C++程序  |  531行  |  17.32 KB

// Copyright 2010 Google Inc.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Frame-reconstruction function. Memory allocation.
//
// Author: Skal (pascal.massimino@gmail.com)

#include <stdlib.h>
#include "./vp8i.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

#define ALIGN_MASK (32 - 1)

//------------------------------------------------------------------------------
// Memory setup

// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
// for caching, given a filtering level.
// Simple filter:  up to 2 luma samples are read and 1 is written.
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
//                 U/V, so it's 8 samples total (because of the 2x upsampling).
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };

int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
  const int mb_w = dec->mb_w_;
  const int intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
  const int top_size = (16 + 8 + 8) * mb_w;
  const int info_size = (mb_w + 1) * sizeof(VP8MB);
  const int yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
  const int coeffs_size = 384 * sizeof(*dec->coeffs_);
  const int cache_height = (16 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
  const int cache_size = top_size * cache_height;
  const int alpha_size =
    dec->alpha_data_ ? (dec->pic_hdr_.width_ * dec->pic_hdr_.height_) : 0;
  const int needed = intra_pred_mode_size
                   + top_size + info_size
                   + yuv_size + coeffs_size
                   + cache_size + alpha_size + ALIGN_MASK;
  uint8_t* mem;

  if (needed > dec->mem_size_) {
    free(dec->mem_);
    dec->mem_size_ = 0;
    dec->mem_ = (uint8_t*)malloc(needed);
    if (dec->mem_ == NULL) {
      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
                         "no memory during frame initialization.");
    }
    dec->mem_size_ = needed;
  }

  mem = (uint8_t*)dec->mem_;
  dec->intra_t_ = (uint8_t*)mem;
  mem += intra_pred_mode_size;

  dec->y_t_ = (uint8_t*)mem;
  mem += 16 * mb_w;
  dec->u_t_ = (uint8_t*)mem;
  mem += 8 * mb_w;
  dec->v_t_ = (uint8_t*)mem;
  mem += 8 * mb_w;

  dec->mb_info_ = ((VP8MB*)mem) + 1;
  mem += info_size;

  mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
  assert((yuv_size & ALIGN_MASK) == 0);
  dec->yuv_b_ = (uint8_t*)mem;
  mem += yuv_size;

  dec->coeffs_ = (int16_t*)mem;
  mem += coeffs_size;

  dec->cache_y_stride_ = 16 * mb_w;
  dec->cache_uv_stride_ = 8 * mb_w;
  {
    const int extra_rows = kFilterExtraRows[dec->filter_type_];
    const int extra_y = extra_rows * dec->cache_y_stride_;
    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
    dec->cache_y_ = ((uint8_t*)mem) + extra_y;
    dec->cache_u_ = dec->cache_y_ + 16 * dec->cache_y_stride_ + extra_uv;
    dec->cache_v_ = dec->cache_u_ + 8 * dec->cache_uv_stride_ + extra_uv;
  }
  mem += cache_size;

  // alpha plane
  dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
  mem += alpha_size;

  // note: left-info is initialized once for all.
  memset(dec->mb_info_ - 1, 0, (mb_w + 1) * sizeof(*dec->mb_info_));

  // initialize top
  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);

  // prepare 'io'
  io->mb_y = 0;
  io->y = dec->cache_y_;
  io->u = dec->cache_u_;
  io->v = dec->cache_v_;
  io->y_stride = dec->cache_y_stride_;
  io->uv_stride = dec->cache_uv_stride_;
  io->fancy_upsampling = 0;    // default
  io->a = NULL;

  // Init critical function pointers and look-up tables.
  VP8DspInitTables();
  VP8DspInit();

  return 1;
}

//------------------------------------------------------------------------------
// Filtering

static inline int hev_thresh_from_level(int level, int keyframe) {
  if (keyframe) {
    return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
  } else {
    return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
  }
}

