/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! \file LowerAlu.cpp \brief This file lowers ALU bytecodes. */ #include "libdex/DexOpcodes.h" #include "libdex/DexFile.h" #include "Lower.h" #include "NcgAot.h" #include "enc_wrapper.h" ///////////////////////////////////////////// #define P_GPR_1 PhysicalReg_EBX //! lower bytecode NEG_INT //! int op_neg_int() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); alu_unary_reg(OpndSize_32, neg_opc, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } //! lower bytecode NOT_INT //! int op_not_int() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); alu_unary_reg(OpndSize_32, not_opc, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } #undef P_GPR_1 //! lower bytecode NEG_LONG //! This implementation uses XMM registers int op_neg_long() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_64, 1, false); alu_binary_reg_reg(OpndSize_64, xor_opc, 2, false, 2, false); alu_binary_reg_reg(OpndSize_64, sub_opc, 1, false, 2, false); set_virtual_reg(vA, OpndSize_64, 2, false); rPC += 1; return 0; } //! lower bytecode NOT_LONG //! This implementation uses XMM registers int op_not_long() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_64, 1, false); load_global_data_API("64bits", OpndSize_64, 2, false); alu_binary_reg_reg(OpndSize_64, andn_opc, 2, false, 1, false); set_virtual_reg(vA, OpndSize_64, 1, false); rPC += 1; return 0; } #define P_GPR_1 PhysicalReg_EBX //! lower bytecode NEG_FLOAT //! This implementation uses GPR int op_neg_float() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); alu_binary_imm_reg(OpndSize_32, add_opc, 0x80000000, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } #undef P_GPR_1 //! lower bytecode NEG_DOUBLE //! This implementation uses XMM registers int op_neg_double() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_64, 1, false); load_global_data_API("doubNeg", OpndSize_64, 2, false); alu_binary_reg_reg(OpndSize_64, xor_opc, 1, false, 2, false); set_virtual_reg(vA, OpndSize_64, 2, false); rPC += 1; return 0; } //! lower bytecode INT_TO_LONG //! It uses native instruction cdq int op_int_to_long() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true); convert_integer(OpndSize_32, OpndSize_64); set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true); set_virtual_reg(vA+1, OpndSize_32, PhysicalReg_EDX, true); rPC += 1; return 0; } //! lower bytecode INT_TO_FLOAT //! This implementation uses FP stack int op_int_to_float() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); load_int_fp_stack_VR(OpndSize_32, vB); //fildl store_fp_stack_VR(true, OpndSize_32, vA); //fstps rPC += 1; return 0; } //! lower bytecode INT_TO_DOUBLE //! This implementation uses FP stack int op_int_to_double() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); load_int_fp_stack_VR(OpndSize_32, vB); //fildl store_fp_stack_VR(true, OpndSize_64, vA); //fstpl rPC += 1; return 0; } //! lower bytecode LONG_TO_FLOAT //! This implementation uses FP stack int op_long_to_float() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); load_int_fp_stack_VR(OpndSize_64, vB); //fildll store_fp_stack_VR(true, OpndSize_32, vA); //fstps rPC += 1; return 0; } //! lower bytecode LONG_TO_DOUBLE //! This implementation uses FP stack int op_long_to_double() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); load_int_fp_stack_VR(OpndSize_64, vB); //fildll store_fp_stack_VR(true, OpndSize_64, vA); //fstpl rPC += 1; return 0; } //! lower bytecode FLOAT_TO_DOUBLE //! This implementation uses FP stack int op_float_to_double() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); load_fp_stack_VR(OpndSize_32, vB); //flds store_fp_stack_VR(true, OpndSize_64, vA); //fstpl rPC += 1; return 0; } //! lower bytecode DOUBLE_TO_FLOAT //! This implementation uses FP stack int op_double_to_float() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); load_fp_stack_VR(OpndSize_64, vB); //fldl store_fp_stack_VR(true, OpndSize_32, vA); //fstps rPC += 1; return 0; } #define P_GPR_1 PhysicalReg_EBX //! lower bytecode LONG_TO_INT //! This implementation uses GPR int op_long_to_int() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } #undef P_GPR_1 //! common code to convert a float or double to integer //! It uses FP stack int common_fp_to_int(bool isDouble, u2 vA, u2 vB) { if(isDouble) { load_fp_stack_VR(OpndSize_64, vB); //fldl } else { load_fp_stack_VR(OpndSize_32, vB); //flds } load_fp_stack_global_data_API("intMax", OpndSize_32); load_fp_stack_global_data_API("intMin", OpndSize_32); //ST(0) ST(1) ST(2) --> LintMin LintMax value compare_fp_stack(true, 2, false/*isDouble*/); //ST(2) //ST(0) ST(1) --> LintMax value conditional_jump(Condition_AE, ".float_to_int_negInf", true); rememberState(1); compare_fp_stack(true, 1, false/*isDouble*/); //ST(1) //ST(0) --> value rememberState(2); conditional_jump(Condition_C, ".float_to_int_nanInf", true); //fnstcw, orw, fldcw, xorw load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true); store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true); alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true); load_fpu_cw(0, PhysicalReg_ESP, true); alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true); store_int_fp_stack_VR(true/*pop*/, OpndSize_32, vA); //fistpl //fldcw load_fpu_cw(0, PhysicalReg_ESP, true); load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true); rememberState(3); unconditional_jump(".float_to_int_okay", true); insertLabel(".float_to_int_nanInf", true); conditional_jump(Condition_NP, ".float_to_int_posInf", true); //fstps CHECK