C++程序  |  2609行  |  89.08 KB

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "SurfaceTexture_test"
//#define LOG_NDEBUG 0

#include <gtest/gtest.h>
#include <gui/SurfaceTexture.h>
#include <gui/SurfaceTextureClient.h>
#include <ui/GraphicBuffer.h>
#include <utils/String8.h>
#include <utils/threads.h>

#include <gui/ISurfaceComposer.h>
#include <gui/Surface.h>
#include <gui/SurfaceComposerClient.h>

#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>

#include <ui/FramebufferNativeWindow.h>

namespace android {

class GLTest : public ::testing::Test {
protected:

    GLTest():
            mEglDisplay(EGL_NO_DISPLAY),
            mEglSurface(EGL_NO_SURFACE),
            mEglContext(EGL_NO_CONTEXT) {
    }

    virtual void SetUp() {
        const ::testing::TestInfo* const testInfo =
            ::testing::UnitTest::GetInstance()->current_test_info();
        ALOGV("Begin test: %s.%s", testInfo->test_case_name(),
                testInfo->name());

        mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_DISPLAY, mEglDisplay);

        EGLint majorVersion;
        EGLint minorVersion;
        EXPECT_TRUE(eglInitialize(mEglDisplay, &majorVersion, &minorVersion));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        RecordProperty("EglVersionMajor", majorVersion);
        RecordProperty("EglVersionMajor", minorVersion);

        EGLint numConfigs = 0;
        EXPECT_TRUE(eglChooseConfig(mEglDisplay, getConfigAttribs(), &mGlConfig,
                1, &numConfigs));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());

        char* displaySecsEnv = getenv("GLTEST_DISPLAY_SECS");
        if (displaySecsEnv != NULL) {
            mDisplaySecs = atoi(displaySecsEnv);
            if (mDisplaySecs < 0) {
                mDisplaySecs = 0;
            }
        } else {
            mDisplaySecs = 0;
        }

        if (mDisplaySecs > 0) {
            mComposerClient = new SurfaceComposerClient;
            ASSERT_EQ(NO_ERROR, mComposerClient->initCheck());

            mSurfaceControl = mComposerClient->createSurface(
                    String8("Test Surface"), 0,
                    getSurfaceWidth(), getSurfaceHeight(),
                    PIXEL_FORMAT_RGB_888, 0);

            ASSERT_TRUE(mSurfaceControl != NULL);
            ASSERT_TRUE(mSurfaceControl->isValid());

            SurfaceComposerClient::openGlobalTransaction();
            ASSERT_EQ(NO_ERROR, mSurfaceControl->setLayer(0x7FFFFFFF));
            ASSERT_EQ(NO_ERROR, mSurfaceControl->show());
            SurfaceComposerClient::closeGlobalTransaction();

            sp<ANativeWindow> window = mSurfaceControl->getSurface();
            mEglSurface = eglCreateWindowSurface(mEglDisplay, mGlConfig,
                    window.get(), NULL);
        } else {
            EGLint pbufferAttribs[] = {
                EGL_WIDTH, getSurfaceWidth(),
                EGL_HEIGHT, getSurfaceHeight(),
                EGL_NONE };

            mEglSurface = eglCreatePbufferSurface(mEglDisplay, mGlConfig,
                    pbufferAttribs);
        }
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_SURFACE, mEglSurface);

        mEglContext = eglCreateContext(mEglDisplay, mGlConfig, EGL_NO_CONTEXT,
                getContextAttribs());
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_CONTEXT, mEglContext);

        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());

        EGLint w, h;
        EXPECT_TRUE(eglQuerySurface(mEglDisplay, mEglSurface, EGL_WIDTH, &w));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        EXPECT_TRUE(eglQuerySurface(mEglDisplay, mEglSurface, EGL_HEIGHT, &h));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        RecordProperty("EglSurfaceWidth", w);
        RecordProperty("EglSurfaceHeight", h);

        glViewport(0, 0, w, h);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    }

    virtual void TearDown() {
        // Display the result
        if (mDisplaySecs > 0 && mEglSurface != EGL_NO_SURFACE) {
            eglSwapBuffers(mEglDisplay, mEglSurface);
            sleep(mDisplaySecs);
        }

        if (mComposerClient != NULL) {
            mComposerClient->dispose();
        }
        if (mEglContext != EGL_NO_CONTEXT) {
            eglDestroyContext(mEglDisplay, mEglContext);
        }
        if (mEglSurface != EGL_NO_SURFACE) {
            eglDestroySurface(mEglDisplay, mEglSurface);
        }
        if (mEglDisplay != EGL_NO_DISPLAY) {
            eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
                    EGL_NO_CONTEXT);
            eglTerminate(mEglDisplay);
        }
        ASSERT_EQ(EGL_SUCCESS, eglGetError());

        const ::testing::TestInfo* const testInfo =
            ::testing::UnitTest::GetInstance()->current_test_info();
        ALOGV("End test:   %s.%s", testInfo->test_case_name(),
                testInfo->name());
    }

    virtual EGLint const* getConfigAttribs() {
        static EGLint sDefaultConfigAttribs[] = {
            EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
            EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
            EGL_RED_SIZE, 8,
            EGL_GREEN_SIZE, 8,
            EGL_BLUE_SIZE, 8,
            EGL_ALPHA_SIZE, 8,
            EGL_DEPTH_SIZE, 16,
            EGL_STENCIL_SIZE, 8,
            EGL_NONE };

        return sDefaultConfigAttribs;
    }

    virtual EGLint const* getContextAttribs() {
        static EGLint sDefaultContextAttribs[] = {
            EGL_CONTEXT_CLIENT_VERSION, 2,
            EGL_NONE };

        return sDefaultContextAttribs;
    }

    virtual EGLint getSurfaceWidth() {
        return 512;
    }

    virtual EGLint getSurfaceHeight() {
        return 512;
    }

    ::testing::AssertionResult checkPixel(int x, int y, int r,
            int g, int b, int a, int tolerance=2) {
        GLubyte pixel[4];
        String8 msg;
        glReadPixels(x, y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixel);
        GLenum err = glGetError();
        if (err != GL_NO_ERROR) {
            msg += String8::format("error reading pixel: %#x", err);
            while ((err = glGetError()) != GL_NO_ERROR) {
                msg += String8::format(", %#x", err);
            }
            fprintf(stderr, "pixel check failure: %s\n", msg.string());
            return ::testing::AssertionFailure(
                    ::testing::Message(msg.string()));
        }
        if (r >= 0 && abs(r - int(pixel[0])) > tolerance) {
            msg += String8::format("r(%d isn't %d)", pixel[0], r);
        }
        if (g >= 0 && abs(g - int(pixel[1])) > tolerance) {
            if (!msg.isEmpty()) {
                msg += " ";
            }
            msg += String8::format("g(%d isn't %d)", pixel[1], g);
        }
        if (b >= 0 && abs(b - int(pixel[2])) > tolerance) {
            if (!msg.isEmpty()) {
                msg += " ";
            }
            msg += String8::format("b(%d isn't %d)", pixel[2], b);
        }
        if (a >= 0 && abs(a - int(pixel[3])) > tolerance) {
            if (!msg.isEmpty()) {
                msg += " ";
            }
            msg += String8::format("a(%d isn't %d)", pixel[3], a);
        }
        if (!msg.isEmpty()) {
            fprintf(stderr, "pixel check failure: %s\n", msg.string());
            return ::testing::AssertionFailure(
                    ::testing::Message(msg.string()));
        } else {
            return ::testing::AssertionSuccess();
        }
    }

    ::testing::AssertionResult assertRectEq(const Rect &r1,
        const Rect &r2, int tolerance=1) {

        String8 msg;

        if (abs(r1.left - r2.left) > tolerance) {
            msg += String8::format("left(%d isn't %d)", r1.left, r2.left);
        }
        if (abs(r1.top - r2.top) > tolerance) {
            if (!msg.isEmpty()) {
                msg += " ";
            }
            msg += String8::format("top(%d isn't %d)", r1.top, r2.top);
        }
        if (abs(r1.right - r2.right) > tolerance) {
            if (!msg.isEmpty()) {
                msg += " ";
            }
            msg += String8::format("right(%d isn't %d)", r1.right, r2.right);
        }
        if (abs(r1.bottom - r2.bottom) > tolerance) {
            if (!msg.isEmpty()) {
                msg += " ";
            }
            msg += String8::format("bottom(%d isn't %d)", r1.bottom, r2.bottom);
        }
        if (!msg.isEmpty()) {
            msg += String8::format(" R1: [%d %d %d %d] R2: [%d %d %d %d]",
                r1.left, r1.top, r1.right, r1.bottom,
                r2.left, r2.top, r2.right, r2.bottom);
            fprintf(stderr, "assertRectEq: %s\n", msg.string());
            return ::testing::AssertionFailure(
                    ::testing::Message(msg.string()));
        } else {
            return ::testing::AssertionSuccess();
        }
    }

    int mDisplaySecs;
    sp<SurfaceComposerClient> mComposerClient;
    sp<SurfaceControl> mSurfaceControl;