static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
  VP8MB* const mb = dec->mb_info_ + mb_x;
  uint8_t* const y_dst = dec->cache_y_ + mb_x * 16;
  const int y_bps = dec->cache_y_stride_;
  const int level = mb->f_level_;
  const int ilevel = mb->f_ilevel_;
  const int limit = 2 * level + ilevel;
  if (level == 0) {
    return;
  }
  if (dec->filter_type_ == 1) {   // simple
    if (mb_x > 0) {
      VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
    }
    if (mb->f_inner_) {
      VP8SimpleHFilter16i(y_dst, y_bps, limit);
    }
    if (mb_y > 0) {
      VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
    }
    if (mb->f_inner_) {
      VP8SimpleVFilter16i(y_dst, y_bps, limit);
    }
  } else {    // complex
    uint8_t* const u_dst = dec->cache_u_ + mb_x * 8;
    uint8_t* const v_dst = dec->cache_v_ + mb_x * 8;
    const int uv_bps = dec->cache_uv_stride_;
    const int hev_thresh =
        hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
    if (mb_x > 0) {
      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
    }
    if (mb->f_inner_) {
      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
    }
    if (mb_y > 0) {
      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
    }
    if (mb->f_inner_) {
      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
    }
  }
}

void VP8FilterRow(const VP8Decoder* const dec) {
  int mb_x;
  assert(dec->filter_type_ > 0);
  if (dec->mb_y_ < dec->tl_mb_y_ || dec->mb_y_ > dec->br_mb_y_) {
    return;
  }
  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
    DoFilter(dec, mb_x, dec->mb_y_);
  }
}

//------------------------------------------------------------------------------

void VP8StoreBlock(VP8Decoder* const dec) {
  if (dec->filter_type_ > 0) {
    VP8MB* const info = dec->mb_info_ + dec->mb_x_;
    int level = dec->filter_levels_[dec->segment_];
    if (dec->filter_hdr_.use_lf_delta_) {
      // TODO(skal): only CURRENT is handled for now.
      level += dec->filter_hdr_.ref_lf_delta_[0];
      if (dec->is_i4x4_) {
        level += dec->filter_hdr_.mode_lf_delta_[0];
      }
    }
    level = (level < 0) ? 0 : (level > 63) ? 63 : level;
    info->f_level_ = level;

    if (dec->filter_hdr_.sharpness_ > 0) {
      if (dec->filter_hdr_.sharpness_ > 4) {
        level >>= 2;
      } else {
        level >>= 1;
      }
      if (level > 9 - dec->filter_hdr_.sharpness_) {
        level = 9 - dec->filter_hdr_.sharpness_;
      }
    }

    info->f_ilevel_ = (level < 1) ? 1 : level;
    info->f_inner_ = (!info->skip_ || dec->is_i4x4_);
  }
  {
    // Transfer samples to row cache
    int y;
    uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16;
    uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8;
    uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8;
    for (y = 0; y < 16; ++y) {
      memcpy(ydst + y * dec->cache_y_stride_,
             dec->yuv_b_ + Y_OFF + y * BPS, 16);
    }
    for (y = 0; y < 8; ++y) {
      memcpy(udst + y * dec->cache_uv_stride_,
           dec->yuv_b_ + U_OFF + y * BPS, 8);
      memcpy(vdst + y * dec->cache_uv_stride_,
           dec->yuv_b_ + V_OFF + y * BPS, 8);
    }
  }
}

//------------------------------------------------------------------------------
// This function is called after a row of macroblocks is finished decoding.
// It also takes into account the following restrictions:
//  * In case of in-loop filtering, we must hold off sending some of the bottom
//    pixels as they are yet unfiltered. They will be when the next macroblock
//    row is decoded. Meanwhile, we must preserve them by rotating them in the
//    cache area. This doesn't hold for the very bottom row of the uncropped
//    picture of course.
//  * we must clip the remaining pixels against the cropping area. The VP8Io
//    struct must have the following fields set correctly before calling put():

#define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB

int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
  const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
  const int ysize = extra_y_rows * dec->cache_y_stride_;
  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
  uint8_t* const ydst = dec->cache_y_ - ysize;
  uint8_t* const udst = dec->cache_u_ - uvsize;
  uint8_t* const vdst = dec->cache_v_ - uvsize;
  const int first_row = (dec->mb_y_ == 0);
  const int last_row = (dec->mb_y_ >= dec->br_mb_y_ - 1);
  int y_start = MACROBLOCK_VPOS(dec->mb_y_);
  int y_end = MACROBLOCK_VPOS(dec->mb_y_ + 1);
  if (io->put) {
    if (!first_row) {
      y_start -= extra_y_rows;
      io->y = ydst;
      io->u = udst;
      io->v = vdst;
    } else {
      io->y = dec->cache_y_;
      io->u = dec->cache_u_;
      io->v = dec->cache_v_;
    }