goToState(2); store_fp_stack_VR(true, OpndSize_32, vA); set_VR_to_imm(vA, OpndSize_32, 0); transferToState(3); unconditional_jump(".float_to_int_okay", true); insertLabel(".float_to_int_posInf", true); //fstps CHECK goToState(2); store_fp_stack_VR(true, OpndSize_32, vA); set_VR_to_imm(vA, OpndSize_32, 0x7fffffff); transferToState(3); unconditional_jump(".float_to_int_okay", true); insertLabel(".float_to_int_negInf", true); goToState(1); //fstps CHECK store_fp_stack_VR(true, OpndSize_32, vA); store_fp_stack_VR(true, OpndSize_32, vA); set_VR_to_imm(vA, OpndSize_32, 0x80000000); transferToState(3); insertLabel(".float_to_int_okay", true); return 0; } //! lower bytecode FLOAT_TO_INT by calling common_fp_to_int //! int op_float_to_int() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); int retval = common_fp_to_int(false, vA, vB); rPC += 1; return retval; } //! lower bytecode DOUBLE_TO_INT by calling common_fp_to_int //! int op_double_to_int() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); int retval = common_fp_to_int(true, vA, vB); rPC += 1; return retval; } //! common code to convert float or double to long //! It uses FP stack int common_fp_to_long(bool isDouble, u2 vA, u2 vB) { if(isDouble) { load_fp_stack_VR(OpndSize_64, vB); //fldl } else { load_fp_stack_VR(OpndSize_32, vB); //flds } load_fp_stack_global_data_API("valuePosInfLong", OpndSize_64); load_fp_stack_global_data_API("valueNegInfLong", OpndSize_64); //ST(0) ST(1) ST(2) --> LintMin LintMax value compare_fp_stack(true, 2, false/*isDouble*/); //ST(2) //ST(0) ST(1) --> LintMax value conditional_jump(Condition_AE, ".float_to_long_negInf", true); rememberState(1); compare_fp_stack(true, 1, false/*isDouble*/); //ST(1) rememberState(2); //ST(0) --> value conditional_jump(Condition_C, ".float_to_long_nanInf", true); //fnstcw, orw, fldcw, xorw load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true); store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true); alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true); load_fpu_cw(0, PhysicalReg_ESP, true); alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true); store_int_fp_stack_VR(true/*pop*/, OpndSize_64, vA); //fistpll //fldcw load_fpu_cw(0, PhysicalReg_ESP, true); load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true); rememberState(3); unconditional_jump(".float_to_long_okay", true); insertLabel(".float_to_long_nanInf", true); conditional_jump(Condition_NP, ".float_to_long_posInf", true); //fstpl?? goToState(2); load_global_data_API("valueNanLong", OpndSize_64, 1, false); set_virtual_reg(vA, OpndSize_64, 1, false); transferToState(3); unconditional_jump(".float_to_long_okay", true); insertLabel(".float_to_long_posInf", true); //fstpl goToState(2); load_global_data_API("valuePosInfLong", OpndSize_64, 2, false); set_virtual_reg(vA, OpndSize_64, 2, false); transferToState(3); unconditional_jump(".float_to_long_okay", true); insertLabel(".float_to_long_negInf", true); //fstpl //fstpl goToState(1); load_global_data_API("valueNegInfLong", OpndSize_64, 3, false); set_virtual_reg(vA, OpndSize_64, 3, false); transferToState(3); insertLabel(".float_to_long_okay", true); return 0; } //! lower bytecode FLOAT_TO_LONG by calling common_fp_to_long //! int op_float_to_long() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); int retval = common_fp_to_long(false, vA, vB); rPC += 1; return retval; } //! lower bytecode DOUBLE_TO_LONG by calling common_fp_to_long //! int op_double_to_long() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); int retval = common_fp_to_long(true, vA, vB); rPC += 1; return retval; } #define P_GPR_1 PhysicalReg_EBX //! lower bytecode INT_TO_BYTE //! It uses GPR int op_int_to_byte() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); alu_binary_imm_reg(OpndSize_32, sal_opc, 24, 1, false); alu_binary_imm_reg(OpndSize_32, sar_opc, 24, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } //! lower bytecode INT_TO_CHAR //! It uses GPR int op_int_to_char() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false); alu_binary_imm_reg(OpndSize_32, shr_opc, 16, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } //! lower bytecode INT_TO_SHORT //! It uses GPR int op_int_to_short() { u2 vA = INST_A(inst); //destination u2 vB = INST_B(inst); get_virtual_reg(vB, OpndSize_32, 1, false); alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false); alu_binary_imm_reg(OpndSize_32, sar_opc, 16, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); rPC += 1; return 0; } //! common code to handle integer ALU ops //! It uses GPR int common_alu_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem get_virtual_reg(v1, OpndSize_32, 1, false); //in encoder, reg is first operand, which is the destination //gpr_1 op v2(rFP) --> gpr_1 //shift only works with reg cl, v2 should be in %ecx alu_binary_VR_reg(OpndSize_32, opc, v2, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); return 0; } #undef P_GPR_1 #define P_GPR_1 PhysicalReg_EBX //! common code to handle integer shift ops //! It uses GPR int common_shift_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { get_virtual_reg(v2, OpndSize_32, PhysicalReg_ECX, true); get_virtual_reg(v1, OpndSize_32, 1, false); //in encoder, reg2 is first operand, which is the destination //gpr_1 op v2(rFP) --> gpr_1 //shift only works with reg cl, v2 should be in %ecx alu_binary_reg_reg(OpndSize_32, opc, PhysicalReg_ECX, true, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); return 0; } #undef p_GPR_1 //! lower bytecode ADD_INT by calling common_alu_int //! int op_add_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_alu_int(add_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SUB_INT by calling common_alu_int //! int op_sub_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_alu_int(sub_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode MUL_INT by calling common_alu_int //! int op_mul_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_alu_int(imul_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode AND_INT by calling common_alu_int //! int op_and_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_alu_int(and_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode OR_INT by calling common_alu_int //! int op_or_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_alu_int(or_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode XOR_INT by calling common_alu_int //! int op_xor_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_alu_int(xor_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SHL_INT by calling common_shift_int //! int op_shl_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_shift_int(shl_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SHR_INT by calling common_shift_int //! int op_shr_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_shift_int(sar_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode USHR_INT by calling common_shift_int //! int op_ushr_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_shift_int(shr_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode ADD_INT_2ADDR by calling common_alu_int //! int op_add_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_alu_int(add_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SUB_INT_2ADDR by calling common_alu_int //! int op_sub_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_alu_int(sub_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode MUL_INT_2ADDR by calling common_alu_int //! int op_mul_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_alu_int(imul_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode AND_INT_2ADDR by calling common_alu_int //! int op_and_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_alu_int(and_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode OR_INT_2ADDR by calling common_alu_int //! int op_or_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_alu_int(or_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode XOR_INT_2ADDR by calling common_alu_int //! int op_xor_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_alu_int(xor_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SHL_INT_2ADDR by calling common_shift_int //! int op_shl_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_shift_int(shl_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SHR_INT_2ADDR by calling common_shift_int //! int op_shr_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_shift_int(sar_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode USHR_INT_2ADDR by calling common_shift_int //! int op_ushr_int_2addr() { u2 vA, v1, v2; vA = INST_A(inst); v1 = vA; v2 = INST_B(inst); int retval = common_shift_int(shr_opc, vA, v1, v2); rPC += 1; return retval; } #define P_GPR_1 PhysicalReg_EBX //!common code to handle integer DIV & REM, it used GPR //!The special case: when op0 == minint && op1 == -1, return 0 for isRem, return 0x80000000 for isDiv //!There are two merge points in the control flow for this bytecode //!make sure the reg. alloc. state is the same at merge points by calling transferToState int common_div_rem_int(bool isRem, u2 vA, u2 v1, u2 v2) { get_virtual_reg(v1, OpndSize_32, PhysicalReg_EAX, true); get_virtual_reg(v2, OpndSize_32, 2, false); compare_imm_reg(OpndSize_32, 0, 2, false); handlePotentialException( Condition_E, Condition_NE, 1, "common_errDivideByZero"); /////////////////// handle special cases //conditional move 0 to $edx for rem for the two special cases //conditional move 0x80000000 to $eax for div //handle -1 special case divide error compare_imm_reg(OpndSize_32, -1, 2, false); conditional_jump(Condition_NE, ".common_div_rem_int_normal", true); //handle min int special case divide error rememberState(1); compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true); transferToState(1); conditional_jump(Condition_E, ".common_div_rem_int_special", true); insertLabel(".common_div_rem_int_normal", true); //merge point convert_integer(OpndSize_32, OpndSize_64); //cdq //idiv: dividend in edx:eax; quotient in eax; remainder in edx alu_unary_reg(OpndSize_32, idiv_opc, 2, false); if(isRem) set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true); else //divide: quotient in %eax set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true); rememberState(2); unconditional_jump(".common_div_rem_int_okay", true); insertLabel(".common_div_rem_int_special", true); goToState(1); if(isRem) set_VR_to_imm(vA, OpndSize_32, 0); else set_VR_to_imm(vA, OpndSize_32, 0x80000000); transferToState(2); insertLabel(".common_div_rem_int_okay", true); //merge point 2 return 0; } #undef P_GPR_1 //! lower bytecode DIV_INT by calling common_div_rem_int //! int op_div_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_div_rem_int(false, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode REM_INT by calling common_div_rem_int //! int op_rem_int() { u2 vA, v1, v2; vA = INST_AA(inst); v1 = *((u1*)rPC + 2); v2 = *((u1*)rPC + 3); int retval = common_div_rem_int(true, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode DIV_INT_2ADDR by calling common_div_rem_int //! int