    EGLDisplay mEglDisplay;
    EGLSurface mEglSurface;
    EGLContext mEglContext;
    EGLConfig  mGlConfig;
};

static void loadShader(GLenum shaderType, const char* pSource,
        GLuint* outShader) {
    GLuint shader = glCreateShader(shaderType);
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    if (shader) {
        glShaderSource(shader, 1, &pSource, NULL);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
        glCompileShader(shader);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
        GLint compiled = 0;
        glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
        if (!compiled) {
            GLint infoLen = 0;
            glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            if (infoLen) {
                char* buf = (char*) malloc(infoLen);
                if (buf) {
                    glGetShaderInfoLog(shader, infoLen, NULL, buf);
                    printf("Shader compile log:\n%s\n", buf);
                    free(buf);
                    FAIL();
                }
            } else {
                char* buf = (char*) malloc(0x1000);
                if (buf) {
                    glGetShaderInfoLog(shader, 0x1000, NULL, buf);
                    printf("Shader compile log:\n%s\n", buf);
                    free(buf);
                    FAIL();
                }
            }
            glDeleteShader(shader);
            shader = 0;
        }
    }
    ASSERT_TRUE(shader != 0);
    *outShader = shader;
}

static void createProgram(const char* pVertexSource,
        const char* pFragmentSource, GLuint* outPgm) {
    GLuint vertexShader, fragmentShader;
    {
        SCOPED_TRACE("compiling vertex shader");
        ASSERT_NO_FATAL_FAILURE(loadShader(GL_VERTEX_SHADER, pVertexSource,
                &vertexShader));
    }
    {
        SCOPED_TRACE("compiling fragment shader");
        ASSERT_NO_FATAL_FAILURE(loadShader(GL_FRAGMENT_SHADER, pFragmentSource,
                &fragmentShader));
    }

    GLuint program = glCreateProgram();
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    if (program) {
        glAttachShader(program, vertexShader);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
        glAttachShader(program, fragmentShader);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
        glLinkProgram(program);
        GLint linkStatus = GL_FALSE;
        glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
        if (linkStatus != GL_TRUE) {
            GLint bufLength = 0;
            glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
            if (bufLength) {
                char* buf = (char*) malloc(bufLength);
                if (buf) {
                    glGetProgramInfoLog(program, bufLength, NULL, buf);
                    printf("Program link log:\n%s\n", buf);
                    free(buf);
                    FAIL();
                }
            }
            glDeleteProgram(program);
            program = 0;
        }
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);
    ASSERT_TRUE(program != 0);
    *outPgm = program;
}

static int abs(int value) {
    return value > 0 ? value : -value;
}


// XXX: Code above this point should live elsewhere

class SurfaceTextureGLTest : public GLTest {
protected:
    enum { TEX_ID = 123 };

    virtual void SetUp() {
        GLTest::SetUp();
        mST = new SurfaceTexture(TEX_ID);
        mSTC = new SurfaceTextureClient(mST);
        mANW = mSTC;
        mTextureRenderer = new TextureRenderer(TEX_ID, mST);
        ASSERT_NO_FATAL_FAILURE(mTextureRenderer->SetUp());
        mFW = new FrameWaiter;
        mST->setFrameAvailableListener(mFW);
    }

    virtual void TearDown() {
        mANW.clear();
        mSTC.clear();
        mST.clear();
        GLTest::TearDown();
    }

    void drawTexture() {
        mTextureRenderer->drawTexture();
    }

    class TextureRenderer: public RefBase {
    public:
        TextureRenderer(GLuint texName, const sp<SurfaceTexture>& st):
                mTexName(texName),
                mST(st) {
        }

        void SetUp() {
            const char vsrc[] =
                "attribute vec4 vPosition;\n"
                "varying vec2 texCoords;\n"
                "uniform mat4 texMatrix;\n"
                "void main() {\n"
                "  vec2 vTexCoords = 0.5 * (vPosition.xy + vec2(1.0, 1.0));\n"
                "  texCoords = (texMatrix * vec4(vTexCoords, 0.0, 1.0)).xy;\n"
                "  gl_Position = vPosition;\n"
                "}\n";

            const char fsrc[] =
                "#extension GL_OES_EGL_image_external : require\n"
                "precision mediump float;\n"
                "uniform samplerExternalOES texSampler;\n"
                "varying vec2 texCoords;\n"
                "void main() {\n"
                "  gl_FragColor = texture2D(texSampler, texCoords);\n"
                "}\n";

            {
                SCOPED_TRACE("creating shader program");
                ASSERT_NO_FATAL_FAILURE(createProgram(vsrc, fsrc, &mPgm));
            }

            mPositionHandle = glGetAttribLocation(mPgm, "vPosition");
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            ASSERT_NE(-1, mPositionHandle);
            mTexSamplerHandle = glGetUniformLocation(mPgm, "texSampler");
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            ASSERT_NE(-1, mTexSamplerHandle);
            mTexMatrixHandle = glGetUniformLocation(mPgm, "texMatrix");
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            ASSERT_NE(-1, mTexMatrixHandle);
        }

        // drawTexture draws the SurfaceTexture over the entire GL viewport.
        void drawTexture() {
            static const GLfloat triangleVertices[] = {
                -1.0f, 1.0f,
                -1.0f, -1.0f,
                1.0f, -1.0f,
                1.0f, 1.0f,
            };

            glVertexAttribPointer(mPositionHandle, 2, GL_FLOAT, GL_FALSE, 0,
                    triangleVertices);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            glEnableVertexAttribArray(mPositionHandle);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());

            glUseProgram(mPgm);
            glUniform1i(mTexSamplerHandle, 0);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTexName);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());

            // XXX: These calls are not needed for GL_TEXTURE_EXTERNAL_OES as
            // they're setting the defautls for that target, but when hacking
            // things to use GL_TEXTURE_2D they are needed to achieve the same
            // behavior.
            glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER,
                    GL_LINEAR);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER,
                    GL_LINEAR);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S,
                    GL_CLAMP_TO_EDGE);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
            glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T,
                    GL_CLAMP_TO_EDGE);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());

            GLfloat texMatrix[16];
            mST->getTransformMatrix(texMatrix);
            glUniformMatrix4fv(mTexMatrixHandle, 1, GL_FALSE, texMatrix);

            glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
            ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
        }

        GLuint mTexName;
        sp<SurfaceTexture> mST;
        GLuint mPgm;
        GLint mPositionHandle;
        GLint mTexSamplerHandle;
        GLint mTexMatrixHandle;
    };

    class FrameWaiter : public SurfaceTexture::FrameAvailableListener {
    public:
        FrameWaiter():
                mPendingFrames(0) {
        }

        void waitForFrame() {
            Mutex::Autolock lock(mMutex);
            while (mPendingFrames == 0) {
                mCondition.wait(mMutex);
            }
            mPendingFrames--;
        }

        virtual void onFrameAvailable() {
            Mutex::Autolock lock(mMutex);
            mPendingFrames++;
            mCondition.signal();
        }

        int mPendingFrames;
        Mutex mMutex;
        Condition mCondition;
    };

    // Note that SurfaceTexture will lose the notifications
    // onBuffersReleased and onFrameAvailable as there is currently
    // no way to forward the events.  This DisconnectWaiter will not let the
    // disconnect finish until finishDisconnect() is called.  It will
    // also block until a disconnect is called
    class DisconnectWaiter : public BufferQueue::ConsumerListener {
    public:
        DisconnectWaiter () :
            mWaitForDisconnect(false),
            mPendingFrames(0) {
        }

        void waitForFrame() {
            Mutex::Autolock lock(mMutex);
            while (mPendingFrames == 0) {
                mFrameCondition.wait(mMutex);
            }
            mPendingFrames--;
        }

        virtual void onFrameAvailable() {
            Mutex::Autolock lock(mMutex);
            mPendingFrames++;
            mFrameCondition.signal();
        }

        virtual void onBuffersReleased() {
            Mutex::Autolock lock(mMutex);
            while (!mWaitForDisconnect) {
                mDisconnectCondition.wait(mMutex);
            }
        }

        void finishDisconnect() {
            Mutex::Autolock lock(mMutex);
            mWaitForDisconnect = true;
            mDisconnectCondition.signal();
        }

    private:
        Mutex mMutex;

        bool mWaitForDisconnect;
        Condition mDisconnectCondition;

        int mPendingFrames;
        Condition mFrameCondition;
    };

    sp<SurfaceTexture> mST;
    sp<SurfaceTextureClient> mSTC;
    sp<ANativeWindow> mANW;
    sp<TextureRenderer> mTextureRenderer;
    sp<FrameWaiter> mFW;
};

// Fill a YV12 buffer with a multi-colored checkerboard pattern
void fillYV12Buffer(uint8_t* buf, int w, int h, int stride) {
    const int blockWidth = w > 16 ? w / 16 : 1;
    const int blockHeight = h > 16 ? h / 16 : 1;
    const int yuvTexOffsetY = 0;
    int yuvTexStrideY = stride;
    int yuvTexOffsetV = yuvTexStrideY * h;
    int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf;
    int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * h/2;
    int yuvTexStrideU = yuvTexStrideV;
    for (int x = 0; x < w; x++) {
        for (int y = 0; y < h; y++) {
            int parityX = (x / blockWidth) & 1;
            int parityY = (y / blockHeight) & 1;
            unsigned char intensity = (parityX ^ parityY) ? 63 : 191;
            buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = intensity;
            if (x < w / 2 && y < h / 2) {
                buf[yuvTexOffsetU + (y * yuvTexStrideU) + x] = intensity;
                if (x * 2 < w / 2 && y * 2 < h / 2) {
                    buf[yuvTexOffsetV + (y*2 * yuvTexStrideV) + x*2 + 0] =
                    buf[yuvTexOffsetV + (y*2 * yuvTexStrideV) + x*2 + 1] =
                    buf[yuvTexOffsetV + ((y*2+1) * yuvTexStrideV) + x*2 + 0] =
                    buf[yuvTexOffsetV + ((y*2+1) * yuvTexStrideV) + x*2 + 1] =
                        intensity;
                }
            }
        }
    }
}