    if (!last_row) {
      y_end -= extra_y_rows;
    }
    if (y_end > io->crop_bottom) {
      y_end = io->crop_bottom;    // make sure we don't overflow on last row.
    }
    io->a = NULL;
#ifdef WEBP_EXPERIMENTAL_FEATURES
    if (dec->alpha_data_) {
      io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
      if (io->a == NULL) {
        return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                           "Could not decode alpha data.");
      }
    }
#endif
    if (y_start < io->crop_top) {
      const int delta_y = io->crop_top - y_start;
      y_start = io->crop_top;
      assert(!(delta_y & 1));
      io->y += dec->cache_y_stride_ * delta_y;
      io->u += dec->cache_uv_stride_ * (delta_y >> 1);
      io->v += dec->cache_uv_stride_ * (delta_y >> 1);
      if (io->a) {
        io->a += io->width * delta_y;
      }
    }
    if (y_start < y_end) {
      io->y += io->crop_left;
      io->u += io->crop_left >> 1;
      io->v += io->crop_left >> 1;
      if (io->a) {
        io->a += io->crop_left;
      }
      io->mb_y = y_start - io->crop_top;
      io->mb_w = io->crop_right - io->crop_left;
      io->mb_h = y_end - y_start;
      if (!io->put(io)) {
        return 0;
      }
    }
  }
  // rotate top samples
  if (!last_row) {
    memcpy(ydst, ydst + 16 * dec->cache_y_stride_, ysize);
    memcpy(udst, udst + 8 * dec->cache_uv_stride_, uvsize);
    memcpy(vdst, vdst + 8 * dec->cache_uv_stride_, uvsize);
  }
  return 1;
}

#undef MACROBLOCK_VPOS

//------------------------------------------------------------------------------
// Finish setting up the decoding parameter once user's setup() is called.

VP8StatusCode VP8FinishFrameSetup(VP8Decoder* const dec, VP8Io* const io) {
  // Call setup() first. This may trigger additional decoding features on 'io'.
  if (io->setup && !io->setup(io)) {
    VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
    return dec->status_;
  }

  // Disable filtering per user request
  if (io->bypass_filtering) {
    dec->filter_type_ = 0;
  }
  // TODO(skal): filter type / strength / sharpness forcing

  // Define the area where we can skip in-loop filtering, in case of cropping.
  //
  // 'Simple' filter reads two luma samples outside of the macroblock and
  // and filters one. It doesn't filter the chroma samples. Hence, we can
  // avoid doing the in-loop filtering before crop_top/crop_left position.
  // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
  // Means: there's a dependency chain that goes all the way up to the
  // top-left corner of the picture (MB #0). We must filter all the previous
  // macroblocks.
  // TODO(skal): add an 'approximate_decoding' option, that won't produce
  // a 1:1 bit-exactness for complex filtering?
  {
    const int extra_pixels = kFilterExtraRows[dec->filter_type_];
    if (dec->filter_type_ == 2) {
      // For complex filter, we need to preserve the dependency chain.
      dec->tl_mb_x_ = 0;
      dec->tl_mb_y_ = 0;
    } else {
      // For simple filter, we can filter only the cropped region.
      dec->tl_mb_y_ = io->crop_top >> 4;
      dec->tl_mb_x_ = io->crop_left >> 4;
    }
    // We need some 'extra' pixels on the right/bottom.
    dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
    dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
    if (dec->br_mb_x_ > dec->mb_w_) {
      dec->br_mb_x_ = dec->mb_w_;
    }
    if (dec->br_mb_y_ > dec->mb_h_) {
      dec->br_mb_y_ = dec->mb_h_;
    }
  }
  return VP8_STATUS_OK;
}

//------------------------------------------------------------------------------
// Main reconstruction function.