op_div_int_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_div_rem_int(false, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode REM_INT_2ADDR by calling common_div_rem_int //! int op_rem_int_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_div_rem_int(true, vA, v1, v2); rPC += 1; return retval; } #define P_GPR_1 PhysicalReg_EBX //! common code to handle integer ALU ops with literal //! It uses GPR int common_alu_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) { //except div and rem get_virtual_reg(vB, OpndSize_32, 1, false); alu_binary_imm_reg(OpndSize_32, opc, imm, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); return 0; } //! calls common_alu_int_lit int common_shift_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) { return common_alu_int_lit(opc, vA, vB, imm); } #undef p_GPR_1 //! lower bytecode ADD_INT_LIT16 by calling common_alu_int_lit //! int op_add_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_alu_int_lit(add_opc, vA, vB, tmp); rPC += 2; return retval; } int alu_rsub_int(ALU_Opcode opc, u2 vA, s2 imm, u2 vB) { move_imm_to_reg(OpndSize_32, imm, 2, false); get_virtual_reg(vB, OpndSize_32, 1, false); alu_binary_reg_reg(OpndSize_32, opc, 1, false, 2, false); set_virtual_reg(vA, OpndSize_32, 2, false); return 0; } //! lower bytecode RSUB_INT by calling common_alu_int_lit //! int op_rsub_int() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = alu_rsub_int(sub_opc, vA, tmp, vB); rPC += 2; return retval; } //! lower bytecode MUL_INT_LIT16 by calling common_alu_int_lit //! int op_mul_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_alu_int_lit(imul_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode AND_INT_LIT16 by calling common_alu_int_lit //! int op_and_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_alu_int_lit(and_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode OR_INT_LIT16 by calling common_alu_int_lit //! int op_or_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_alu_int_lit(or_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode XOR_INT_LIT16 by calling common_alu_int_lit //! int op_xor_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_alu_int_lit(xor_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode SHL_INT_LIT16 by calling common_shift_int_lit //! int op_shl_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_shift_int_lit(shl_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode SHR_INT_LIT16 by calling common_shift_int_lit //! int op_shr_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_shift_int_lit(sar_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode USHR_INT_LIT16 by calling common_shift_int_lit //! int op_ushr_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_shift_int_lit(shr_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode ADD_INT_LIT8 by calling common_alu_int_lit //! int op_add_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_alu_int_lit(add_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode RSUB_INT_LIT8 by calling common_alu_int_lit //! int op_rsub_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = alu_rsub_int(sub_opc, vA, tmp, vB); rPC += 2; return retval; } //! lower bytecode MUL_INT_LIT8 by calling common_alu_int_lit //! int op_mul_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_alu_int_lit(imul_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode AND_INT_LIT8 by calling common_alu_int_lit //! int op_and_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_alu_int_lit(and_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode OR_INT_LIT8 by calling common_alu_int_lit //! int op_or_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_alu_int_lit(or_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode XOR_INT_LIT8 by calling common_alu_int_lit //! int op_xor_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_alu_int_lit(xor_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode SHL_INT_LIT8 by calling common_shift_int_lit //! int op_shl_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_shift_int_lit(shl_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode SHR_INT_LIT8 by calling common_shift_int_lit //! int op_shr_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_shift_int_lit(sar_opc, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode USHR_INT_LIT8 by calling common_shift_int_lit //! int op_ushr_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_shift_int_lit(shr_opc, vA, vB, tmp); rPC += 2; return retval; } int isPowerOfTwo(int imm) { int i; for(i = 1; i < 17; i++) { if(imm == (1 << i)) return i; } return -1; } #define P_GPR_1 PhysicalReg_EBX int div_lit_strength_reduction(u2 vA, u2 vB, s2 imm) { if(gDvm.executionMode == kExecutionModeNcgO1) { //strength reduction for div by 2,4,8,... int power = isPowerOfTwo(imm); if(power < 1) return 0; //tmp2 is not updated, so it can share with vB get_virtual_reg(vB, OpndSize_32, 2, false); //if imm is 2, power will be 1 if(power == 1) { /* mov tmp1, tmp2 shrl $31, tmp1 addl tmp2, tmp1 sarl $1, tmp1 */ move_reg_to_reg(OpndSize_32, 2, false, 1, false); alu_binary_imm_reg(OpndSize_32, shr_opc, 31, 1, false); alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false); alu_binary_imm_reg(OpndSize_32, sar_opc, 1, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); return 1; } //power > 1 /* mov tmp1, tmp2 sarl $power-1, tmp1 shrl 32-$power, tmp1 addl tmp2, tmp1 sarl $power, tmp1 */ move_reg_to_reg(OpndSize_32, 2, false, 1, false); alu_binary_imm_reg(OpndSize_32, sar_opc, power-1, 1, false); alu_binary_imm_reg(OpndSize_32, shr_opc, 32-power, 