// Fill a YV12 buffer with red outside a given rectangle and green inside it.
void fillYV12BufferRect(uint8_t* buf, int w, int h, int stride,
        const android_native_rect_t& rect) {
    const int yuvTexOffsetY = 0;
    int yuvTexStrideY = stride;
    int yuvTexOffsetV = yuvTexStrideY * h;
    int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf;
    int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * h/2;
    int yuvTexStrideU = yuvTexStrideV;
    for (int x = 0; x < w; x++) {
        for (int y = 0; y < h; y++) {
            bool inside = rect.left <= x && x < rect.right &&
                    rect.top <= y && y < rect.bottom;
            buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = inside ? 240 : 64;
            if (x < w / 2 && y < h / 2) {
                bool inside = rect.left <= 2*x && 2*x < rect.right &&
                        rect.top <= 2*y && 2*y < rect.bottom;
                buf[yuvTexOffsetU + (y * yuvTexStrideU) + x] = 16;
                buf[yuvTexOffsetV + (y * yuvTexStrideV) + x] =
                        inside ? 16 : 255;
            }
        }
    }
}

void fillRGBA8Buffer(uint8_t* buf, int w, int h, int stride) {
    const size_t PIXEL_SIZE = 4;
    for (int x = 0; x < w; x++) {
        for (int y = 0; y < h; y++) {
            off_t offset = (y * stride + x) * PIXEL_SIZE;
            for (int c = 0; c < 4; c++) {
                int parityX = (x / (1 << (c+2))) & 1;
                int parityY = (y / (1 << (c+2))) & 1;
                buf[offset + c] = (parityX ^ parityY) ? 231 : 35;
            }
        }
    }
}

void fillRGBA8BufferSolid(uint8_t* buf, int w, int h, int stride, uint8_t r,
        uint8_t g, uint8_t b, uint8_t a) {
    const size_t PIXEL_SIZE = 4;
    for (int y = 0; y < h; y++) {
        for (int x = 0; x < h; x++) {
            off_t offset = (y * stride + x) * PIXEL_SIZE;
            buf[offset + 0] = r;
            buf[offset + 1] = g;
            buf[offset + 2] = b;
            buf[offset + 3] = a;
        }
    }
}

// Produce a single RGBA8 frame by filling a buffer with a checkerboard pattern
// using the CPU.  This assumes that the ANativeWindow is already configured to
// allow this to be done (e.g. the format is set to RGBA8).
//
// Calls to this function should be wrapped in an ASSERT_NO_FATAL_FAILURE().
void produceOneRGBA8Frame(const sp<ANativeWindow>& anw) {
    android_native_buffer_t* anb;
    ASSERT_EQ(NO_ERROR, anw->dequeueBuffer(anw.get(), &anb));
    ASSERT_TRUE(anb != NULL);

    sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
    ASSERT_EQ(NO_ERROR, anw->lockBuffer(anw.get(), buf->getNativeBuffer()));

    uint8_t* img = NULL;
    ASSERT_EQ(NO_ERROR, buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN,
            (void**)(&img)));
    fillRGBA8Buffer(img, buf->getWidth(), buf->getHeight(), buf->getStride());
    ASSERT_EQ(NO_ERROR, buf->unlock());
    ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf->getNativeBuffer()));
}

TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferNpot) {
    const int texWidth = 64;
    const int texHeight = 66;

    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));

    ANativeWindowBuffer* anb;
    ASSERT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
    ASSERT_TRUE(anb != NULL);

    sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
    ASSERT_EQ(NO_ERROR, mANW->lockBuffer(mANW.get(), buf->getNativeBuffer()));

    // Fill the buffer with the a checkerboard pattern
    uint8_t* img = NULL;
    buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
    fillYV12Buffer(img, texWidth, texHeight, buf->getStride());
    buf->unlock();
    ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer()));

    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0, 255, 127, 255, 255));
    EXPECT_TRUE(checkPixel(63,  0,   0, 133,   0, 255));
    EXPECT_TRUE(checkPixel(63, 65,   0, 133,   0, 255));
    EXPECT_TRUE(checkPixel( 0, 65, 255, 127, 255, 255));

    EXPECT_TRUE(checkPixel(22, 44, 255, 127, 255, 255));
    EXPECT_TRUE(checkPixel(45, 52, 255, 127, 255, 255));
    EXPECT_TRUE(checkPixel(52, 51,  98, 255,  73, 255));
    EXPECT_TRUE(checkPixel( 7, 31, 155,   0, 118, 255));
    EXPECT_TRUE(checkPixel(31,  9, 107,  24,  87, 255));
    EXPECT_TRUE(checkPixel(29, 35, 255, 127, 255, 255));
    EXPECT_TRUE(checkPixel(36, 22, 155,  29,   0, 255));
}

TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferPow2) {
    const int texWidth = 64;
    const int texHeight = 64;

    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));

    ANativeWindowBuffer* anb;
    ASSERT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
    ASSERT_TRUE(anb != NULL);

    sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
    ASSERT_EQ(NO_ERROR, mANW->lockBuffer(mANW.get(), buf->getNativeBuffer()));

    // Fill the buffer with the a checkerboard pattern
    uint8_t* img = NULL;
    buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
    fillYV12Buffer(img, texWidth, texHeight, buf->getStride());
    buf->unlock();
    ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer()));

    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0,   0, 133,   0, 255));
    EXPECT_TRUE(checkPixel(63,  0, 255, 127, 255, 255));
    EXPECT_TRUE(checkPixel(63, 63,   0, 133,   0, 255));
    EXPECT_TRUE(checkPixel( 0, 63, 255, 127, 255, 255));

    EXPECT_TRUE(checkPixel(22, 19, 100, 255,  74, 255));
    EXPECT_TRUE(checkPixel(45, 11, 100, 255,  74, 255));
    EXPECT_TRUE(checkPixel(52, 12, 155,   0, 181, 255));
    EXPECT_TRUE(checkPixel( 7, 32, 150, 237, 170, 255));
    EXPECT_TRUE(checkPixel(31, 54,   0,  71, 117, 255));
    EXPECT_TRUE(checkPixel(29, 28,   0, 133,   0, 255));
    EXPECT_TRUE(checkPixel(36, 41, 100, 232, 255, 255));
}

TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferWithCrop) {
    const int texWidth = 64;
    const int texHeight = 66;

    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));

    android_native_rect_t crops[] = {
        {4, 6, 22, 36},
        {0, 6, 22, 36},
        {4, 0, 22, 36},
        {4, 6, texWidth, 36},
        {4, 6, 22, texHeight},
    };

    for (int i = 0; i < 5; i++) {
        const android_native_rect_t& crop(crops[i]);
        SCOPED_TRACE(String8::format("rect{ l: %d t: %d r: %d b: %d }",
                crop.left, crop.top, crop.right, crop.bottom).string());

        ASSERT_EQ(NO_ERROR, native_window_set_crop(mANW.get(), &crop));

        ANativeWindowBuffer* anb;
        ASSERT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
        ASSERT_TRUE(anb != NULL);

        sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
        ASSERT_EQ(NO_ERROR, mANW->lockBuffer(mANW.get(),
                buf->getNativeBuffer()));

        uint8_t* img = NULL;
        buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
        fillYV12BufferRect(img, texWidth, texHeight, buf->getStride(), crop);
        buf->unlock();
        ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(),
                buf->getNativeBuffer()));

        mST->updateTexImage();

        glClearColor(0.2, 0.2, 0.2, 0.2);
        glClear(GL_COLOR_BUFFER_BIT);

        glViewport(0, 0, 64, 64);
        drawTexture();

        EXPECT_TRUE(checkPixel( 0,  0,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(63,  0,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(63, 63,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel( 0, 63,  82, 255,  35, 255));

        EXPECT_TRUE(checkPixel(25, 14,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(35, 31,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(57,  6,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel( 5, 42,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(32, 33,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(16, 26,  82, 255,  35, 255));
        EXPECT_TRUE(checkPixel(46, 51,  82, 255,  35, 255));
    }
}

// This test is intended to catch synchronization bugs between the CPU-written
// and GPU-read buffers.
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BuffersRepeatedly) {
    enum { texWidth = 16 };
    enum { texHeight = 16 };
    enum { numFrames = 1024 };

    ASSERT_EQ(NO_ERROR, mST->setSynchronousMode(true));
    ASSERT_EQ(NO_ERROR, mST->setBufferCountServer(2));
    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_WRITE_OFTEN));

    struct TestPixel {
        int x;
        int y;
    };
    const TestPixel testPixels[] = {
        {  4, 11 },
        { 12, 14 },
        {  7,  2 },
    };
    enum {numTestPixels = sizeof(testPixels) / sizeof(testPixels[0])};

    class ProducerThread : public Thread {
    public:
        ProducerThread(const sp<ANativeWindow>& anw,
                const TestPixel* testPixels):
                mANW(anw),
                mTestPixels(testPixels) {
        }

        virtual ~ProducerThread() {
        }

        virtual bool threadLoop() {
            for (int i = 0; i < numFrames; i++) {
                ANativeWindowBuffer* anb;
                if (mANW->dequeueBuffer(mANW.get(), &anb) != NO_ERROR) {
                    return false;
                }
                if (anb == NULL) {
                    return false;
                }

                sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
                if (mANW->lockBuffer(mANW.get(), buf->getNativeBuffer())
                        != NO_ERROR) {
                    return false;
                }

                const int yuvTexOffsetY = 0;
                int stride = buf->getStride();
                int yuvTexStrideY = stride;
                int yuvTexOffsetV = yuvTexStrideY * texHeight;
                int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf;
                int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * texHeight/2;
                int yuvTexStrideU = yuvTexStrideV;

                uint8_t* img = NULL;
                buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));