static const int kScan[16] = {
  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
};

static inline int CheckMode(VP8Decoder* const dec, int mode) {
  if (mode == B_DC_PRED) {
    if (dec->mb_x_ == 0) {
      return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
    } else {
      return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
    }
  }
  return mode;
}

static inline void Copy32b(uint8_t* dst, uint8_t* src) {
  *(uint32_t*)dst = *(uint32_t*)src;
}

void VP8ReconstructBlock(VP8Decoder* const dec) {
  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
  uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
  uint8_t* const v_dst = dec->yuv_b_ + V_OFF;

  // Rotate in the left samples from previously decoded block. We move four
  // pixels at a time for alignment reason, and because of in-loop filter.
  if (dec->mb_x_ > 0) {
    int j;
    for (j = -1; j < 16; ++j) {
      Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
    }
    for (j = -1; j < 8; ++j) {
      Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
      Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
    }
  } else {
    int j;
    for (j = 0; j < 16; ++j) {
      y_dst[j * BPS - 1] = 129;
    }
    for (j = 0; j < 8; ++j) {
      u_dst[j * BPS - 1] = 129;
      v_dst[j * BPS - 1] = 129;
    }
    // Init top-left sample on left column too
    if (dec->mb_y_ > 0) {
      y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
    }
  }
  {
    // bring top samples into the cache
    uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
    uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
    uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
    const int16_t* coeffs = dec->coeffs_;
    int n;

    if (dec->mb_y_ > 0) {
      memcpy(y_dst - BPS, top_y, 16);
      memcpy(u_dst - BPS, top_u, 8);
      memcpy(v_dst - BPS, top_v, 8);
    } else if (dec->mb_x_ == 0) {
      // we only need to do this init once at block (0,0).
      // Afterward, it remains valid for the whole topmost row.
      memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
      memset(u_dst - BPS - 1, 127, 8 + 1);
      memset(v_dst - BPS - 1, 127, 8 + 1);
    }

    // predict and add residuals

    if (dec->is_i4x4_) {   // 4x4
      uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);

      if (dec->mb_y_ > 0) {
        if (dec->mb_x_ >= dec->mb_w_ - 1) {    // on rightmost border
          top_right[0] = top_y[15] * 0x01010101u;
        } else {
          memcpy(top_right, top_y + 16, sizeof(*top_right));
        }
      }
      // replicate the top-right pixels below
      top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];

      // predict and add residues for all 4x4 blocks in turn.
      for (n = 0; n < 16; n++) {
        uint8_t* const dst = y_dst + kScan[n];
        VP8PredLuma4[dec->imodes_[n]](dst);
        if (dec->non_zero_ac_ & (1 << n)) {
          VP8Transform(coeffs + n * 16, dst, 0);
        } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
          VP8TransformDC(coeffs + n * 16, dst);
        }
      }
    } else {    // 16x16
      const int pred_func = CheckMode(dec, dec->imodes_[0]);
      VP8PredLuma16[pred_func](y_dst);
      if (dec->non_zero_) {
        for (n = 0; n < 16; n++) {
          uint8_t* const dst = y_dst + kScan[n];
          if (dec->non_zero_ac_ & (1 << n)) {
            VP8Transform(coeffs + n * 16, dst, 0);
          } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
            VP8TransformDC(coeffs + n * 16, dst);
          }
        }
      }
    }
    {
      // Chroma
      const int pred_func = CheckMode(dec, dec->uvmode_);
      VP8PredChroma8[pred_func](u_dst);
      VP8PredChroma8[pred_func](v_dst);

      if (dec->non_zero_ & 0x0f0000) {   // chroma-U
        const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
        if (dec->non_zero_ac_ & 0x0f0000) {
          VP8TransformUV(u_coeffs, u_dst);
        } else {
          VP8TransformDCUV(u_coeffs, u_dst);
        }
      }
      if (dec->non_zero_ & 0xf00000) {   // chroma-V
        const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
        if (dec->non_zero_ac_ & 0xf00000) {
          VP8TransformUV(v_coeffs, v_dst);
        } else {
          VP8TransformDCUV(v_coeffs, v_dst);
        }
      }

      // stash away top samples for next block
      if (dec->mb_y_ < dec->mb_h_ - 1) {
        memcpy(top_y, y_dst + 15 * BPS, 16);
        memcpy(top_u, u_dst +  7 * BPS,  8);
        memcpy(top_v, v_dst +  7 * BPS,  8);
      }
    }
  }
}

//------------------------------------------------------------------------------

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif