Unboxed comparisons */
Word cmpresS; /* signed */
UWord cmpresU; /* unsigned */
while (True) {
if (t == NULL) return NULL; /* unlikely ==> predictable */
cmpresS = cmp_unsigned_Words( (UWord)t->key, (UWord)k );
if (cmpresS == 0) return t; /* unlikely ==> predictable */
cmpresU = (UWord)cmpresS;
cmpresU >>=/*unsigned*/ (8 * sizeof(cmpresU) - 1);
t = t->child[cmpresU];
}
}
}
static
Bool avl_find_bounds ( AvlNode* t,
/*OUT*/UWord* kMinP, /*OUT*/UWord* vMinP,
/*OUT*/UWord* kMaxP, /*OUT*/UWord* vMaxP,
UWord minKey, UWord minVal,
UWord maxKey, UWord maxVal,
UWord key,
Word(*kCmp)(UWord,UWord) )
{
UWord kLowerBound = minKey;
UWord vLowerBound = minVal;
UWord kUpperBound = maxKey;
UWord vUpperBound = maxVal;
while (t) {
Word cmpresS = kCmp ? kCmp(t->key, key)
: cmp_unsigned_Words(t->key, key);
if (cmpresS < 0) {
kLowerBound = t->key;
vLowerBound = t->val;
t = t->child[1];
continue;
}
if (cmpresS > 0) {
kUpperBound = t->key;
vUpperBound = t->val;
t = t->child[0];
continue;
}
/* We should never get here. If we do, it means the given key
is actually present in the tree, which means the original
call was invalid -- an error on the caller's part, and we
cannot give any meaningful values for the bounds. (Well,
maybe we could, but we're not gonna. Ner!) */
return False;
}
if (kMinP) *kMinP = kLowerBound;
if (vMinP) *vMinP = vLowerBound;
if (kMaxP) *kMaxP = kUpperBound;
if (vMaxP) *vMaxP = vUpperBound;
return True;
}
// Clear the iterator stack.
static void stackClear(WordFM* fm)
{
Int i;
tl_assert(fm);
for (i = 0; i < WFM_STKMAX; i++) {
fm->nodeStack[i] = NULL;
fm->numStack[i] = 0;
}
fm->stackTop = 0;
}
// Push onto the iterator stack.
static inline void stackPush(WordFM* fm, AvlNode* n, Int i)
{
tl_assert(fm->stackTop < WFM_STKMAX);
tl_assert(1 <= i && i <= 3);
fm->nodeStack[fm->stackTop] = n;
fm-> numStack[fm->stackTop] = i;
fm->stackTop++;
}
// Pop from the iterator stack.
static inline Bool stackPop(WordFM* fm, AvlNode** n, Int* i)
{
tl_assert(fm->stackTop <= WFM_STKMAX);
if (fm->stackTop > 0) {
fm->stackTop--;
*n = fm->nodeStack[fm->stackTop];
*i = fm-> numStack[fm->stackTop];
tl_assert(1 <= *i && *i <= 3);
fm->nodeStack[fm->stackTop] = NULL;
fm-> numStack[fm->stackTop] = 0;
return True;
} else {
return False;
}
}
static
AvlNode* avl_dopy ( AvlNode* nd,
UWord(*dopyK)(UWord),
UWord(*dopyV)(UWord),
void*(alloc_nofail)(HChar*,SizeT),
HChar* cc )
{
AvlNode* nyu;
if (! nd)
return NULL;
nyu = alloc_nofail(cc, sizeof(AvlNode));
tl_assert(nyu);
nyu->child[0] = nd->child[0];
nyu->child[1] = nd->child[1];
nyu->balance = nd->balance;
/* Copy key */
if (dopyK) {
nyu->key = dopyK( nd->key );
if (nd->key != 0 && nyu->key == 0)
return NULL; /* oom in key dcopy */
} else {
/* copying assumedly unboxed keys */
nyu->key = nd->key;
}
/* Copy val */
if (dopyV) {
nyu->val = dopyV( nd->val );
if (nd->val != 0 && nyu->val == 0)
return NULL; /* oom in val dcopy */
} else {
/* copying assumedly unboxed vals */
nyu->val = nd->val;
}
/* Copy subtrees */
if (nyu->child[0]) {
nyu->child[0] = avl_dopy( nyu->child[0], dopyK, dopyV,
alloc_nofail, cc );
if (! nyu->child[0])
return NULL;
}
if (nyu->child[1]) {
nyu->child[1] = avl_dopy( nyu->child[1], dopyK, dopyV,
alloc_nofail, cc );
if (! nyu->child[1])
return NULL;
}
return nyu;
}
/* Initialise a WordFM. */
static void initFM ( WordFM* fm,