                // Gray out all the test pixels first, so we're more likely to
                // see a failure if GL is still texturing from the buffer we
                // just dequeued.
                for (int j = 0; j < numTestPixels; j++) {
                    int x = mTestPixels[j].x;
                    int y = mTestPixels[j].y;
                    uint8_t value = 128;
                    img[y*stride + x] = value;
                }

                // Fill the buffer with gray.
                for (int y = 0; y < texHeight; y++) {
                    for (int x = 0; x < texWidth; x++) {
                        img[yuvTexOffsetY + y*yuvTexStrideY + x] = 128;
                        img[yuvTexOffsetU + (y/2)*yuvTexStrideU + x/2] = 128;
                        img[yuvTexOffsetV + (y/2)*yuvTexStrideV + x/2] = 128;
                    }
                }

                // Set the test pixels to either white or black.
                for (int j = 0; j < numTestPixels; j++) {
                    int x = mTestPixels[j].x;
                    int y = mTestPixels[j].y;
                    uint8_t value = 0;
                    if (j == (i % numTestPixels)) {
                        value = 255;
                    }
                    img[y*stride + x] = value;
                }

                buf->unlock();
                if (mANW->queueBuffer(mANW.get(), buf->getNativeBuffer())
                        != NO_ERROR) {
                    return false;
                }
            }
            return false;
        }

        sp<ANativeWindow> mANW;
        const TestPixel* mTestPixels;
    };

    sp<Thread> pt(new ProducerThread(mANW, testPixels));
    pt->run();

    glViewport(0, 0, texWidth, texHeight);

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    // We wait for the first two frames up front so that the producer will be
    // likely to dequeue the buffer that's currently being textured from.
    mFW->waitForFrame();
    mFW->waitForFrame();

    for (int i = 0; i < numFrames; i++) {
        SCOPED_TRACE(String8::format("frame %d", i).string());

        // We must wait for each frame to come in because if we ever do an
        // updateTexImage call that doesn't consume a newly available buffer
        // then the producer and consumer will get out of sync, which will cause
        // a deadlock.
        if (i > 1) {
            mFW->waitForFrame();
        }
        mST->updateTexImage();
        drawTexture();

        for (int j = 0; j < numTestPixels; j++) {
            int x = testPixels[j].x;
            int y = testPixels[j].y;
            uint8_t value = 0;
            if (j == (i % numTestPixels)) {
                // We must y-invert the texture coords
                EXPECT_TRUE(checkPixel(x, texHeight-y-1, 255, 255, 255, 255));
            } else {
                // We must y-invert the texture coords
                EXPECT_TRUE(checkPixel(x, texHeight-y-1, 0, 0, 0, 255));
            }
        }
    }

    pt->requestExitAndWait();
}

TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledRGBABufferNpot) {
    const int texWidth = 64;
    const int texHeight = 66;

    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));

    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0,  35,  35,  35,  35));
    EXPECT_TRUE(checkPixel(63,  0, 231, 231, 231, 231));
    EXPECT_TRUE(checkPixel(63, 65, 231, 231, 231, 231));
    EXPECT_TRUE(checkPixel( 0, 65,  35,  35,  35,  35));

    EXPECT_TRUE(checkPixel(15, 10,  35, 231, 231, 231));
    EXPECT_TRUE(checkPixel(23, 65, 231,  35, 231,  35));
    EXPECT_TRUE(checkPixel(19, 40,  35, 231,  35,  35));
    EXPECT_TRUE(checkPixel(38, 30, 231,  35,  35,  35));
    EXPECT_TRUE(checkPixel(42, 54,  35,  35,  35, 231));
    EXPECT_TRUE(checkPixel(37, 34,  35, 231, 231, 231));
    EXPECT_TRUE(checkPixel(31,  8, 231,  35,  35, 231));
    EXPECT_TRUE(checkPixel(37, 47, 231,  35, 231, 231));
    EXPECT_TRUE(checkPixel(25, 38,  35,  35,  35,  35));
    EXPECT_TRUE(checkPixel(49,  6,  35, 231,  35,  35));
    EXPECT_TRUE(checkPixel(54, 50,  35, 231, 231, 231));
    EXPECT_TRUE(checkPixel(27, 26, 231, 231, 231, 231));
    EXPECT_TRUE(checkPixel(10,  6,  35,  35, 231, 231));
    EXPECT_TRUE(checkPixel(29,  4,  35,  35,  35, 231));
    EXPECT_TRUE(checkPixel(55, 28,  35,  35, 231,  35));
    EXPECT_TRUE(checkPixel(58, 55,  35,  35, 231, 231));
}

TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledRGBABufferPow2) {
    const int texWidth = 64;
    const int texHeight = 64;

    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));

    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0, 231, 231, 231, 231));
    EXPECT_TRUE(checkPixel(63,  0,  35,  35,  35,  35));
    EXPECT_TRUE(checkPixel(63, 63, 231, 231, 231, 231));
    EXPECT_TRUE(checkPixel( 0, 63,  35,  35,  35,  35));

    EXPECT_TRUE(checkPixel(12, 46, 231, 231, 231,  35));
    EXPECT_TRUE(checkPixel(16,  1, 231, 231,  35, 231));
    EXPECT_TRUE(checkPixel(21, 12, 231,  35,  35, 231));
    EXPECT_TRUE(checkPixel(26, 51, 231,  35, 231,  35));
    EXPECT_TRUE(checkPixel( 5, 32,  35, 231, 231,  35));
    EXPECT_TRUE(checkPixel(13,  8,  35, 231, 231, 231));
    EXPECT_TRUE(checkPixel(46,  3,  35,  35, 231,  35));
    EXPECT_TRUE(checkPixel(30, 33,  35,  35,  35,  35));
    EXPECT_TRUE(checkPixel( 6, 52, 231, 231,  35,  35));
    EXPECT_TRUE(checkPixel(55, 33,  35, 231,  35, 231));
    EXPECT_TRUE(checkPixel(16, 29,  35,  35, 231, 231));
    EXPECT_TRUE(checkPixel( 1, 30,  35,  35,  35, 231));
    EXPECT_TRUE(checkPixel(41, 37,  35,  35, 231, 231));
    EXPECT_TRUE(checkPixel(46, 29, 231, 231,  35,  35));
    EXPECT_TRUE(checkPixel(15, 25,  35, 231,  35, 231));
    EXPECT_TRUE(checkPixel( 3, 52,  35, 231,  35,  35));
}

// Tests if SurfaceTexture and BufferQueue are robust enough
// to handle a special case where updateTexImage is called
// in the middle of disconnect.  This ordering is enforced
// by blocking in the disconnect callback.
TEST_F(SurfaceTextureGLTest, DisconnectStressTest) {

    class ProducerThread : public Thread {
    public:
        ProducerThread(const sp<ANativeWindow>& anw):
                mANW(anw) {
        }

        virtual ~ProducerThread() {
        }

        virtual bool threadLoop() {
            ANativeWindowBuffer* anb;

            native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_EGL);

            for (int numFrames =0 ; numFrames < 2; numFrames ++) {

                if (mANW->dequeueBuffer(mANW.get(), &anb) != NO_ERROR) {
                    return false;
                }
                if (anb == NULL) {
                    return false;
                }
                if (mANW->queueBuffer(mANW.get(), anb)
                        != NO_ERROR) {
                    return false;
                }
            }

            native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_EGL);

            return false;
        }

    private:
        sp<ANativeWindow> mANW;
    };

    ASSERT_EQ(OK, mST->setSynchronousMode(true));

    sp<DisconnectWaiter> dw(new DisconnectWaiter());
    mST->getBufferQueue()->consumerConnect(dw);


    sp<Thread> pt(new ProducerThread(mANW));
    pt->run();

    // eat a frame so SurfaceTexture will own an at least one slot
    dw->waitForFrame();
    EXPECT_EQ(OK,mST->updateTexImage());

    dw->waitForFrame();
    // Could fail here as SurfaceTexture thinks it still owns the slot
    // but bufferQueue has released all slots
    EXPECT_EQ(OK,mST->updateTexImage());

    dw->finishDisconnect();
}


// This test ensures that the SurfaceTexture clears the mCurrentTexture
// when it is disconnected and reconnected.  Otherwise it will
// attempt to release a buffer that it does not owned
TEST_F(SurfaceTextureGLTest, DisconnectClearsCurrentTexture) {
    ASSERT_EQ(OK, mST->setSynchronousMode(true));

    ASSERT_EQ(OK, native_window_api_connect(mANW.get(),
            NATIVE_WINDOW_API_EGL));

    ANativeWindowBuffer *anb;

    EXPECT_EQ (OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));

    EXPECT_EQ (OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));

    EXPECT_EQ(OK,mST->updateTexImage());
    EXPECT_EQ(OK,mST->updateTexImage());

    ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(),
            NATIVE_WINDOW_API_EGL));
    ASSERT_EQ(OK, native_window_api_connect(mANW.get(),
            NATIVE_WINDOW_API_EGL));

    ASSERT_EQ(OK, mST->setSynchronousMode(true));