1, false); alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false); alu_binary_imm_reg(OpndSize_32, sar_opc, power, 1, false); set_virtual_reg(vA, OpndSize_32, 1, false); return 1; } return 0; } ////////// throws exception!!! //! common code to handle integer DIV & REM with literal //! It uses GPR int common_div_rem_int_lit(bool isRem, u2 vA, u2 vB, s2 imm) { if(!isRem) { int retCode = div_lit_strength_reduction(vA, vB, imm); if(retCode > 0) return 0; } if(imm == 0) { export_pc(); //use %edx #ifdef DEBUG_EXCEPTION LOGI("EXTRA code to handle exception"); #endif constVREndOfBB(); beforeCall("exception"); //dump GG, GL VRs unconditional_jump_global_API( "common_errDivideByZero", false); return 0; } get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true); //check against -1 for DIV_INT?? if(imm == -1) { compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true); conditional_jump(Condition_E, ".div_rem_int_lit_special", true); rememberState(1); } move_imm_to_reg(OpndSize_32, imm, 2, false); convert_integer(OpndSize_32, OpndSize_64); //cdq //idiv: dividend in edx:eax; quotient in eax; remainder in edx alu_unary_reg(OpndSize_32, idiv_opc, 2, false); if(isRem) set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true); else set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true); if(imm == -1) { unconditional_jump(".div_rem_int_lit_okay", true); rememberState(2); insertLabel(".div_rem_int_lit_special", true); goToState(1); if(isRem) set_VR_to_imm(vA, OpndSize_32, 0); else set_VR_to_imm(vA, OpndSize_32, 0x80000000); transferToState(2); } insertLabel(".div_rem_int_lit_okay", true); //merge point 2 return 0; } #undef P_GPR_1 //! lower bytecode DIV_INT_LIT16 by calling common_div_rem_int_lit //! int op_div_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_div_rem_int_lit(false, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode REM_INT_LIT16 by calling common_div_rem_int_lit //! int op_rem_int_lit16() { u2 vA = INST_A(inst); u2 vB = INST_B(inst); s4 tmp = (s2)FETCH(1); int retval = common_div_rem_int_lit(true, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode DIV_INT_LIT8 by calling common_div_rem_int_lit //! int op_div_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_div_rem_int_lit(false, vA, vB, tmp); rPC += 2; return retval; } //! lower bytecode REM_INT_LIT8 by calling common_div_rem_int_lit //! int op_rem_int_lit8() { u2 vA = INST_AA(inst); u2 vB = (u2)FETCH(1) & 0xff; s2 tmp = (s2)FETCH(1) >> 8; int retval = common_div_rem_int_lit(true, vA, vB, tmp); rPC += 2; return retval; } //! common code to hanle long ALU ops //! It uses XMM int common_alu_long(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem get_virtual_reg(v1, OpndSize_64, 1, false); get_virtual_reg(v2, OpndSize_64, 2, false); alu_binary_reg_reg(OpndSize_64, opc, 2, false, 1, false); set_virtual_reg(vA, OpndSize_64, 1, false); return 0; } //! lower bytecode ADD_LONG by calling common_alu_long //! int op_add_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_long(add_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SUB_LONG by calling common_alu_long //! int op_sub_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_long(sub_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode AND_LONG by calling common_alu_long //! int op_and_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_long(and_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode OR_LONG by calling common_alu_long //! int op_or_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_long(or_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode XOR_LONG by calling common_alu_long //! int op_xor_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_long(xor_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode ADD_LONG_2ADDR by calling common_alu_long //! int op_add_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_long(add_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SUB_LONG_2ADDR by calling common_alu_long //! int op_sub_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_long(sub_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode AND_LONG_2ADDR by calling common_alu_long //! int op_and_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_long(and_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode OR_LONG_2ADDR by calling common_alu_long //! int op_or_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_long(or_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode XOR_LONG_2ADDR by calling common_alu_long //! int op_xor_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_long(xor_opc, vA, v1, v2); rPC += 1; return retval; } //signed vs unsigned imul and mul? #define P_GPR_1 PhysicalReg_EBX #define P_GPR_2 PhysicalReg_ECX #define P_GPR_3 PhysicalReg_ESI //! common code to handle multiplication of long //! It uses GPR int common_mul_long(u2 vA, u2 v1, u2 v2) { get_virtual_reg(v2, OpndSize_32, 1, false); move_reg_to_reg(OpndSize_32, 1, false, PhysicalReg_EAX, true); //imul: 2L * 1H update temporary 1 alu_binary_VR_reg(OpndSize_32, imul_opc, (v1+1), 1, false); get_virtual_reg(v1, OpndSize_32, 3, false); move_reg_to_reg(OpndSize_32, 3, false, 2, false); //imul: 1L * 2H alu_binary_VR_reg(OpndSize_32, imul_opc, (v2+1), 2, false); alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false); alu_unary_reg(OpndSize_32, mul_opc, 3, false); alu_binary_reg_reg(OpndSize_32, add_opc, PhysicalReg_EDX, true, 1, false); set_virtual_reg(vA+1, OpndSize_32, 1, false); set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true); return 0; } #undef P_GPR_1 #undef