void* (*alloc_nofail)( HChar*, SizeT ),
HChar* cc,
void (*dealloc)(void*),
Word (*kCmp)(UWord,UWord) )
{
fm->root = 0;
fm->kCmp = kCmp;
fm->alloc_nofail = alloc_nofail;
fm->cc = cc;
fm->dealloc = dealloc;
fm->stackTop = 0;
}
/* --- Public interface functions --- */
/* Allocate and initialise a WordFM. If kCmp is non-NULL, elements in
the set are ordered according to the ordering specified by kCmp,
which becomes obvious if you use VG_(initIterFM),
VG_(initIterAtFM), VG_(nextIterFM), VG_(doneIterFM) to iterate over
sections of the map, or the whole thing. If kCmp is NULL then the
ordering used is unsigned word ordering (UWord) on the key
values. */
WordFM* VG_(newFM) ( void* (*alloc_nofail)( HChar*, SizeT ),
HChar* cc,
void (*dealloc)(void*),
Word (*kCmp)(UWord,UWord) )
{
WordFM* fm = alloc_nofail(cc, sizeof(WordFM));
tl_assert(fm);
initFM(fm, alloc_nofail, cc, dealloc, kCmp);
return fm;
}
static void avl_free ( AvlNode* nd,
void(*kFin)(UWord),
void(*vFin)(UWord),
void(*dealloc)(void*) )
{
if (!nd)
return;
if (nd->child[0])
avl_free(nd->child[0], kFin, vFin, dealloc);
if (nd->child[1])
avl_free(nd->child[1], kFin, vFin, dealloc);
if (kFin)
kFin( nd->key );
if (vFin)
vFin( nd->val );
VG_(memset)(nd, 0, sizeof(AvlNode));
dealloc(nd);
}
/* Free up the FM. If kFin is non-NULL, it is applied to keys
before the FM is deleted; ditto with vFin for vals. */
void VG_(deleteFM) ( WordFM* fm, void(*kFin)(UWord), void(*vFin)(UWord) )
{
void(*dealloc)(void*) = fm->dealloc;
avl_free( fm->root, kFin, vFin, dealloc );
VG_(memset)(fm, 0, sizeof(WordFM) );
dealloc(fm);
}
/* Add (k,v) to fm. */
Bool VG_(addToFM) ( WordFM* fm, UWord k, UWord v )
{
MaybeWord oldV;
AvlNode* node;
node = fm->alloc_nofail( fm->cc, sizeof(AvlNode) );
node->key = k;
node->val = v;
oldV.b = False;
oldV.w = 0;
avl_insert_wrk( &fm->root, &oldV, node, fm->kCmp );
//if (oldV.b && fm->vFin)
// fm->vFin( oldV.w );
if (oldV.b)
fm->dealloc(node);
return oldV.b;
}
// Delete key from fm, returning associated key and val if found
Bool VG_(delFromFM) ( WordFM* fm,
/*OUT*/UWord* oldK, /*OUT*/UWord* oldV, UWord key )
{
AvlNode* node = avl_find_node( fm->root, key, fm->kCmp );
if (node) {
avl_remove_wrk( &fm->root, node, fm->kCmp );
if (oldK)
*oldK = node->key;
if (oldV)
*oldV = node->val;
fm->dealloc(node);
return True;
} else {
return False;
}
}
// Look up in fm, assigning found key & val at spec'd addresses
Bool VG_(lookupFM) ( WordFM* fm,
/*OUT*/UWord* keyP, /*OUT*/UWord* valP, UWord key )
{
AvlNode* node = avl_find_node( fm->root, key, fm->kCmp );
if (node) {
if (keyP)
*keyP = node->key;
if (valP)
*valP = node->val;
return True;
} else {
return False;
}
}
// See comment in pub_tool_wordfm.h for explanation
Bool VG_(findBoundsFM)( WordFM* fm,
/*OUT*/UWord* kMinP, /*OUT*/UWord* vMinP,
/*OUT*/UWord* kMaxP, /*OUT*/UWord* vMaxP,
UWord minKey, UWord minVal,
UWord maxKey, UWord maxVal,
UWord key )
{
/* really we should assert that minKey <= key <= maxKey,
where <= is as defined by fm->kCmp. */
return avl_find_bounds( fm->root, kMinP, vMinP,
kMaxP, vMaxP,
minKey, minVal,
maxKey, maxVal,
key, fm->kCmp );
}
// See comment in pub_tool_wordfm.h for performance warning
UWord VG_(sizeFM) ( WordFM* fm )
{
// Hmm, this is a bad way to do this
return fm->root ? size_avl_nonNull( fm->root ) : 0;
}
// NB UNTESTED! TEST BEFORE USE!