    EXPECT_EQ(OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));

    // Will fail here if mCurrentTexture is not cleared properly
    mFW->waitForFrame();
    EXPECT_EQ(OK,mST->updateTexImage());

    ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(),
            NATIVE_WINDOW_API_EGL));
}

TEST_F(SurfaceTextureGLTest, ScaleToWindowMode) {
    ASSERT_EQ(OK, mST->setSynchronousMode(true));

    ASSERT_EQ(OK, native_window_set_scaling_mode(mANW.get(),
        NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW));

    // The producer image size
    ASSERT_EQ(OK, native_window_set_buffers_dimensions(mANW.get(), 512, 512));

    // The consumer image size (16 x 9) ratio
    mST->setDefaultBufferSize(1280, 720);

    ASSERT_EQ(OK, native_window_api_connect(mANW.get(),
            NATIVE_WINDOW_API_CPU));

    ANativeWindowBuffer *anb;

    android_native_rect_t odd = {23, 78, 123, 477};
    ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &odd));
    EXPECT_EQ (OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));
    mFW->waitForFrame();
    EXPECT_EQ(OK,mST->updateTexImage());
    Rect r = mST->getCurrentCrop();
    assertRectEq(Rect(23, 78, 123, 477), r);

    ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(),
            NATIVE_WINDOW_API_CPU));
}

// This test ensures the scaling mode does the right thing
// ie NATIVE_WINDOW_SCALING_MODE_CROP should crop
// the image such that it has the same aspect ratio as the
// default buffer size
TEST_F(SurfaceTextureGLTest, CroppedScalingMode) {
    ASSERT_EQ(OK, mST->setSynchronousMode(true));

    ASSERT_EQ(OK, native_window_set_scaling_mode(mANW.get(),
        NATIVE_WINDOW_SCALING_MODE_SCALE_CROP));

    // The producer image size
    ASSERT_EQ(OK, native_window_set_buffers_dimensions(mANW.get(), 512, 512));

    // The consumer image size (16 x 9) ratio
    mST->setDefaultBufferSize(1280, 720);

    native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_CPU);

    ANativeWindowBuffer *anb;

    // The crop is in the shape of (320, 180) === 16 x 9
    android_native_rect_t standard = {10, 20, 330, 200};
    ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &standard));
    EXPECT_EQ (OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));
    mFW->waitForFrame();
    EXPECT_EQ(OK,mST->updateTexImage());
    Rect r = mST->getCurrentCrop();
    // crop should be the same as crop (same aspect ratio)
    assertRectEq(Rect(10, 20, 330, 200), r);

    // make this wider then desired aspect 239 x 100 (2.39:1)
    android_native_rect_t wide = {20, 30, 259, 130};
    ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &wide));
    EXPECT_EQ (OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));
    mFW->waitForFrame();
    EXPECT_EQ(OK,mST->updateTexImage());
    r = mST->getCurrentCrop();
    // crop should be the same height, but have cropped left and right borders
    // offset is 30.6 px L+, R-
    assertRectEq(Rect(51, 30, 228, 130), r);

    // This image is taller then desired aspect 400 x 300 (4:3)
    android_native_rect_t narrow = {0, 0, 400, 300};
    ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &narrow));
    EXPECT_EQ (OK, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb));
    mFW->waitForFrame();
    EXPECT_EQ(OK,mST->updateTexImage());
    r = mST->getCurrentCrop();
    // crop should be the same width, but have cropped top and bottom borders
    // offset is 37.5 px
    assertRectEq(Rect(0, 37, 400, 262), r);

    native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
}

TEST_F(SurfaceTextureGLTest, AbandonUnblocksDequeueBuffer) {
    class ProducerThread : public Thread {
    public:
        ProducerThread(const sp<ANativeWindow>& anw):
                mANW(anw),
                mDequeueError(NO_ERROR) {
        }

        virtual ~ProducerThread() {
        }

        virtual bool threadLoop() {
            Mutex::Autolock lock(mMutex);
            ANativeWindowBuffer* anb;

            // Frame 1
            if (mANW->dequeueBuffer(mANW.get(), &anb) != NO_ERROR) {
                return false;
            }
            if (anb == NULL) {
                return false;
            }
            if (mANW->queueBuffer(mANW.get(), anb)
                    != NO_ERROR) {
                return false;
            }

            // Frame 2
            if (mANW->dequeueBuffer(mANW.get(), &anb) != NO_ERROR) {
                return false;
            }
            if (anb == NULL) {
                return false;
            }
            if (mANW->queueBuffer(mANW.get(), anb)
                    != NO_ERROR) {
                return false;
            }

            // Frame 3 - error expected
            mDequeueError = mANW->dequeueBuffer(mANW.get(), &anb);
            return false;
        }

        status_t getDequeueError() {
            Mutex::Autolock lock(mMutex);
            return mDequeueError;
        }

    private:
        sp<ANativeWindow> mANW;
        status_t mDequeueError;
        Mutex mMutex;
    };

    ASSERT_EQ(OK, mST->setSynchronousMode(true));
    ASSERT_EQ(OK, mST->setBufferCountServer(2));

    sp<Thread> pt(new ProducerThread(mANW));
    pt->run();

    mFW->waitForFrame();
    mFW->waitForFrame();

    // Sleep for 100ms to allow the producer thread's dequeueBuffer call to
    // block waiting for a buffer to become available.
    usleep(100000);

    mST->abandon();

    pt->requestExitAndWait();
    ASSERT_EQ(NO_INIT,
            reinterpret_cast<ProducerThread*>(pt.get())->getDequeueError());
}

TEST_F(SurfaceTextureGLTest, InvalidWidthOrHeightFails) {
    int texHeight = 16;
    ANativeWindowBuffer* anb;

    GLint maxTextureSize;
    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize);

    // make sure it works with small textures
    mST->setDefaultBufferSize(16, texHeight);
    EXPECT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(16, anb->width);
    EXPECT_EQ(texHeight, anb->height);
    EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb));
    EXPECT_EQ(NO_ERROR, mST->updateTexImage());

    // make sure it works with GL_MAX_TEXTURE_SIZE
    mST->setDefaultBufferSize(maxTextureSize, texHeight);
    EXPECT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(maxTextureSize, anb->width);
    EXPECT_EQ(texHeight, anb->height);
    EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb));
    EXPECT_EQ(NO_ERROR, mST->updateTexImage());

    // make sure it fails with GL_MAX_TEXTURE_SIZE+1
    mST->setDefaultBufferSize(maxTextureSize+1, texHeight);
    EXPECT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
    EXPECT_EQ(maxTextureSize+1, anb->width);
    EXPECT_EQ(texHeight, anb->height);
    EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb));
    ASSERT_NE(NO_ERROR, mST->updateTexImage());
}

/*
 * This test fixture is for testing GL -> GL texture streaming.  It creates an
 * EGLSurface and an EGLContext for the image producer to use.
 */
class SurfaceTextureGLToGLTest : public SurfaceTextureGLTest {
protected:
    SurfaceTextureGLToGLTest():
            mProducerEglSurface(EGL_NO_SURFACE),
            mProducerEglContext(EGL_NO_CONTEXT) {
    }

    virtual void SetUp() {
        SurfaceTextureGLTest::SetUp();

        mProducerEglSurface = eglCreateWindowSurface(mEglDisplay, mGlConfig,
                mANW.get(), NULL);
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_SURFACE, mProducerEglSurface);

        mProducerEglContext = eglCreateContext(mEglDisplay, mGlConfig,
                EGL_NO_CONTEXT, getContextAttribs());
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_CONTEXT, mProducerEglContext);
    }

    virtual void TearDown() {
        if (mProducerEglContext != EGL_NO_CONTEXT) {
            eglDestroyContext(mEglDisplay, mProducerEglContext);
        }
        if (mProducerEglSurface != EGL_NO_SURFACE) {
            eglDestroySurface(mEglDisplay, mProducerEglSurface);
        }
        SurfaceTextureGLTest::TearDown();
    }

    EGLSurface mProducerEglSurface;
    EGLContext mProducerEglContext;
};

TEST_F(SurfaceTextureGLToGLTest, TexturingFromGLFilledRGBABufferPow2) {
    const int texWidth = 64;
    const int texHeight = 64;

    mST->setDefaultBufferSize(texWidth, texHeight);

    // Do the producer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
            mProducerEglSurface, mProducerEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // This is needed to ensure we pick up a buffer of the correct size.
    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    glClearColor(0.6, 0.6, 0.6, 0.6);
    glClear(GL_COLOR_BUFFER_BIT);

    glEnable(GL_SCISSOR_TEST);
    glScissor(4, 4, 4, 4);
    glClearColor(1.0, 0.0, 0.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT);

    glScissor(24, 48, 4, 4);
    glClearColor(0.0, 1.0, 0.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT);

    glScissor(37, 17, 4, 4);
    glClearColor(0.0, 0.0, 1.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT);

    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    // Do the consumer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    glDisable(GL_SCISSOR_TEST);

    mST->updateTexImage(); // Skip the first frame, which was empty
    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63, 63, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 0, 63, 153, 153, 153, 153));

    EXPECT_TRUE(checkPixel( 4,  7, 255,   0,   0, 255));
    EXPECT_TRUE(checkPixel(25, 51,   0, 255,   0, 255));
    EXPECT_TRUE(checkPixel(40, 19,   0,   0, 255, 255));
    EXPECT_TRUE(checkPixel(29, 51, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 5, 32, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(13,  8, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(46,  3, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(30, 33, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 6, 52, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(55, 33, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(16, 29, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 1, 30, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(41, 37, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(46, 29, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(15, 25, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 3, 52, 153, 153, 153, 153));
}