P_GPR_2 #undef P_GPR_3 //! lower bytecode MUL_LONG by calling common_mul_long //! int op_mul_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_mul_long(vA, v1, v2); rPC += 2; return retval; } //! lower bytecode MUL_LONG_2ADDR by calling common_mul_long //! int op_mul_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_mul_long(vA, v1, v2); rPC += 1; return retval; } #define P_GPR_1 PhysicalReg_EBX #define P_GPR_2 PhysicalReg_ECX //! common code to handle DIV & REM of long //! It uses GPR & XMM; and calls call_moddi3 & call_divdi3 int common_div_rem_long(bool isRem, u2 vA, u2 v1, u2 v2) { get_virtual_reg(v2, OpndSize_32, 1, false); get_virtual_reg(v2+1, OpndSize_32, 2, false); //save to native stack before changing register P_GPR_1 load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true); move_reg_to_mem(OpndSize_32, 1, false, 8, PhysicalReg_ESP, true); alu_binary_reg_reg(OpndSize_32, or_opc, 2, false, 1, false); handlePotentialException( Condition_E, Condition_NE, 1, "common_errDivideByZero"); move_reg_to_mem(OpndSize_32, 2, false, 12, PhysicalReg_ESP, true); get_virtual_reg(v1, OpndSize_64, 1, false); move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true); scratchRegs[0] = PhysicalReg_SCRATCH_1; nextVersionOfHardReg(PhysicalReg_EDX, 2); //next version has 2 refs if(isRem) call_moddi3(); else call_divdi3(); load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true); set_virtual_reg(vA+1, OpndSize_32,PhysicalReg_EDX, true); set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true); return 0; } #undef P_GPR_1 #undef P_GPR_2 //! lower bytecode DIV_LONG by calling common_div_rem_long //! int op_div_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_div_rem_long(false, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode REM_LONG by calling common_div_rem_long //! int op_rem_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_div_rem_long(true, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode DIV_LONG_2ADDR by calling common_div_rem_long //! int op_div_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_div_rem_long(false, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode REM_LONG_2ADDR by calling common_div_rem_long //! int op_rem_long_2addr() { //call __moddi3 instead of __divdi3 u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_div_rem_long(true, vA, v1, v2); rPC += 1; return retval; } //! common code to handle SHL long //! It uses XMM int common_shl_long(u2 vA, u2 v1, u2 v2) { get_VR_ss(v2, 2, false); load_global_data_API("shiftMask", OpndSize_64, 3, false); get_virtual_reg(v1, OpndSize_64, 1, false); alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false); alu_binary_reg_reg(OpndSize_64, sll_opc, 2, false, 1, false); set_virtual_reg(vA, OpndSize_64, 1, false); return 0; } //! common code to handle SHR long //! It uses XMM int common_shr_long(u2 vA, u2 v1, u2 v2) { get_VR_ss(v2, 2, false); load_global_data_API("shiftMask", OpndSize_64, 3, false); get_virtual_reg(v1, OpndSize_64, 1, false); alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false); alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false); compare_imm_VR(OpndSize_32, 0, (v1+1)); conditional_jump(Condition_GE, ".common_shr_long_special", true); rememberState(1); load_global_data_API("value64", OpndSize_64, 4, false); alu_binary_reg_reg(OpndSize_64, sub_opc, 2, false, 4, false); load_global_data_API("64bits", OpndSize_64, 5, false); alu_binary_reg_reg(OpndSize_64, sll_opc, 4, false, 5, false); alu_binary_reg_reg(OpndSize_64, or_opc, 5, false, 1, false); rememberState(2); //check whether the target is next instruction TODO unconditional_jump(".common_shr_long_done", true); insertLabel(".common_shr_long_special", true); goToState(1); transferToState(2); insertLabel(".common_shr_long_done", true); set_virtual_reg(vA, OpndSize_64, 1, false); return 0; } //! common code to handle USHR long //! It uses XMM int common_ushr_long(u2 vA, u2 v1, u2 v2) { get_VR_sd(v1, 1, false); get_VR_ss(v2, 2, false); load_sd_global_data_API("shiftMask", 3, false); alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false); alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false); set_VR_sd(vA, 1, false); return 0; } //! lower bytecode SHL_LONG by calling common_shl_long //! int op_shl_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_shl_long(vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SHL_LONG_2ADDR by calling common_shl_long //! int op_shl_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_shl_long(vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SHR_LONG by calling common_shr_long //! int op_shr_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_shr_long(vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SHR_LONG_2ADDR by calling common_shr_long //! int op_shr_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_shr_long(vA, v1, v2); rPC += 1; return retval; } //! lower bytecode USHR_LONG by calling common_ushr_long //! int op_ushr_long() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_ushr_long(vA, v1, v2); rPC += 2; return retval; } //! lower bytecode USHR_LONG_2ADDR by calling common_ushr_long //! int op_ushr_long_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_ushr_long(vA, v1, v2); rPC += 1; return retval; } #define USE_MEM_OPERAND /////////////////////////////////////////// //! common code to handle ALU of floats //! It uses XMM int common_alu_float(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul get_VR_ss(v1, 1, false); #ifdef USE_MEM_OPERAND alu_sd_binary_VR_reg(opc, v2, 