//Bool VG_(isEmptyFM)( WordFM* fm )
//{
// return fm->root ? False : True;
//}
// set up FM for iteration
void VG_(initIterFM) ( WordFM* fm )
{
tl_assert(fm);
stackClear(fm);
if (fm->root)
stackPush(fm, fm->root, 1);
}
// set up FM for iteration so that the first key subsequently produced
// by VG_(nextIterFM) is the smallest key in the map >= start_at.
// Naturally ">=" is defined by the comparison function supplied to
// VG_(newFM), as documented above.
void VG_(initIterAtFM) ( WordFM* fm, UWord start_at )
{
Int i;
AvlNode *n, *t;
Word cmpresS; /* signed */
UWord cmpresU; /* unsigned */
tl_assert(fm);
stackClear(fm);
if (!fm->root)
return;
n = NULL;
// We need to do regular search and fill in the stack.
t = fm->root;
while (True) {
if (t == NULL) return;
cmpresS
= fm->kCmp ? /*boxed*/ fm->kCmp( t->key, start_at )
: /*unboxed*/ cmp_unsigned_Words( t->key, start_at );
if (cmpresS == 0) {
// We found the exact key -- we are done.
// The iteration should start with this node.
stackPush(fm, t, 2);
// The stack now looks like {2, 2, ... ,2, 2}
return;
}
cmpresU = (UWord)cmpresS;
cmpresU >>=/*unsigned*/ (8 * sizeof(cmpresU) - 1);
if (!cmpresU) {
// Push this node only if we go to the left child.
stackPush(fm, t, 2);
}
t = t->child[cmpresU];
}
if (stackPop(fm, &n, &i)) {
// If we've pushed something to stack and did not find the exact key,
// we must fix the top element of stack.
tl_assert(i == 2);
stackPush(fm, n, 3);
// the stack looks like {2, 2, ..., 2, 3}
}
}
// get next key/val pair. Will tl_assert if fm has been modified
// or looked up in since initIter{,At}FM was called.
Bool VG_(nextIterFM) ( WordFM* fm, /*OUT*/UWord* pKey, /*OUT*/UWord* pVal )
{
Int i = 0;
AvlNode* n = NULL;
tl_assert(fm);
// This in-order traversal requires each node to be pushed and popped
// three times. These could be avoided by updating nodes in-situ on the
// top of the stack, but the push/pop cost is so small that it's worth
// keeping this loop in this simpler form.
while (stackPop(fm, &n, &i)) {
switch (i) {
case 1: case_1:
stackPush(fm, n, 2);
/* if (n->child[0]) stackPush(fm, n->child[0], 1); */
if (n->child[0]) { n = n->child[0]; goto case_1; }
break;
case 2:
stackPush(fm, n, 3);
if (pKey) *pKey = n->key;
if (pVal) *pVal = n->val;
return True;
case 3:
/* if (n->child[1]) stackPush(fm, n->child[1], 1); */
if (n->child[1]) { n = n->child[1]; goto case_1; }
break;
default:
tl_assert(0);
}
}
// Stack empty, iterator is exhausted, return NULL
return False;
}
// clear the I'm iterating flag
void VG_(doneIterFM) ( WordFM* fm )
{
}
WordFM* VG_(dopyFM) ( WordFM* fm, UWord(*dopyK)(UWord), UWord(*dopyV)(UWord) )
{
WordFM* nyu;
/* can't clone the fm whilst iterating on it */
tl_assert(fm->stackTop == 0);
nyu = fm->alloc_nofail( fm->cc, sizeof(WordFM) );
tl_assert(nyu);
*nyu = *fm;
fm->stackTop = 0;
VG_(memset)(fm->nodeStack, 0, sizeof(fm->nodeStack));
VG_(memset)(fm->numStack, 0, sizeof(fm->numStack));
if (nyu->root) {
nyu->root = avl_dopy( nyu->root, dopyK, dopyV,
fm->alloc_nofail, fm->cc );
if (! nyu->root)
return NULL;
}
return nyu;
}
// admin: what's the 'common' allocation size (for tree nodes?)
SizeT VG_(getNodeSizeFM)( void )
{
return sizeof(AvlNode);
}
//------------------------------------------------------------------//
//--- end WordFM ---//
//--- Implementation ---//
//------------------------------------------------------------------//
//------------------------------------------------------------------//
//--- WordBag (unboxed words only) ---//
//--- Implementation ---//
//------------------------------------------------------------------//
/* A trivial container, to make it opaque. */
struct _WordBag {
WordFM* fm;
};
WordBag* VG_(newBag) ( void* (*alloc_nofail)( HChar*, SizeT ),
HChar* cc,
void (*dealloc)(void*) )
{
WordBag* bag = alloc_nofail(cc, sizeof(WordBag));
bag->fm = VG_(newFM)( alloc_nofail, cc, dealloc, NULL );
return bag;
}
void VG_(deleteBag) ( WordBag* bag )
{
void (*dealloc)(void*) = bag->fm->dealloc;
VG_(deleteFM)( bag->fm, NULL, NULL );
VG_(memset)(bag, 0, sizeof(WordBag));
dealloc(bag);
}
void VG_(addToBag)( WordBag* bag, UWord w )
{
UWord key, count;
if (VG_(lookupFM)(bag->fm, &key, &count, w)) {
tl_assert(key == w);
tl_assert(count >= 1);
VG_(addToFM)(bag->fm, w, count+1);
} else {
VG_(addToFM)(bag->fm, w, 1);
}
}
UWord VG_(elemBag) ( WordBag* bag, UWord w )
{
UWord key, count;
if (VG_(lookupFM)( bag->fm, &key, &count, w)) {
tl_assert(key == w);
tl_assert(count >= 1);
return count;
} else {
return 0;
}
}
UWord VG_(sizeUniqueBag) ( WordBag* bag )
{
return VG_(sizeFM)( bag->fm );
}
static UWord sizeTotalBag_wrk ( AvlNode* nd )
{
/* unchecked pre: nd is non-NULL */
UWord w = nd->val;
tl_assert(w >= 1);
if (nd->child[0])
w += sizeTotalBag_wrk(nd->child[0]);
if (nd->child[1])
w += sizeTotalBag_wrk(nd->child[1]);
return w;
}
UWord VG_(sizeTotalBag)( WordBag* bag )
{
if (bag->fm->root)
return sizeTotalBag_wrk(bag->fm->root);
else
return 0;
}
Bool VG_(delFromBag)( WordBag* bag, UWord w )
{
UWord key, count;
if (VG_(lookupFM)(bag->fm, &key, &count, w)) {
tl_assert(key == w);
tl_assert(count >= 1);
if (count > 1) {
VG_(addToFM)(bag->fm, w, count-1);
} else {
tl_assert(count == 1);
VG_(delFromFM)( bag->fm, NULL, NULL, w );
}
return True;
} else {
return False;
}
}
Bool VG_(isEmptyBag)( WordBag* bag )
{
return VG_(sizeFM)(bag->fm) == 0;
}
Bool VG_(isSingletonTotalBag)( WordBag* bag )
{
AvlNode* nd;
if (VG_(sizeFM)(bag->fm) != 1)
return False;
nd = bag->fm->root;
tl_assert(nd);
tl_assert(!nd->child[0]);
tl_assert(!nd->child[1]);
return nd->val == 1;
}
UWord VG_(anyElementOfBag)( WordBag* bag )
{
/* Return an arbitrarily chosen element in the bag. We might as
well return the one at the root of the underlying AVL tree. */
AvlNode* nd = bag->fm->root;
tl_assert(nd); /* if this fails, 'bag' is empty - caller is in error. */
tl_assert(nd->val >= 1);
return nd->key;
}
void VG_(initIterBag)( WordBag* bag )
{
VG_(initIterFM)(bag->fm);
}
Bool VG_(nextIterBag)( WordBag* bag, /*OUT*/UWord* pVal, /*OUT*/UWord* pCount )
{
return VG_(nextIterFM)( bag->fm, pVal, pCount );
}
void VG_(doneIterBag)( WordBag* bag )
{
VG_(doneIterFM)( bag->fm );
}
//------------------------------------------------------------------//
//--- end WordBag (unboxed words only) ---//
//--- Implementation ---//
//------------------------------------------------------------------//
/*--------------------------------------------------------------------*/
/*--- end m_wordfm.c ---*/
/*--------------------------------------------------------------------*/