TEST_F(SurfaceTextureGLToGLTest, EglDestroySurfaceUnrefsBuffers) {
    sp<GraphicBuffer> buffers[2];

    // This test requires async mode to run on a single thread.
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
            mProducerEglSurface, mProducerEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());
    EXPECT_TRUE(eglSwapInterval(mEglDisplay, 0));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    for (int i = 0; i < 2; i++) {
        // Produce a frame
        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
                mProducerEglSurface, mProducerEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        glClear(GL_COLOR_BUFFER_BIT);
        eglSwapBuffers(mEglDisplay, mProducerEglSurface);

        // Consume a frame
        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        mFW->waitForFrame();
        mST->updateTexImage();
        buffers[i] = mST->getCurrentBuffer();
    }

    // Destroy the GL texture object to release its ref on buffers[2].
    GLuint texID = TEX_ID;
    glDeleteTextures(1, &texID);

    // Destroy the EGLSurface
    EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());
    mProducerEglSurface = EGL_NO_SURFACE;

    // This test should have the only reference to buffer 0.
    EXPECT_EQ(1, buffers[0]->getStrongCount());

    // The SurfaceTexture should hold a single reference to buffer 1 in its
    // mCurrentBuffer member.  All of the references in the slots should have
    // been released.
    EXPECT_EQ(2, buffers[1]->getStrongCount());
}

TEST_F(SurfaceTextureGLToGLTest, EglDestroySurfaceAfterAbandonUnrefsBuffers) {
    sp<GraphicBuffer> buffers[3];

    // This test requires async mode to run on a single thread.
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
            mProducerEglSurface, mProducerEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());
    EXPECT_TRUE(eglSwapInterval(mEglDisplay, 0));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    for (int i = 0; i < 3; i++) {
        // Produce a frame
        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
                mProducerEglSurface, mProducerEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        glClear(GL_COLOR_BUFFER_BIT);
        EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());

        // Consume a frame
        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        mFW->waitForFrame();
        ASSERT_EQ(NO_ERROR, mST->updateTexImage());
        buffers[i] = mST->getCurrentBuffer();
    }

    // Abandon the SurfaceTexture, releasing the ref that the SurfaceTexture has
    // on buffers[2].
    mST->abandon();

    // Destroy the GL texture object to release its ref on buffers[2].
    GLuint texID = TEX_ID;
    glDeleteTextures(1, &texID);

    // Destroy the EGLSurface.
    EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());
    mProducerEglSurface = EGL_NO_SURFACE;

    EXPECT_EQ(1, buffers[0]->getStrongCount());
    EXPECT_EQ(1, buffers[1]->getStrongCount());

    // Depending on how lazily the GL driver dequeues buffers, we may end up
    // with either two or three total buffers.  If there are three, make sure
    // the last one was properly down-ref'd.
    if (buffers[2] != buffers[0]) {
        EXPECT_EQ(1, buffers[2]->getStrongCount());
    }
}

TEST_F(SurfaceTextureGLToGLTest, EglSurfaceDefaultsToSynchronousMode) {
    // This test requires 3 buffers to run on a single thread.
    mST->setBufferCountServer(3);

    ASSERT_TRUE(mST->isSynchronousMode());

    for (int i = 0; i < 10; i++) {
        // Produce a frame
        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
                mProducerEglSurface, mProducerEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        glClear(GL_COLOR_BUFFER_BIT);
        EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());

        // Consume a frame
        EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_EQ(NO_ERROR, mST->updateTexImage());
    }

    ASSERT_TRUE(mST->isSynchronousMode());
}

TEST_F(SurfaceTextureGLToGLTest, TexturingFromUserSizedGLFilledBuffer) {
    enum { texWidth = 64 };
    enum { texHeight = 64 };

    // Set the user buffer size.
    native_window_set_buffers_user_dimensions(mANW.get(), texWidth, texHeight);

    // Do the producer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
            mProducerEglSurface, mProducerEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // This is needed to ensure we pick up a buffer of the correct size.
    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    glClearColor(0.6, 0.6, 0.6, 0.6);
    glClear(GL_COLOR_BUFFER_BIT);

    glEnable(GL_SCISSOR_TEST);
    glScissor(4, 4, 1, 1);
    glClearColor(1.0, 0.0, 0.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT);

    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    // Do the consumer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    glDisable(GL_SCISSOR_TEST);

    mST->updateTexImage(); // Skip the first frame, which was empty
    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63, 63, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 0, 63, 153, 153, 153, 153));

    EXPECT_TRUE(checkPixel( 4,  4, 255,   0,   0, 255));
    EXPECT_TRUE(checkPixel( 5,  5, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 3,  3, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(45, 52, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(12, 36, 153, 153, 153, 153));
}

TEST_F(SurfaceTextureGLToGLTest, TexturingFromPreRotatedUserSizedGLFilledBuffer) {
    enum { texWidth = 64 };
    enum { texHeight = 16 };

    // Set the transform hint.
    mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90);

    // Set the user buffer size.
    native_window_set_buffers_user_dimensions(mANW.get(), texWidth, texHeight);

    // Do the producer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
            mProducerEglSurface, mProducerEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // This is needed to ensure we pick up a buffer of the correct size and the
    // new rotation hint.
    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    glClearColor(0.6, 0.6, 0.6, 0.6);
    glClear(GL_COLOR_BUFFER_BIT);

    glEnable(GL_SCISSOR_TEST);
    glScissor(24, 4, 1, 1);
    glClearColor(1.0, 0.0, 0.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT);

    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    // Do the consumer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    glDisable(GL_SCISSOR_TEST);

    mST->updateTexImage(); // Skip the first frame, which was empty
    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63, 15, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 0, 15, 153, 153, 153, 153));

    EXPECT_TRUE(checkPixel(24,  4, 255,   0,   0, 255));
    EXPECT_TRUE(checkPixel(25,  5, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(23,  3, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(45, 13, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(12,  8, 153, 153, 153, 153));
}

TEST_F(SurfaceTextureGLToGLTest, TexturingFromPreRotatedGLFilledBuffer) {
    enum { texWidth = 64 };
    enum { texHeight = 16 };

    // Set the transform hint.
    mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90);

    // Set the default buffer size.
    mST->setDefaultBufferSize(texWidth, texHeight);

    // Do the producer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
            mProducerEglSurface, mProducerEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // This is needed to ensure we pick up a buffer of the correct size and the
    // new rotation hint.
    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    glClearColor(0.6, 0.6, 0.6, 0.6);
    glClear(GL_COLOR_BUFFER_BIT);

    glEnable(GL_SCISSOR_TEST);
    glScissor(24, 4, 1, 1);
    glClearColor(1.0, 0.0, 0.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT);

    eglSwapBuffers(mEglDisplay, mProducerEglSurface);

    // Do the consumer side of things
    EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    glDisable(GL_SCISSOR_TEST);

    mST->updateTexImage(); // Skip the first frame, which was empty
    mST->updateTexImage();

    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);

    glViewport(0, 0, texWidth, texHeight);
    drawTexture();

    EXPECT_TRUE(checkPixel( 0,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63,  0, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(63, 15, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel( 0, 15, 153, 153, 153, 153));

    EXPECT_TRUE(checkPixel(24,  4, 255,   0,   0, 255));
    EXPECT_TRUE(checkPixel(25,  5, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(23,  3, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(45, 13, 153, 153, 153, 153));
    EXPECT_TRUE(checkPixel(12,  8, 153, 153, 153, 153));
}

/*
 * This test fixture is for testing GL -> GL texture streaming from one thread
 * to another.  It contains functionality to create a producer thread that will
 * perform GL rendering to an ANativeWindow that feeds frames to a
 * SurfaceTexture.  Additionally it supports interlocking the producer and
 * consumer threads so that a specific sequence of calls can be
 * deterministically created by the test.
 *
 * The intended usage is as follows:
 *
 * TEST_F(...) {
 *     class PT : public ProducerThread {
 *         virtual void render() {
 *             ...
 *             swapBuffers();
 *         }
 *     };
 *
 *     runProducerThread(new PT());
 *
 *     // The order of these calls will vary from test to test and may include
 *     // multiple frames and additional operations (e.g. GL rendering from the
 *     // texture).
 *     fc->waitForFrame();
 *     mST->updateTexImage();
 *     fc->finishFrame();
 * }
 *
 */
class SurfaceTextureGLThreadToGLTest : public SurfaceTextureGLToGLTest {
protected:

    // ProducerThread is an abstract base class to simplify the creation of
    // OpenGL ES frame producer threads.
    class ProducerThread : public Thread {
    public:
        virtual ~ProducerThread() {
        }

        void setEglObjects(EGLDisplay producerEglDisplay,
                EGLSurface producerEglSurface,
                EGLContext producerEglContext) {
            mProducerEglDisplay = producerEglDisplay;
            mProducerEglSurface = producerEglSurface;
            mProducerEglContext = producerEglContext;
        }

        virtual bool threadLoop() {
            eglMakeCurrent(mProducerEglDisplay, mProducerEglSurface,
                    mProducerEglSurface, mProducerEglContext);
            render();
            eglMakeCurrent(mProducerEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
                    EGL_NO_CONTEXT);
            return false;
        }

    protected:
        virtual void render() = 0;

        void swapBuffers() {
            eglSwapBuffers(mProducerEglDisplay, mProducerEglSurface);
        }