1, false, false/*isSD*/); #else get_VR_ss(v2, 2, false); alu_ss_binary_reg_reg(opc, 2, false, 1, false); #endif set_VR_ss(vA, 1, false); return 0; } //! lower bytecode ADD_FLOAT by calling common_alu_float //! int op_add_float() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_float(add_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SUB_FLOAT by calling common_alu_float //! int op_sub_float() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_float(sub_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode MUL_FLOAT by calling common_alu_float //! int op_mul_float() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_float(mul_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode ADD_FLOAT_2ADDR by calling common_alu_float //! int op_add_float_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_float(add_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SUB_FLOAT_2ADDR by calling common_alu_float //! int op_sub_float_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_float(sub_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode MUL_FLOAT_2ADDR by calling common_alu_float //! int op_mul_float_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_float(mul_opc, vA, v1, v2); rPC += 1; return retval; } //! common code to handle DIV of float //! It uses FP stack int common_div_float(u2 vA, u2 v1, u2 v2) { load_fp_stack_VR(OpndSize_32, v1); //flds fpu_VR(div_opc, OpndSize_32, v2); store_fp_stack_VR(true, OpndSize_32, vA); //fstps return 0; } //! lower bytecode DIV_FLOAT by calling common_div_float //! int op_div_float() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_float(div_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode DIV_FLOAT_2ADDR by calling common_div_float //! int op_div_float_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_float(div_opc, vA, v1, v2); rPC += 1; return retval; } //! common code to handle DIV of double //! It uses XMM int common_alu_double(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul get_VR_sd(v1, 1, false); #ifdef USE_MEM_OPERAND alu_sd_binary_VR_reg(opc, v2, 1, false, true /*isSD*/); #else get_VR_sd(v2, 2, false); alu_sd_binary_reg_reg(opc, 2, false, 1, false); #endif set_VR_sd(vA, 1, false); return 0; } //! lower bytecode ADD_DOUBLE by calling common_alu_double //! int op_add_double() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_double(add_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode SUB_DOUBLE by calling common_alu_double //! int op_sub_double() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_double(sub_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode MUL_DOUBLE by calling common_alu_double //! int op_mul_double() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_double(mul_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode ADD_DOUBLE_2ADDR by calling common_alu_double //! int op_add_double_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_double(add_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode SUB_DOUBLE_2ADDR by calling common_alu_double //! int op_sub_double_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_double(sub_opc, vA, v1, v2); rPC += 1; return retval; } //! lower bytecode MUL_DOUBLE_2ADDR by calling common_alu_double //! int op_mul_double_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_double(mul_opc, vA, v1, v2); rPC += 1; return retval; } //! common code to handle DIV of double //! It uses FP stack int common_div_double(u2 vA, u2 v1, u2 v2) { load_fp_stack_VR(OpndSize_64, v1); //fldl fpu_VR(div_opc, OpndSize_64, v2); //fdivl store_fp_stack_VR(true, OpndSize_64, vA); //fstpl return 0; } //! lower bytecode DIV_DOUBLE by calling common_div_double //! int op_div_double() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_alu_double(div_opc, vA, v1, v2); rPC += 2; return retval; } //! lower bytecode DIV_DOUBLE_2ADDR by calling common_div_double //! int op_div_double_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_alu_double(div_opc, vA, v1, v2); rPC += 1; return retval; } #define P_GPR_1 PhysicalReg_EBX #define P_GPR_2 PhysicalReg_ECX //! common code to handle REM of float //! It uses GPR & calls call_fmodf int common_rem_float(u2 vA, u2 v1, u2 v2) { get_virtual_reg(v1, OpndSize_32, 1, false); get_virtual_reg(v2, OpndSize_32, 2, false); load_effective_addr(-8, PhysicalReg_ESP, true, PhysicalReg_ESP, true); move_reg_to_mem(OpndSize_32, 1, false, 0, PhysicalReg_ESP, true); move_reg_to_mem(OpndSize_32, 2, false, 4, PhysicalReg_ESP, true); scratchRegs[0] = PhysicalReg_SCRATCH_1; call_fmodf(); //(float x, float y) return float load_effective_addr(8, PhysicalReg_ESP, true, PhysicalReg_ESP, true); store_fp_stack_VR(true, OpndSize_32, vA); //fstps return 0; } #undef P_GPR_1 #undef P_GPR_2 //! lower bytecode REM_FLOAT by calling common_rem_float //! int op_rem_float() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_rem_float(vA, v1, v2); rPC += 2; return retval; } //! lower bytecode REM_FLOAT_2ADDR by calling common_rem_float //! int op_rem_float_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_rem_float(vA, v1, v2); rPC += 1; return retval; } //! common code to handle REM of double //! It uses XMM & calls call_fmod int common_rem_double(u2 vA, u2 v1, u2 v2) { get_virtual_reg(v1, OpndSize_64, 1, false); get_virtual_reg(v2, OpndSize_64, 2, false); load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true); move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true); move_reg_to_mem(OpndSize_64, 2, false, 8, PhysicalReg_ESP, true); scratchRegs[0] = PhysicalReg_SCRATCH_1; call_fmod(); //(long double x, long double y) return double load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true); store_fp_stack_VR(true, OpndSize_64, vA); //fstpl return 0; } //! lower bytecode REM_DOUBLE by calling common_rem_double //! int op_rem_double() { u2 vA = INST_AA(inst); u2 v1 = *((u1*)rPC + 2); u2 v2 = *((u1*)rPC + 3); int retval = common_rem_double(vA, v1, v2); rPC += 2; return retval; } //! lower bytecode REM_DOUBLE_2ADDR by calling common_rem_double //! int op_rem_double_2addr() { u2 vA = INST_A(inst); u2 v1 = vA; u2 v2 = INST_B(inst); int retval = common_rem_double(vA, v1, v2); rPC += 1; return retval; } //! lower bytecode CMPL_FLOAT //! int op_cmpl_float() { u2 vA = INST_AA(inst); u4 v1 = FETCH(1) & 0xff; u4 v2 = FETCH(1) >> 8; get_VR_ss(v1, 1, false); //xmm move_imm_to_reg(OpndSize_32, 0, 1, false); move_imm_to_reg(OpndSize_32, 1, 2, false); move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false); compare_VR_ss_reg(v2, 1, false); //default: 0xffffffff?? move_imm_to_reg(OpndSize_32, 0xffffffff, 4, false); //ORDER of cmov matters !!! (Z,P,A) //finalNaN: unordered 0xffffffff conditional_move_reg_to_reg(OpndSize_32, Condition_Z, 1, false, 4, false); conditional_move_reg_to_reg(OpndSize_32, Condition_P, 3, false, 4, false); conditional_move_reg_to_reg(OpndSize_32, Condition_A, 2, false, 4, false); set_virtual_reg(vA, OpndSize_32, 4, false); rPC += 2; return 0; } //! lower bytecode CMPG_FLOAT //! int op_cmpg_float() { u2 vA = INST_AA(inst); u4 v1 = FETCH(1) & 0xff; u4 v2 = FETCH(1) >> 8; get_VR_ss(v1, 1, false); compare_VR_ss_reg(v2, 1, false); move_imm_to_reg(OpndSize_32, 0, 1, false); move_imm_to_reg(OpndSize_32, 1, 2, false); //default: 0xffffffff?? move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false); conditional_move_reg_to_reg(OpndSize_32, Condition_Z, 1, false, 3, false); //finalNaN: unordered conditional_move_reg_to_reg(OpndSize_32, Condition_P, 2, false, 3, false); conditional_move_reg_to_reg(OpndSize_32, Condition_A, 2, false, 3, false); set_virtual_reg(vA, OpndSize_32, 3, false); rPC += 2; return 0; } //! lower bytecode CMPL_DOUBLE //! int op_cmpl_double() { u2 vA = INST_AA(inst); u4 v1 = FETCH(1) & 0xff; u4 v2 = FETCH(1) >> 8; get_VR_sd(v1, 1, false); compare_VR_sd_reg(v2, 1, false); move_imm_to_reg(OpndSize_32, 0, 1, false); move_imm_to_reg(OpndSize_32, 1, 2, false); move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false); //default: 0xffffffff?? move_imm_to_reg(OpndSize_32, 0xffffffff, 4, false); conditional_move_reg_to_reg(OpndSize_32, Condition_Z, 1, false, 4, false); conditional_move_reg_to_reg(OpndSize_32, Condition_P, 3, false, 4, false); conditional_move_reg_to_reg(OpndSize_32, Condition_A, 2, false, 4, false); set_virtual_reg(vA, OpndSize_32, 4, false); rPC += 2; return 0; } //! lower bytecode CMPG_DOUBLE //! int op_cmpg_double() { u2 vA = INST_AA(inst); u4 v1 = FETCH(1) & 0xff; u4 v2 = FETCH(1) >> 8; get_VR_sd(v1, 1, false); compare_VR_sd_reg(v2, 1, false); move_imm_to_reg(OpndSize_32, 0, 1, false); move_imm_to_reg(OpndSize_32, 1, 2, false); //default: 0xffffffff?? move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false); conditional_move_reg_to_reg(OpndSize_32, Condition_Z, 1, false, 3, false); //finalNaN: unordered conditional_move_reg_to_reg(OpndSize_32, Condition_P, 2, false, 3, false); conditional_move_reg_to_reg(OpndSize_32, Condition_A, 2, false, 3, false); set_virtual_reg(vA, OpndSize_32, 3, false); rPC += 2; return 0; } #define P_GPR_1 PhysicalReg_EBX #define P_GPR_2 PhysicalReg_ECX #define P_GPR_3 PhysicalReg_ESI #define P_SCRATCH_1 PhysicalReg_EDX #define P_SCRATCH_2 PhysicalReg_EAX #define OPTION_OLD //for simpler cfg //! lower bytecode CMP_LONG //! int op_cmp_long() { u2 vA = INST_AA(inst); u4 v1 = FETCH(1) & 0xff; u4 v2 = FETCH(1) >> 8; get_virtual_reg(v1+1, OpndSize_32, 2, false); #ifdef OPTION_OLD move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false); move_imm_to_reg(OpndSize_32, 1, 4, false); move_imm_to_reg(OpndSize_32, 0, 5, false); #endif compare_VR_reg(OpndSize_32, v2+1, 2, false); #ifndef OPTION_OLD conditional_jump(Condition_L, ".cmp_long_less", true); conditional_jump(Condition_G, ".cmp_long_greater", true); #else conditional_jump(Condition_E, ".cmp_long_equal", true); rememberState(1); conditional_move_reg_to_reg(OpndSize_32, Condition_L, //below vs less 3, false, 6, false); conditional_move_reg_to_reg(OpndSize_32, Condition_G, //above vs greater 4, false, 6, false); set_virtual_reg(vA, OpndSize_32, 6, false); rememberState(2); unconditional_jump(".cmp_long_okay", true); insertLabel(".cmp_long_equal", true); goToState(1); #endif get_virtual_reg(v1, OpndSize_32, 1, false); compare_VR_reg(OpndSize_32, v2, 1, false); #ifdef OPTION_OLD conditional_move_reg_to_reg(OpndSize_32, Condition_E, 5, false, 6, false); conditional_move_reg_to_reg(OpndSize_32, Condition_B, //below vs less 3, false, 6, false); conditional_move_reg_to_reg(OpndSize_32, Condition_A, //above vs greater 4, false, 6, false); set_virtual_reg(vA, OpndSize_32, 6, false); transferToState(2); #else conditional_jump(Condition_A, ".cmp_long_greater", true); conditional_jump(Condition_NE, ".cmp_long_less", true); set_VR_to_imm(vA, OpndSize_32, 0); unconditional_jump(".cmp_long_okay", true); insertLabel(".cmp_long_less", true); set_VR_to_imm(vA, OpndSize_32, 0xffffffff); unconditional_jump(".cmp_long_okay", true); insertLabel(".cmp_long_greater", true); set_VR_to_imm(vA, OpndSize_32, 1); #endif insertLabel(".cmp_long_okay", true); rPC += 2; return 0; } #undef P_GPR_1 #undef P_GPR_2 #undef P_GPR_3