        EGLDisplay mProducerEglDisplay;
        EGLSurface mProducerEglSurface;
        EGLContext mProducerEglContext;
    };

    // FrameCondition is a utility class for interlocking between the producer
    // and consumer threads.  The FrameCondition object should be created and
    // destroyed in the consumer thread only.  The consumer thread should set
    // the FrameCondition as the FrameAvailableListener of the SurfaceTexture,
    // and should call both waitForFrame and finishFrame once for each expected
    // frame.
    //
    // This interlocking relies on the fact that onFrameAvailable gets called
    // synchronously from SurfaceTexture::queueBuffer.
    class FrameCondition : public SurfaceTexture::FrameAvailableListener {
    public:
        FrameCondition():
                mFrameAvailable(false),
                mFrameFinished(false) {
        }

        // waitForFrame waits for the next frame to arrive.  This should be
        // called from the consumer thread once for every frame expected by the
        // test.
        void waitForFrame() {
            Mutex::Autolock lock(mMutex);
            ALOGV("+waitForFrame");
            while (!mFrameAvailable) {
                mFrameAvailableCondition.wait(mMutex);
            }
            mFrameAvailable = false;
            ALOGV("-waitForFrame");
        }

        // Allow the producer to return from its swapBuffers call and continue
        // on to produce the next frame.  This should be called by the consumer
        // thread once for every frame expected by the test.
        void finishFrame() {
            Mutex::Autolock lock(mMutex);
            ALOGV("+finishFrame");
            mFrameFinished = true;
            mFrameFinishCondition.signal();
            ALOGV("-finishFrame");
        }

        // This should be called by SurfaceTexture on the producer thread.
        virtual void onFrameAvailable() {
            Mutex::Autolock lock(mMutex);
            ALOGV("+onFrameAvailable");
            mFrameAvailable = true;
            mFrameAvailableCondition.signal();
            while (!mFrameFinished) {
                mFrameFinishCondition.wait(mMutex);
            }
            mFrameFinished = false;
            ALOGV("-onFrameAvailable");
        }

    protected:
        bool mFrameAvailable;
        bool mFrameFinished;

        Mutex mMutex;
        Condition mFrameAvailableCondition;
        Condition mFrameFinishCondition;
    };

    virtual void SetUp() {
        SurfaceTextureGLToGLTest::SetUp();
        mFC = new FrameCondition();
        mST->setFrameAvailableListener(mFC);
    }

    virtual void TearDown() {
        if (mProducerThread != NULL) {
            mProducerThread->requestExitAndWait();
        }
        mProducerThread.clear();
        mFC.clear();
        SurfaceTextureGLToGLTest::TearDown();
    }

    void runProducerThread(const sp<ProducerThread> producerThread) {
        ASSERT_TRUE(mProducerThread == NULL);
        mProducerThread = producerThread;
        producerThread->setEglObjects(mEglDisplay, mProducerEglSurface,
                mProducerEglContext);
        producerThread->run();
    }

    sp<ProducerThread> mProducerThread;
    sp<FrameCondition> mFC;
};

TEST_F(SurfaceTextureGLThreadToGLTest,
        UpdateTexImageBeforeFrameFinishedCompletes) {
    class PT : public ProducerThread {
        virtual void render() {
            glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
            glClear(GL_COLOR_BUFFER_BIT);
            swapBuffers();
        }
    };

    runProducerThread(new PT());

    mFC->waitForFrame();
    mST->updateTexImage();
    mFC->finishFrame();

    // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
}

TEST_F(SurfaceTextureGLThreadToGLTest,
        UpdateTexImageAfterFrameFinishedCompletes) {
    class PT : public ProducerThread {
        virtual void render() {
            glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
            glClear(GL_COLOR_BUFFER_BIT);
            swapBuffers();
        }
    };

    runProducerThread(new PT());

    mFC->waitForFrame();
    mFC->finishFrame();
    mST->updateTexImage();

    // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
}

TEST_F(SurfaceTextureGLThreadToGLTest,
        RepeatedUpdateTexImageBeforeFrameFinishedCompletes) {
    enum { NUM_ITERATIONS = 1024 };

    class PT : public ProducerThread {
        virtual void render() {
            for (int i = 0; i < NUM_ITERATIONS; i++) {
                glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
                glClear(GL_COLOR_BUFFER_BIT);
                ALOGV("+swapBuffers");
                swapBuffers();
                ALOGV("-swapBuffers");
            }
        }
    };

    runProducerThread(new PT());

    for (int i = 0; i < NUM_ITERATIONS; i++) {
        mFC->waitForFrame();
        ALOGV("+updateTexImage");
        mST->updateTexImage();
        ALOGV("-updateTexImage");
        mFC->finishFrame();

        // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
    }
}

TEST_F(SurfaceTextureGLThreadToGLTest,
        RepeatedUpdateTexImageAfterFrameFinishedCompletes) {
    enum { NUM_ITERATIONS = 1024 };

    class PT : public ProducerThread {
        virtual void render() {
            for (int i = 0; i < NUM_ITERATIONS; i++) {
                glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
                glClear(GL_COLOR_BUFFER_BIT);
                ALOGV("+swapBuffers");
                swapBuffers();
                ALOGV("-swapBuffers");
            }
        }
    };

    runProducerThread(new PT());

    for (int i = 0; i < NUM_ITERATIONS; i++) {
        mFC->waitForFrame();
        mFC->finishFrame();
        ALOGV("+updateTexImage");
        mST->updateTexImage();
        ALOGV("-updateTexImage");

        // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
    }
}

// XXX: This test is disabled because it is currently hanging on some devices.
TEST_F(SurfaceTextureGLThreadToGLTest,
        DISABLED_RepeatedSwapBuffersWhileDequeueStalledCompletes) {
    enum { NUM_ITERATIONS = 64 };

    class PT : public ProducerThread {
        virtual void render() {
            for (int i = 0; i < NUM_ITERATIONS; i++) {
                glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
                glClear(GL_COLOR_BUFFER_BIT);
                ALOGV("+swapBuffers");
                swapBuffers();
                ALOGV("-swapBuffers");
            }
        }
    };

    ASSERT_EQ(OK, mST->setSynchronousMode(true));
    ASSERT_EQ(OK, mST->setBufferCountServer(2));

    runProducerThread(new PT());

    // Allow three frames to be rendered and queued before starting the
    // rendering in this thread.  For the latter two frames we don't call
    // updateTexImage so the next dequeue from the producer thread will block
    // waiting for a frame to become available.
    mFC->waitForFrame();
    mFC->finishFrame();

    // We must call updateTexImage to consume the first frame so that the
    // SurfaceTexture is able to reduce the buffer count to 2.  This is because
    // the GL driver may dequeue a buffer when the EGLSurface is created, and
    // that happens before we call setBufferCountServer.  It's possible that the
    // driver does not dequeue a buffer at EGLSurface creation time, so we
    // cannot rely on this to cause the second dequeueBuffer call to block.
    mST->updateTexImage();

    mFC->waitForFrame();
    mFC->finishFrame();
    mFC->waitForFrame();
    mFC->finishFrame();

    // Sleep for 100ms to allow the producer thread's dequeueBuffer call to
    // block waiting for a buffer to become available.
    usleep(100000);

    // Render and present a number of images.  This thread should not be blocked
    // by the fact that the producer thread is blocking in dequeue.
    for (int i = 0; i < NUM_ITERATIONS; i++) {
        glClear(GL_COLOR_BUFFER_BIT);
        eglSwapBuffers(mEglDisplay, mEglSurface);
    }

    // Consume the two pending buffers to unblock the producer thread.
    mST->updateTexImage();
    mST->updateTexImage();

    // Consume the remaining buffers from the producer thread.
    for (int i = 0; i < NUM_ITERATIONS-3; i++) {
        mFC->waitForFrame();
        mFC->finishFrame();
        ALOGV("+updateTexImage");
        mST->updateTexImage();
        ALOGV("-updateTexImage");
    }
}

class SurfaceTextureFBOTest : public SurfaceTextureGLTest {
protected:

    virtual void SetUp() {
        SurfaceTextureGLTest::SetUp();

        glGenFramebuffers(1, &mFbo);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());

        glGenTextures(1, &mFboTex);
        glBindTexture(GL_TEXTURE_2D, mFboTex);
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, getSurfaceWidth(),
                getSurfaceHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
        glBindTexture(GL_TEXTURE_2D, 0);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());

        glBindFramebuffer(GL_FRAMEBUFFER, mFbo);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                GL_TEXTURE_2D, mFboTex, 0);
        glBindFramebuffer(GL_FRAMEBUFFER, 0);
        ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    }

    virtual void TearDown() {
        SurfaceTextureGLTest::TearDown();

        glDeleteTextures(1, &mFboTex);
        glDeleteFramebuffers(1, &mFbo);
    }

    GLuint mFbo;
    GLuint mFboTex;
};

// This test is intended to verify that proper synchronization is done when
// rendering into an FBO.
TEST_F(SurfaceTextureFBOTest, BlitFromCpuFilledBufferToFbo) {
    const int texWidth = 64;
    const int texHeight = 64;

    ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
            texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888));
    ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
            GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));

    android_native_buffer_t* anb;
    ASSERT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
    ASSERT_TRUE(anb != NULL);

    sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
    ASSERT_EQ(NO_ERROR, mANW->lockBuffer(mANW.get(), buf->getNativeBuffer()));

    // Fill the buffer with green
    uint8_t* img = NULL;
    buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
    fillRGBA8BufferSolid(img, texWidth, texHeight, buf->getStride(), 0, 255,
            0, 255);
    buf->unlock();
    ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer()));

    ASSERT_EQ(NO_ERROR, mST->updateTexImage());

    glBindFramebuffer(GL_FRAMEBUFFER, mFbo);
    drawTexture();
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    for (int i = 0; i < 4; i++) {
        SCOPED_TRACE(String8::format("frame %d", i).string());

        ASSERT_EQ(NO_ERROR, mANW->dequeueBuffer(mANW.get(), &anb));
        ASSERT_TRUE(anb != NULL);

        buf = new GraphicBuffer(anb, false);
        ASSERT_EQ(NO_ERROR, mANW->lockBuffer(mANW.get(),
                buf->getNativeBuffer()));

        // Fill the buffer with red
        ASSERT_EQ(NO_ERROR, buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN,
                (void**)(&img)));
        fillRGBA8BufferSolid(img, texWidth, texHeight, buf->getStride(), 255, 0,
                0, 255);
        ASSERT_EQ(NO_ERROR, buf->unlock());
        ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(),
                buf->getNativeBuffer()));

        ASSERT_EQ(NO_ERROR, mST->updateTexImage());

        drawTexture();

        EXPECT_TRUE(checkPixel( 24, 39, 255, 0, 0, 255));
    }

    glBindFramebuffer(GL_FRAMEBUFFER, mFbo);

    EXPECT_TRUE(checkPixel( 24, 39, 0, 255, 0, 255));
}

class SurfaceTextureMultiContextGLTest : public SurfaceTextureGLTest {
protected:
    enum { SECOND_TEX_ID = 123 };
    enum { THIRD_TEX_ID = 456 };

    SurfaceTextureMultiContextGLTest():
            mSecondEglContext(EGL_NO_CONTEXT) {
    }

    virtual void SetUp() {
        SurfaceTextureGLTest::SetUp();

        // Set up the secondary context and texture renderer.
        mSecondEglContext = eglCreateContext(mEglDisplay, mGlConfig,
                EGL_NO_CONTEXT, getContextAttribs());
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_CONTEXT, mSecondEglContext);

        ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mSecondEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        mSecondTextureRenderer = new TextureRenderer(SECOND_TEX_ID, mST);
        ASSERT_NO_FATAL_FAILURE(mSecondTextureRenderer->SetUp());

        // Set up the tertiary context and texture renderer.
        mThirdEglContext = eglCreateContext(mEglDisplay, mGlConfig,
                EGL_NO_CONTEXT, getContextAttribs());
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        ASSERT_NE(EGL_NO_CONTEXT, mThirdEglContext);

        ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mThirdEglContext));
        ASSERT_EQ(EGL_SUCCESS, eglGetError());
        mThirdTextureRenderer = new TextureRenderer(THIRD_TEX_ID, mST);
        ASSERT_NO_FATAL_FAILURE(mThirdTextureRenderer->SetUp());

        // Switch back to the primary context to start the tests.
        ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
                mEglContext));
    }

    virtual void TearDown() {
        if (mThirdEglContext != EGL_NO_CONTEXT) {
            eglDestroyContext(mEglDisplay, mThirdEglContext);
        }
        if (mSecondEglContext != EGL_NO_CONTEXT) {
            eglDestroyContext(mEglDisplay, mSecondEglContext);
        }
        SurfaceTextureGLTest::TearDown();
    }

    EGLContext mSecondEglContext;
    sp<TextureRenderer> mSecondTextureRenderer;

    EGLContext mThirdEglContext;
    sp<TextureRenderer> mThirdTextureRenderer;
};

TEST_F(SurfaceTextureMultiContextGLTest, UpdateFromMultipleContextsFails) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Attempt to latch the texture on the secondary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());
    ASSERT_EQ(INVALID_OPERATION, mST->updateTexImage());
}

TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextSucceeds) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Check that the GL texture was deleted.
    EXPECT_EQ(GL_FALSE, glIsTexture(TEX_ID));
}

TEST_F(SurfaceTextureMultiContextGLTest,
        DetachFromContextSucceedsAfterProducerDisconnect) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
    ASSERT_EQ(OK, mST->detachFromContext());

    // Check that the GL texture was deleted.
    EXPECT_EQ(GL_FALSE, glIsTexture(TEX_ID));
}

TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWhenAbandoned) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Attempt to detach from the primary context.
    mST->abandon();
    ASSERT_EQ(NO_INIT, mST->detachFromContext());
}

TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWhenDetached) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attempt to detach from the primary context again.
    ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext());
}

TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWithNoDisplay) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Make there be no current display.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
            EGL_NO_CONTEXT));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // Attempt to detach from the primary context.
    ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext());
}

TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWithNoContext) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Make current context be incorrect.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // Attempt to detach from the primary context.
    ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext());
}

TEST_F(SurfaceTextureMultiContextGLTest, UpdateTexImageFailsWhenDetached) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attempt to latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(INVALID_OPERATION, mST->updateTexImage());
}

TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceeds) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the secondary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));

    // Verify that the texture object was created and bound.
    GLint texBinding = -1;
    glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
    EXPECT_EQ(SECOND_TEX_ID, texBinding);

    // Try to use the texture from the secondary context.
    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);
    glViewport(0, 0, 1, 1);
    mSecondTextureRenderer->drawTexture();
    ASSERT_TRUE(checkPixel( 0,  0,  35,  35,  35,  35));
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
}

TEST_F(SurfaceTextureMultiContextGLTest,
        AttachToContextSucceedsAfterProducerDisconnect) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the secondary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));

    // Verify that the texture object was created and bound.
    GLint texBinding = -1;
    glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
    EXPECT_EQ(SECOND_TEX_ID, texBinding);

    // Try to use the texture from the secondary context.
    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);
    glViewport(0, 0, 1, 1);
    mSecondTextureRenderer->drawTexture();
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    ASSERT_TRUE(checkPixel( 0,  0,  35,  35,  35,  35));
}

TEST_F(SurfaceTextureMultiContextGLTest,
        AttachToContextSucceedsBeforeUpdateTexImage) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Detach from the primary context.
    native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the secondary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));

    // Verify that the texture object was created and bound.
    GLint texBinding = -1;
    glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
    EXPECT_EQ(SECOND_TEX_ID, texBinding);

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Try to use the texture from the secondary context.
    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);
    glViewport(0, 0, 1, 1);
    mSecondTextureRenderer->drawTexture();
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    ASSERT_TRUE(checkPixel( 0,  0,  35,  35,  35,  35));
}

TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAbandoned) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attempt to attach to the secondary context.
    mST->abandon();

    // Attempt to attach to the primary context.
    ASSERT_EQ(NO_INIT, mST->attachToContext(SECOND_TEX_ID));
}

TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAttached) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Attempt to attach to the primary context.
    ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID));
}

TEST_F(SurfaceTextureMultiContextGLTest,
        AttachToContextFailsWhenAttachedBeforeUpdateTexImage) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Attempt to attach to the primary context.
    ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID));
}

TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWithNoDisplay) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Make there be no current display.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
            EGL_NO_CONTEXT));
    ASSERT_EQ(EGL_SUCCESS, eglGetError());

    // Attempt to attach with no context current.
    ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID));
}

TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceedsTwice) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Latch the texture contents on the primary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the secondary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));

    // Detach from the secondary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the tertiary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mThirdEglContext));
    ASSERT_EQ(OK, mST->attachToContext(THIRD_TEX_ID));

    // Verify that the texture object was created and bound.
    GLint texBinding = -1;
    glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
    EXPECT_EQ(THIRD_TEX_ID, texBinding);

    // Try to use the texture from the tertiary context.
    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);
    glViewport(0, 0, 1, 1);
    mThirdTextureRenderer->drawTexture();
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    ASSERT_TRUE(checkPixel( 0,  0,  35,  35,  35,  35));
}

TEST_F(SurfaceTextureMultiContextGLTest,
        AttachToContextSucceedsTwiceBeforeUpdateTexImage) {
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Detach from the primary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the secondary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));

    // Detach from the secondary context.
    ASSERT_EQ(OK, mST->detachFromContext());

    // Attach to the tertiary context.
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mThirdEglContext));
    ASSERT_EQ(OK, mST->attachToContext(THIRD_TEX_ID));

    // Verify that the texture object was created and bound.
    GLint texBinding = -1;
    glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
    EXPECT_EQ(THIRD_TEX_ID, texBinding);

    // Latch the texture contents on the tertiary context.
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // Try to use the texture from the tertiary context.
    glClearColor(0.2, 0.2, 0.2, 0.2);
    glClear(GL_COLOR_BUFFER_BIT);
    glViewport(0, 0, 1, 1);
    mThirdTextureRenderer->drawTexture();
    ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
    ASSERT_TRUE(checkPixel( 0,  0,  35,  35,  35,  35));
}

TEST_F(SurfaceTextureMultiContextGLTest,
        UpdateTexImageSucceedsForBufferConsumedBeforeDetach) {
    ASSERT_EQ(NO_ERROR, mST->setSynchronousMode(true));
    ASSERT_EQ(NO_ERROR, mST->setBufferCountServer(2));

    // produce two frames and consume them both on the primary context
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());

    // produce one more frame
    ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));

    // Detach from the primary context and attach to the secondary context
    ASSERT_EQ(OK, mST->detachFromContext());
    ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
            mSecondEglContext));
    ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));

    // Consume final frame on secondary context
    mFW->waitForFrame();
    ASSERT_EQ(OK, mST->updateTexImage());
}

} // namespace android